\

Using Versions in Update Transactions

Francois Llirbat, Eric Simon, Dimitri Tombroff

» To cite this version:

Frangois Llirbat, Eric Simon, Dimitri Tombroff. Using Versions in Update Transactions. [Research
Report] RR-2940, INRIA. 1996. inria-00073759

HAL Id: inria-00073759
https://inria.hal.science/inria-00073759
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00073759
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Using Versionsin Update Transactions

Francois Llirbat, Eric Simon, Dimitri Tombroff

N° 2940
Juillet 1996

PROGRAMME 1

apport
derecherche







ZIINRIA

ROCQUENCOURT

Using Versions in Update Transactions

Francois Llirbat*, Eric Simon*, Dimitri Tombroff*

Programme 1 — Architectures paralléles, bases de données, réseaux
et systémes distribués
Projet Rodin

Rapport de recherche n°2940 — Juillet 1996 — 41 pages

Abstract: This paper proposes an extension of the multiversion two phase lock-
ing protocol, called EMV2PL, which enables update transactions to use versions
while guaranteeing the serializability of all transactions. The use of the protocol
is restricted to transactions, called write-then-read transactions that consist of two
consecutive parts: a write part containing both read and write operations in some
arbitrary order, and an abusively called read part, containing read operations or
write operations on data items already locked in the write part of the transaction.
With EMV2PL, read operations in the read part use versions and read locks ac-
quired in the write part can be released just before entering the read part. We
prove the correctness of our protocol, and show that its implementation requires
very few changes to classical implementations of MV2PL. After presenting various
methods used by application developers to implement integrity checking, we show
how EMV2PL can be effectively used to optimize the processing of update transac-
tions that perform integrity checks. Finally, performance studies show the benefits
of our protocol compared to a (strict) two phase locking protocol.

Key-words: Transactions, concurrency control, integrity checking, performance
analysis.

(Résumé : tsup)

*{Francois.Llirbat }{Eric.Simon }{Dimitri. Tombroff} Qinria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33 1) 39 63 55 11 — Télécopie : (33 1) 39 63 53 30



Utilisation de versions par des transactions d’écriture

Résumé : Cet article propose un protocole de controle de concurrence multiver-
sion appelé EMV2PL. Ce protocole permet d’exécuter efficacement des transactions
d’écriture particulieres composées de deux parties: une partie d’écriture qui contient
des opérations d’écriture et de lecture dans un ordre arbitraire et une partie de lec-
ture qui contient des opérations de lecture et/ou des opérations d’écriture sur des
objets déja verrouillés dans la partie d’écriture de la transaction. Avec EMV2PL,
ces transactions (1) reldchent leurs verrous de lecture avant d’exécuter leur partie
de lecture et (2) exécutent les opérations de lecture de la partie de lecture sur des
versions, sans prendre de verrous. Nous montrons la correction de ce protocole et le
fait que sa mise en oeuvre ne nécessite que de légeres modifications des algorithmes
et des structures de données utilisées par le protocole classique MV2PL. Nous pré-
sentons différentes méthodes employées pour vérifier I'intégrité des données dans
les applications de bases de données et montrons comment EMV2PL optimise ces
applications. Enfin, une étude par simulation nous permet d’illustrer les gains en
performances de notre protocole par rapport & un protocole de verrouillage & deux
phases.

Mots-clé : Transactions, contréle de concurrence, contrainte d’integrité, étude de
performance.



Using Versions in Update Transactions 3

1 Introduction

Multiversion concurrency control schemes exploit the use of versions to increase
concurrency between transactions [BHG87]. The most popular scheme is the Multi-
version two phase commit protocol'! (MV2PL), which eliminates blockings between
read-only transactions (i.e., transactions that do not change the state of the data-
base) and update transactions. In this protocol, read-only transactions access old
versions of data items whereas update transactions read and write the most recent
versions. Because read-only transactions access a past state, they never conflict with
update transactions and they do not need to take locks. As a result, they are never
blocked, nor do they block concurrent update transactions. In contrast, update tran-
sactions may conflict with each other and obey the strict two phase locking policy
(henceforth, S2PL). Several performance analysis have shown the value of MV2PL
over the standard S2PL protocol ([CM86], [BC92a]). Acknowledging its virtues, se-
veral database vendors have incorporated different variants of MV2PL into their
products?. However, the benefits of multiversion concurrency control for concurrent
update transactions is still controversial [BBG195]. Thus, no commercial DBMS im-
plements a scheme in which update transactions read old versions while guaranteeing

serializable executions?®.

In this paper, our main contribution is to propose an extension of the MV2PL
protocol, called EMV2PL, which enables update transactions to use versions while
guaranteeing the serializability of all transactions. However, the use of the proto-
col is restricted to a particular class of update transactions called write-then-read
transactions (noted W|R transactions). A transaction in this class consists of two
consecutive parts: the first part (called the write part) contains both read and write
operations in some arbitrary order, and the second part (abusively called the read
part) only contains read operations or write operations on data items already locked
in the first part of the transaction. Thus, no new write lock is acquired in the second
part of the transaction. In our protocol, W|R transactions take advantadge of ver-
sions in two ways: (i) they release their read locks before executing their read part,

'Tn [BHGS87] it is called multiversion mixed method; multiversion two phase locking is reserved
for a different protocol.

’E.g., SQL-92 Rdb ([HE91]), Postgres and Illustra ([T1194]), Oracle when used with SET TRAN-
SACTION READ ONLY ([Par89])

3Several products (e.g., Borland’s InterBase 4 ([Tha94]), Microsoft’s Exchange System) offer
the so-called “Snapshot Isolation” in which update transactions read old versions and write new
versions. Oracle provides a similar technique called “READ CONSISTENCY”. However, Snapshot
Isolation may produce non serializable executions as shown in [BBG*95].

RR n°2940



4 F. Llirbat, E, Simon, D. Tombroff

and (ii) they execute their read part without taking any lock, as read-only transac-
tions do with MV2PL. Using a careful performance analysis, we demonstrate that
the combination of both effects results in a significant increase in concurrency, and
reduces the probability of deadlocks, as compared to the S2PL protocol. A notable
feature of our protocol is its simplicity, as attest the few modifications to a classical
MV2PL implementation that are required to implement it. We consider it as a vir-
tue since our intention in this research is not to invent yet another new concurrency
control protocol but rather to enhance existing implementations to better match
application needs.

Write-then-read transactions are common in many database applications. Update
transactions that perform calculations at the end is one typical case. For instance a
transaction that performs financial commitments (i.e., database updates) may then
return statistics values to the user such as sum of commitments or remaining budget.
Another interesting case is applications in the area of data mining using sophisticated
statistical methods. There, statistical tests are triggered as soon as some relevant
situation is detected in the database as a result of updates. Additionally, one may
specify when to inform decision-makers about actual findings, e.g., when the value
of some statistical test exceeds a threshold. The triggering of statistical tests as
well as the alerting of decision-makers can be appropriately implemented by active
rules triggered at the end of update transactions. Since the triggers either perform
statistical computations or alert users, those update transactions are write-then-read
transactions.

A second important contribution of this paper is to show how EMV2PL can be
effectively used to optimize an application’s transaction throughput when update
transactions verify integrity constraints. Although EMV2PL has a wider applica-
bility, we consider this problem a valuable illustration of its potential, because an
important part of the database applications is devoted to the enforcement of integrity
constraints that guarantee that each transaction is consistent. We present various
methods, procedural and declarative, used by application developers, to implement
integrity constraints. We then consider integrity constraints, which can possibly trig-
ger a transaction rollback if a constraint is violated, and whose enforcement only
requires database read operations. Our performance measurements show that, if the
probability that a transaction violates a constraint is small, checking integrity at
the end of transactions that run under EMV2PL generally achieves a higher to-
tal transaction throughput than all other methods. Otherwise, checking integrity
right at the beginning of transactions, and using S2PL, is usually better. This re-
sult is important for three reasons. First, integrity can always — and sometimes has
to — be checked at the end of transactions. Second, it can easily be implemented
using declarative deferred assertions and deferred triggers, thereby benefiting from
the advantages of the declarative implementation of integrity. On the contrary, in-
tegrity constraints cannot always be checked at the beginning of transactions and
when it can, this cannot be implemented neither with assertions nor triggers. Last,
EMV2PL makes deferred assertions and triggers quite attractive from a transaction
throughput performance perspective.

INRIA



Using Versions in Update Transactions 5

The remainder of this paper is structured as follows. In section 2, we present a
motivating example and give an overview of our method. In section 3, we formally
define our protocol, prove its correctness, and show that it can be implemented as
a slight extension of multiversion two phase locking. In section 4, we discuss how
EMV2PL can be applied to integrity checking. Section 5 presents our performance
evaluation. Section 6 relates our work to other work, and we conclude in Section 7.

2 Problem Statement and Solution Overview

We present a motivating example in the framework of an information system repre-
senting the activity of an industry which must manage, sell, and distribute a product
worldwide. We assume that the industry holds a set of widely distributed stores. We
focus here on the processing of entry orders. The following relations are used.

Order (orderkey, custkey, orderdate, ...)

Lineitem (orderkey, itemkey, linenumber, qty, ...)
Totals_item (itemkey, total_qty, ...)

Totals_cust (custkey, total_balance, authorized_limit, ...)

Orders are registered in the database using two relations Order and Lineitem?.
We suppose that the system records summary information about items and cus-
tomers in two particular relations. A first relation, Totals_item, records totals for
each item such as the total quantity available in stock over all the stores®. A second
relation, Totals_cust, records totals and limits for each customer, e.g., the total ba-
lance for items that have been delivered®, and the minimal (negative) limit accepted
for the balance of that customer. The total balance in Totals_cust is decremented
when the receipt date is notified in Lineitern, and incremented when the payment
is received. The total quantity in Totals_item is updated according to the flow of
items (in and out) in each individual store. We assume that the contention is high
on the two tables Totals_item and Totals_cust.

A transaction program, entry_order, inserts tuples into relations Order and
Lineitem. Then, the transaction performs two checks. First, for each insertion in
Lineitem, it compares the quantity ordered with the total quantity available for that
item in relation T'otals_item. Depending on the value of total_gty, a shipping date
is estimated or the order for that item is refused. Then, the transaction checks the
total balance and the authorized limit for the customer in Totals_cust and compares
it with the total amount on order in the transaction. If the check is not successful,
the transaction is aborted. We suppose that the transaction performs insertions first
and then checks.

Suppose that transactions run in isolation degree 3 and obey the strict two phase
locking policy [BHG87]. Whenever entry_order executes, checks are performed,

“The schema for these two relations roughly follows the indications of [TPC95].

5There might be one such relation per geographical area such as Asia, Europe, etc

5A customer can be allowed to pay within an interval of time following the date at which the
ordered items have been delivered.

RR n°2940



6 F. Llirbat, E, Simon, D. Tombroff

insert into Order

| \ T \ insert into Lineitem

read Totals Item
read Totals Cust

Figure 1: T} is serialized after 75 and before 77 and T3.

which amounts to read one item in Totals_cust and several items in Totals_item.
Thus, executions of entry_order may be conflicting with concurrent executions of
update transactions on both Totals_item and Totals_cust since they respectively
want to read and write these relations. When a conflict occurs between two tran-
sactions, one transaction is blocked and waits that the other one releases its locks
(when committing or aborting). Thus, running instances of entry_order augment
the lock contention on Totals_item and Totals_cust and impede the transactional
traffic in the database system.

In this example, let us observe that entry_order is a W|R transaction. Our ba-
sic optimization idea allows the read part of such transactions to read versions of
database items exactly as read-only transactions do in the MV2PL protocol. In this
protocol, transactions are either read-only transactions or update transactions. Each
read-only transaction T is assigned a startup timestamp sn(7") when it begins to
execute, and each update transaction T is assigned a timestamp ¢n(T") when it com-
mits. Update transactions are serialized together through the usual strict two phase
locking protocol. Instead of simply updating the data items, update transactions
create new wversions of the data items. These versions are timestamped with the
timestamp tn of their creator. Hence, several ordered versions may exist for a single
data item. When a read only transaction wishes to read an item, it simply reads the
most recent version having a timestamp smaller than its startup timestamp. Thus, a
read-only transaction reads only versions created by update transactions that com-
mitted before it started. The major advantage of this protocol is that read-only
transactions do not acquire locks.

Coming back to our example, suppose that three update transactions on Totals_item,
noted Ty, Ty, and T3, execute concurrently with an instance of entry_order, noted
Ty. The concurrent execution of these transactions is shown on Figure 1. Let us
apply the principle of MV2PL to the read part of Ty. Relation Totals_item is not
locked by T} since Ty will read a version of Totals_item that corresponds to the
snapshot represented by the dotted line in Figure 1. Thus, the possible conflicts
on Totals_item may only occur between T7, T, and T3, and Ty is not capable of
blocking these transactions. Furthermore, the above execution is correct as far as
serialization is concerned’. Transaction T, which commits before the read part of

"Note that Snapshot Isolation would not guarantee serializability on this example. With Snap-
shot Isolation, each query uses its start time as timestamp. Suppose for example that T3 modify

INRIA



Using Versions in Update Transactions 7

T, Te

4 T 5

insert into Order
insert into Lineitem update x, y in Totals _item

read x in Totals_Item ! X

insert into Lineitem

read y in Totals item |
read z in Totals_cust o

Figure 2: Ty does not see T5’s modification on y but sees T5’s modification on z.

Ty starts is serialized before T,. Transactions 77 and T3, which commit after the
read part of T, starts are serialized after Ty because they commit after Ty acquired
all its locks.

However, the usage of MV2PL to monitor the read parts of W|R transactions
can raise some problems. First, note the importance of our assumption that only
new read locks are acquired. Suppose that T is changed as follows. The first check
on Totals_item is performed after each insertion of a tuple into Lineitem and the
second check is performed at the end of the transaction. Then, the write parts and
the read parts of the transaction are interleaved. This means that a new write-
lock could be acquired after the first read on Totals_item. The problem is that
a serialization fault might occur if a concurrent transaction, say Ts, executes and
updates both Lineitem and Totals_item, as shown on figure 2. The edges of the
serialization graph®, labelled with the item that causes a conflict, are shown in this
figure. Thus, although the semantics of the transaction is unchanged by the new
implementation of Ty, our optimization opportunity is lost.

Even if all the checks are performed at the end of the transaction, the main
problem may still occur when concurrent write-then-read transactions are executed.
Suppose we have two concurrent transactions 77 and T, as depicted on figure 3. T}
reads a version of z created before Ty since T3 commits after the read part of T
starts. Using the same argument, 75 reads a version of y created before T} started.
Thus there is a cycle in the serialization graph and the execution is not correct.

In this example, the problem comes from the read(z) operation issued by the
read part of transaction 77. This operation makes 77 serialized before T5, although
they started their read parts in the opposite order. The basic idea of our protocol is
to dynamically prevent such “critical” reads from happening.

The Snapshot Isolation (SI) technique would also produce a serialization fault on
the example of Figure 3. With SI, all reads of a transaction 7" read the most recent

both Total_item and Totals_cust. If T3 commits after “read Total_item” is started but before “read
Totals_cust” is started, “read Totals_cust” will not see T3 changes while “read Totals_item” could
see them, resulting in a serialisation fault

8This graph representing the serialization order of transactions is defined in Section 3

RR n°2940



8 F. Llirbat, E, Simon, D. Tombroff

w(x)
w(y) X

Figure 3: Concurrent execution of Write-then-Read Transactions.

versions created before the start time of T. Updates in T" which create new versions
timestamped with 7’s commit time. However, T' is allowed to commit only if no
other transaction whose commit timestamp belongs to the interval [T' — start_time,
T — commit_time| wrote a data item also written by 7. Otherwise, T' is aborted.
Suppose that SI is used on the example of Figure 3: the read of z (resp. of y) returns
the most recent version created before T; (resp. T5) thus resulting in a serialization
fault. In fact, as noted in [BBG95], SI allows an important concurrency anomaly
called constraint violation. Suppose there is a constraint between z and y (e.g.,
x < y) then after the execution of 77 and T, this constraint might be violated.

Coming back to our protocol, we have so far sketched out how the conflicts
between the read part of W|R transactions and other transactions can be eliminated
using versions. However, there is a second advantage of using versions. Intuitively,
the effect of our protocol is to make the read part of a W|R transaction access
a snapshot of the database as of the time the W|R transaction reaches the end
of its write part. From that point in time and until it commits (or aborts), the
WIR transaction will ignore the database changes from concurrent transactions.
Thus, the W|R transaction may safely release all its read locks before starting to
execute the read part. Releasing locks earlier allows other transactions to modify
the corresponding data items without having to wait for the W|R transaction to
commit or abort. In contrast, a W|R transaction keeps all its write locks until it
commits or aborts, as with S2PL.

3 Extended Multiversion Two Phase Lock Protocol

In this section we formally define the EMV2PL protocol and prove its correctness, we
explain its behavior with respect to deadlocks and external consistency, and finally
we briefly explain how it can be implemented.

INRIA



Using Versions in Update Transactions 9

3.1 Preliminaries

We first introduce basic notations and definitions, (see [BHG87] and [AS89]).

A database is a set of objects. A Transaction 7; is an ordered pair (%;, <;) where
¥; is the set of operations in T; and <; is the execution order of these operations.
Read or write operations executed by 7; are noted r;[z] or w;[z], respectively. Tran-
sactions terminate either by a commit (¢; for T;) or an abort (a; for T;). Transactions
are characterized as follows. A read-only transaction (noted R transaction) contains
only read operations. An update transaction (noted W transaction) contains both
read and write operations. Finally a Write-then- Read transaction is a particular W
transaction that terminates by a part in which no new object is written. Formally a
W|R transaction is a pair (3;,<;) where ; = 3! U X2, 0; <; 0y for any operation
01 € %} and op € X2, and w;[z] € ¥? only if w;[z] € B}. The first part of a W|R
transaction is called its write part and the second part its read part.

Let T = {T1,T>»,..T,} be a set of transactions. An history H of T is a partial
order (X, <p) where ¥ is the set of operations executed by transactions in 7', and
< g is the execution order of those operations. Two histories H; and Hy are conflict
equivalent if (i) they are defined over the same set of transactions and (ii) if o; and
oy are two conflicting operations and 0 <p, 02 then o; <p, 02. An history H;
is serial if for every two transactions T; and Tj either all operations of T; precede
all operations of T} or vice-versa. An history H is serializable if it is equivalent to
a serial history. One determines if H is serializable by analyzing the Serialization
Graph of H , noted SG(H). This is a directed graph where nodes are the committed
transactions in H, and there is an edge T; — T if one of T;’s operation precedes and
conflicts with one of T}’s operation. An history H is serializable if its serialization
graph is acyclic.

In a multiversion database, each write operation of an object z produces a new
version of z. Thus for each object z, there is a list of versions written z;,z;, ..
where the subscript is the index of the transaction that wrote the version (thus,
z; represents the version of z created by T;). A multiversion history (MV') is the
sequence of operations on the versions of objects submitted by transactions. Each
write operation w;[z] is mapped into w;[z;] and each operation r;[z] is mapped into
ri[zy], for some k. A transaction T reads-z-from T; in H if rj[z;] € H. Notice the
only conflicting operations in H are w;[z;] and r;[z;] for some z,T; and T;. Two MV
histories are equivalent if they have the same operations. An MV history is one-
copy serializable if it is equivalent to a serial history over the same set of transactions
executed over a single version database. The multiversion serialization graph of an
MV history H (MVSG(H)) is a directed graph whose nodes represent committed
transactions. There is an edge T; — T} in MVSG(H) if

(i) rjlz;) € H for some z (that is, T; reads-x-from Tj)

Such an edge is called an SG(H) edge in [BHG87]. Additional edges are defined as
follows. For each object z, there is a total order (noted <) on all transactions that
write z. One adds the edge T; — T; to MVSG(H) iff one of the following holds:

RR n°2940



10 F. Llirbat, E, Simon, D. Tombroff

Operation Invocation Operation Execution

begin(T') get sn(T) from TM

;".t;,ad(z) return z’s version with largest version number < sn(T")
end(T) ¢

Figure 4: Execution of an R transaction

(ii) for some z and T}, T; reads-x-from T}, and z; <, z;
(iii) for some z and T}, T} reads-x-from T} and z; <5 ;

These additional edges are called version order edges. An MV history is one-copy
serializable if its multiversion serialization graph is acyclic ([BHG87]).

3.2 The EMV2PL Protocol

We now present our Extended MV2PL protocol, called EMV2PL. Figures 4 and
5 respectively show how operations issued by R and W transactions are processed
by the Transaction Manager (TM). An R transaction first obtains a start number
noted sn from TM. Then every read(z) gets the most recent version of z having a
timestamp less than or equal to sn. Reads in a W transaction follow the usual S2PL
protocol, whereas a write(z) creates a new version of z (if z is written for the first
time). Before committing, a W transaction obtains its transaction number (noted
tn), associates this number to each of its versions, and releases all its locks.

Figure 6 shows how the operations issued by a W|R transactions are processed.
The write part of the transaction is processed as a W transaction. When the end of
the write part is reached, the transaction signals it reached a lockpoint® to the TM
and receives a transaction number tn. The transaction then releases all the S locks
it has acquired so far. After that point, read and write operations are processed as
follows. A read(z) operation invokes a function check_read(z) that checks if there
is an uncommitted version'® of = created by another transaction whose number is
smaller than the caller’s ¢n. In that case, check_read waits until that transaction
commits. After that, the W|R transaction reads the most recent version of z with
timestamp smaller than or equal to ¢tn. A write(z) operation only modifies a version
already created in the write part. Before committing, a W|R transaction associates
its tn to each version it created and releases all its locks.

To maintain the tn’s, the TM uses a monotonically increasing counter. Since W
and W|R transactions obtain their tn after they acquired their last locks and before

9A lock point of a transaction is any point in time between the last lock acquired and the first
lock released
10 e., a version created by a still active transaction

INRIA



Using Versions in Update Transactions

11

Operation Invocation
begin(T)
read(z)

write(y)

end(T)

Operation Execution

¢

get read-lock on z
/*may wait according to the 2PL protocolx/
return the most recent version of =

get write-lock on y
/*may wait according to the 2PL protocolx/
creates a new version of y

get tn(T) from TM

commiat(T):
perform database updates with version number tn(T")
release locks

Figure 5: Execution of a W transaction

Operation Invocation
begin(T)

'.r.t.aad(z)
;.rite(y)

lockpoint(T)

:r.t.zad(z)

write(t)

end(T)

Operation Execution

¢

get read lock on z
/+may wait according to the 2PL protocolx/
return the most recent version of z

get write-lock on y
/*may wait according to the 2PL protocolx/
create a new version of y

get tn(T) from TM
release S locks

check_read(z)
/+may wait (see EMV2PL protocol)x*/
return z’s version with largest version number < tn(T)

update the last version of ¢
/xthis version was created by T before lockpoint(T) =/

commiat(T):
perform database updates with version number ¢n(T)
release locks

Figure 6: Execution of W|R transaction

RR n°2940



12 F. Llirbat, E, Simon, D. Tombroff

committing, ¢n’s are lockpoints. For R transactions, the TM simply guarantees that
their sn is smaller than the ¢n of any active or forthcoming transaction. Thus, an R
transaction reads only versions of committed transactions.

3.3 Correctness

In this section, we prove that the EMV2PL protocol guarantees serializability of all
transactions.

For the ease of presentation, we denote sn(r;[zx]) the timestamp used by T; to
select version zj. If r; is executed in an R transaction then sn(r;[z]) = sn(T;). If r;
is executed in the read part of a W|R transaction then sn(r;[z]) = tn(T;). For the
purpose of uniformity, we consider as in [AS89] that sn(r;[z]) = oo for any other
read operations since these reads use locks and always access the latest version of
an item.

Theorem : The EMV2PL protocol guarantees serializability of all transactions.

Proof : Since only strict histories are accepted, we consider only committed tran-
sactions. Given an history H produced by the EMV2PL protocol, we prove that
MVSG(H) is acyclic. Let ¢ts(7;) be defined as follows:
15(Ty) = sn(T;) if T; is an R transaction
tn(T;) otherwise

We show that MVSG(H) is acyclic by showing that for each of its edges T; — T},
(2 # j), ts(T;) < ts(Tj). We perform a case analysis on the types of edges.

(i) T; — Tj is an SG(H) edge. That is, wi[z;] <w ¢ <u 7j[z;]. We thus have
tn(T;) < sn(rj[zg]). If sn(rjzg]) is finite, then tn(T;) < ts(T;) (see definition of
sn(r;[zg])). If sn(rjzx]) = co then T acquired a shared-lock on z after T; released
an exclusive-lock. Since tn(T;) and tn(Tj) are lockpoints, we have tn(T;) < tn(T})
(recall that with the S2PL policy, if T; — T}, all lock points of T; precede all lock
points of T}). Thus in both cases, ts(T;) < ts(T}).

(ii) T; — Tj is a version order edge because for some = and Ty, r[zx] € H and
zp Lz zj. If sn(ri[zg]) = oo then T; acquired a shared-lock on z. Also T; acquired
its lock before T acquired an exclusive-lock on z (otherwise, T; would have read z;
instead of z). We have then ts(T;) < ts(T}) since ts(T;) and ts(T}) are lock points
of T;, T; respectively. Suppose now that sn(r;[z;]) is finite. If r;[zy] <g wj[z;],
then ¢s(T;) was obtained before ¢s(T;) and it follows that ¢s(T;) < ts(T}). Finally
if wjlz;] <mg ri[zk), then we must have tn(T;) < sn(r;[zg]), otherwise we would
have obtained w;[z;] <m ¢; <m 7r3i[z;] because the check_read function would have
blocked T; until T; commits.

(iii) 7; — Tj is a version order edge because for some z and Ty, rx[z;] € H and
z; Lg xj. Since z; K, xj, T; acquired an exclusive-lock on z before T, so we have
ts(T;) < ts(T}). O

INRIA



Using Versions in Update Transactions 13

3.4 Deadlocks

Clearly, EMV2PL suffers from deadlocks since it uses S2PL for serializing W tran-
sactions and the write parts of W|R transactions. However, once a W|R transaction
starts executing its read part, it may not be involved anymore in deadlocks. This is
easily shown as follows.

Suppose T; is a W|R transaction which executes its read part. It thus has already
obtained its tn. A deadlock implies a cycle in the transaction wait-for graph!!. T;
is involved in a deadlock if it belongs to a cycle or if it is waiting for a transaction
from a cycle. We first show that 7; may not belong to a cycle. Let T; — T;, — T;, —
... T;,, = T; be a cycle. Since T; is waiting for T;,, then T;, has also obtained its ¢n and
tn(T;) > tn(T;1) (only in this case could check_read have blocked T;). Furthermore,
T;1 may not be a W transaction because once a W transaction has obtained its
tn (i.e., has passed its lockpoint), it may not be waiting for another transaction
T;,. Thus, T;, is a W|R transaction which executes its read part. Applying this for
every node of the cycle, we obtain that all the nodes are such W|R transactions and
tn(T;) > tn(T;), which is a contradiction.

Suppose now that T; does not belong to a cycle. If there was a path from T; to
a transaction of a cycle, say T}, then T; would also be a W|R transaction executing
its read part. This is impossible since it belongs to a cycle O.

This result is significant. Indeed, in most database applications, deadlocks are
avoided by a careful design of application programs. A common way of avoiding
deadlocks is to make transactions access the data in the same order. However, in an
active database system, rules and transactions are usually programmed by different
programmers. The application programmer is not aware of all the rules. As a result,
the resulting transaction may suffer from a poor design with respect to deadlocks.

3.5 External Consistency

Although EMV2PL guarantees serializability, it does not preserve external consis-
tency. That is, the order in which transactions commit may differ from their se-
rialization order. For example, suppose we have a transaction entry_order, as in the
example of Section 2, and a transaction refresh_items which increases the quantity of
some item by some number. As shown on Figure 7, an entry_order transaction might
be told that there is not enough items in stock for its order although a transaction
just increased (and committed) the quantity in stock for that item so that the order
could have been satisfied. Such consistency “faults” are likely to occur if the read
parts of W|R transactions are long.

Should external consistency be critical, it may help to show the value of tran-
saction timestamps to users, instead of showing the transaction commit time, since
timestamps reflect the serialization order. Intuitively, the timestamp of a W|R tran-
saction indicates at which time the decision to commit or abort was taken (even

""Nodes of the wait-for graph are transactions and there is an edge T; — Tj iff T; is blocked by
T; ( see [BHG8T])

RR n°2940



14 F. Llirbat, E, Simon, D. Tombroff

insert into Order

insert into Lineltem

e update x in Totals_item --- time=10
|

read x in Totals jtem | .
el time=20
| commit

read Totals cust |
|

R L LT e time =40

Figure 7: Scenario with an external consistency fault.

though the system committed or aborted the transactions at some later time). For
example, the timestamp of the entry order transaction in Figure 7 indicates that
there was not enough items at time 10, while the timestamp of refresh_items indi-
cates that the increase was completed at time 20.

3.6 Implementation Issues

The EMV2PL protocol may use the same mechanisms as MV2PL to maintain times-
tamps and versions. Therefore, we mainly discuss here the implementation of the
check_read(z) function. All the information needed by check_read(z) are found in
the lock table. Indeed, checking if there is an uncommitted version of x only requires
to check if there is an exclusive lock taken on z. If check_read(z) must wait for z’s
creator to commit, it simply waits for the release of this lock. We show that these
mechanisms are easily implemented on top of an existing MV2PL lock manager.

We take a lock manager similar to the one described in [GR93]. For simplicity
we only consider exclusive locks (noted X-lock) and shared locks (noted S-lock). The
lock manager’s data structures are summarized in Figure 8. Its two basic interfaces
are lock and unlock. The only change in the lock manager’s data structures consists
of associating to each lock header a list of process ids, referred to as list_pid. This
list is used to store the pid(s) of W|R transactions blocked by check_read.

Given this, check_read(z) performs the following. It looks at the lock header asso-
ciated with = and checks if z is X-locked. If yes, there is an uncommitted version of
z and check_read() checks if the owner of this lock has a tn smaller than the caller’s
one. In that case, check_read() appends the caller’s pid into the lock header list_pid
and waits for the release of the X-lock. After it woke up, or if it was not blocked,
check_read returns an ok message. These operations require neither to traverse the
lock request queue nor to insert a new lock request into the lock request queue.
[MHLP91] proposes a method to check that a page only contains committed data
without inspecting the lock table. This method can greatly reduce the locking ove-
rhead. It can be used in our protocol as follows: check_read(x) first checks if the page

INRIA



Using Versions in Update Transactions 15

Exclusive semaphore on hash chain
Lock hash table L

H

Transaction
Table Lock header
/ Queue of lock requests
Exclusive semaphore N\
on lock queue

Figure 8: Lock manager data structures

containing = contains committed data as described in [MHLPY1]. If this condition
is verified, the lock table must not be read.

Finally, we slightly modify the unlock interface so that (i) a transaction releasing
an X-lock wakes up all processes whose pids are in the lock header list_pid and set
list_pid to null and (ii) a transaction may release all its S-locks. These are the only
modifications of the unlock routine.

Note that the lock interface is unchanged. In fact, check_read has less overhead
than lock'? in terms of lock queue traversal and memory space, since instead of
enqueuing new lock requests, it (sometimes) appends the caller’s pid into a list. The
number of locks in the system is thus reduced. We give in Appendix 1, the pseudo-
code for check_read, assuming the implementation context described in [GR93].

4 Application to Integrity Checking

In this section, we describe how EMV2PL can be used to optimize the enforce-
ment of semantic integrity constraints in database applications. Until now, the vast
majority of database applications implement integrity constraints using a procedu-
ral approach whereby integrity checks are embedded into application programs. In
contrast, the declarative approach, consists of defining integrity constraints in the
database schema, which are then automatically enforced by the database system
when needed. We present each approach, compare different methods for program-
ming integrity checks, and analyze the consequences of each method on the pattern of
transactions. Hence, we relate the optimizations enabled by our EMV2PL protocol.

12which would be invoked instead of check_read in MV2PL or S2PL

RR n°2940



16 F. Llirbat, E, Simon, D. Tombroff

4.1 Procedural Approach

The most general method is to check integrity after updating the database, which we
refer to as the write-then-check method. The granularity of the database update after
which integrity checks occur may vary from a single to a set of data modification
statements, possibly wrapped into a procedure or a transaction. Sometimes, checking
at the end of transactions is mandatory because some temporary inconsistent state
is unavoidable during the execution of the transaction, or the interactive effects
between two or more updates have to be controlled afterwards, or the integrity
checks depend on the logic of the transaction program (specially when conditional
branching is used). For integrity checks that only involve database reads, checking
at the end of transactions naturally yields W|R transactions. Hence, provided that
the programmer has the ability to manually insert a lockpoint (e.g., using a specific
command in the transaction program) at the end of their write parts, transaction’s
execution can take advantage of our EMV2PL protocol.

However, according to the experience of the authors and others ([Sha], [AD],
[Coc], [Moh]), a frequent method used by application developers to optimize the en-
forcement of integrity constraints is to check the parameters of the update commands
and their potential effect on the database before actually applying the changes to
the database!®. We call this the check-before-write method. Here again, the method
can be applied to a single or a set of data modification statements. Checking inte-
grity at the beginning of transactions is expected to bring the following advantages:
(i) exclusive locks on the updated data items are held for a shorter time if the
updates occur at the end of the transaction, and (ii) less work is possibly wasted
when the transaction violates data integrity since there are no unnecessary writes.
For integrity checks that only involve database reads, checking at the beginning of
transactions naturally yields read-then-write transactions, noted R|W transactions.
Otherwise, the method yields W transactions. Notably, in client-server applications,
where it is common to apply the check-before-write method to the design of stored
procedures that embed database update operations (e.g., order an item to a sup-
plier), a transaction that has several stored procedure calls results in a general W
transaction. Finally, one must note that the check-before-write method is not always
applicable for the reasons explained earlier.

4.2 Declarative Approach

Facilities to define integrity constraints by means of assertions and triggers are now
provided with some restrictions by most commercial database systems and constitute
a prominent feature of the SQL3 standard, currently under development. We present
these facilities and indicate the possible optimizations brought by EMV2PL.

13Different programming techniques are possible using program variables and temporary relations,
which are not discussed here.

INRIA



Using Versions in Update Transactions 17

4.2.1 Declarative Assertions

Declarative assertions include two forms of constraints: check constraints and re-
ferential constraints. Referential constraints are definable by means of foreign key
clauses. A referential constraint involves a referencing relation and a referenced rela-
tion. One or several columns of the referencing relation are specified as foreign key.
The value of these columns must also appear in the appropriate columns of the refe-
renced relation. Insertions and updates to the referencing relation that violates the
constraint are disallowed, i.e., the modification is rejected. However, the treatment
of updates and deletes to the referenced relation can be specified in the foreign key
clause using a foreign key action that describes the action to take in case of integrity
violation. A “cascade” action propagates the update or the delete to the referencing
relation, a “set null” (or “default”) action sets to the null (default) value all foreign
key columns whose values are no longer matched in the referenced relation, and a
“no action” disallows the violating update or delete.

Referential constraints can be checked either immediately after an SQL statement
(immediate mode!*), or at the end of the transaction (deferred mode). For example,
following the SQL-92 and SQL3 standards, a referential integrity constraint may be
specified as “deferred”, in which case it is executed at commit time, or it can be
specified as “deferrable”, in which case the transaction dynamically chooses to defer
it at commit time by setting its constraint mode to “deferred” [SQL90].

The EMV2PL protocol optimizes update transactions that check referential
constraints in two ways. When the transaction is a W|R transaction:

e the read locks taken in the “W” part of the transaction by the verification of
immediate referential constraints either with a “no action”, or due to updates
or insertions of tuples in a referencing relation, can be released at the beginning
of the “R” part.

e the read operations, in the “R” part, entailed by the verification of deferred
referential constraints'® with “no action”, do not acquire read locks.

To illustrate, we come back to the example of Section 2. Suppose that when
the entry_order transaction does an insert into Order and Lineitem, the values of
custkey, itemkey, and suppkey, which are foreign keys, are immediately checked in
the referenced relations. Then, using EMV2PL, the read locks on relations Item,
Supplier, and Customer entailed by referential constraints will be released before
executing the “R” part of the transaction.

Since referential integrity checking requires to access a number of tuples equal to
the number of updated tuples, the above optimizations may concern a small number

Y“Tn fact, SQL-92 and SQL3 standard require constraints to be effectivelly checked after the
statement. This does not mean that the constraint must be physically checked at that time but
rather than the checking must have the same effect as if it occured after the statement. The rationale
is to rule out non-deterministic behaviors which can occur with “in-flight” constraint checking
[Hor92].

5The constraint is either defined as “deferred” or as “deferrable” and the transaction has set its
constraint mode to “deferred”.

RR n°2940



18 F. Llirbat, E, Simon, D. Tombroff

of read operations for short update transactions. However, because referential inte-
grity is heavily used, there may be a significant fraction of such transactions in the
application workload. Thus, the lock contention resulting from those read operations
issued by many transactions is not negligible and may create concurrency control
hot spots (as discussed in [Moh90]) if an S2PL protocol is used.

In general a check constraint can be any SQL condition, including multi-table
conditions'®. Unlike referential integrity, check constraints may amount to read
many tuples from different relations in the case of multi-table conditions. Mono-
table conditions only require to check value restrictions or intra-row values for each
updated or inserted row in a given table.

EMV2PL optimizes update transactions that enforce check constraints in a way
similar to referential constraints: read locks acquired for verifying immediate check
constraints can be released earlier in W|R transactions, and read operations en-
tailed by the verification of deferred check constraints never take locks. However,
unlike referential constraints, this optimization can be quite payful for multi-table
assertions.

4.2.2 Triggers

A trigger consists of an event that causes the trigger to be activated, a condition
that is checked when the trigger is activated, and an action that is executed when
the trigger is activated and its condition is true. The triggering event is an insertion,
deletion or update applied to a given relation, say R. We say that the trigger is
defined on R. The condition is an SQL search condition over the database, and the
action is an atomic procedure that may contain SQL statements combined with
other procedural constructs.

The activation time of a trigger specifies if the trigger is executed before or after
its triggering event, whereas an execution granularity defines how many times the
trigger is executed for the event. Triggers that execute before their event are called
before-triggers, and those that execute after their event are called after-triggers. We
assume, as SQL3 does, that before-triggers cannot modify the database using update,
delete, or insert statements. Finally, we assume that immediate triggers can either
rollback a statement or a transaction, whereas deferred triggers can only rollback
the transaction.

As with assertions, EMV2PL optimizes the processing of immediate triggers in
W|R transactions by releasing read locks earlier. But unlike deferred check constraints,
deferred triggers do not necessarilly yield W|R transactions since the action of trig-
gers can perform database updates. More precisely, the problem is the following:
given a transaction ready to commit and a set of deferred triggers activated by the

163QL-92 distinguishes table check constraints and assertions: A table check constraint is attached
to one table and is used to express a condition that must be true for every tuple in the table. An
assertion is a standalone check constraint in a shema and is normally used to specify a condition
that affects more than one table.

INRIA



Using Versions in Update Transactions 19

transaction, how can the database system statically detect a transaction lockpoint,
i.e., the point between the “W” and the “R” parts (if any)?

In fact, the problem is more complicated because check constraints, referential
constraints, and triggers can be mixed together. However, considering the general
framework requires to have a precise description of an execution model for triggers
and assertions, a still open problem which is largely out of the scope of this paper.
Thus, we shall restrict ourselves to the detection of a lockpoint when deferred triggers
execute.

A preliminar step is to determine, for each trigger, if:

e the action part of the trigger does not acquire any new exclusive lock, in which
case the trigger is said to be an RCA trigger!”.

e the trigger cannot activate, directly or transitively, another trigger that ac-
quires new exclusive locks, in which case the trigger is said to be safe.

Before formally defining RCA and safe triggers, a few definitions will be useful.
Suppose that three relations, ins_R, del_R and up_R are associated with every re-
lation R. They respectively contain the tuples that have been inserted, deleted and
updated between the beginning of the transaction and the current state. A tuple of
R appears in at most one of these relations, even if it is modified several times. More
specifically, a tuple first inserted and then updated appears as being inserted with
its updated value, a tuple updated several times appears as being updated with its
latest updated value, and the deletion of an updated tuple is considered as a deletion
of the original tuple. If a tuple is inserted and then deleted (or vice versa), it does
not appear in these tables at all. Thus, ins_R, del_R and up_R together represent
the net effect of the transaction on R. If I} is a database state and R a relation, we
will note Ix[R] the instances of a relation R in state I.

RCA trigger: Let r be a trigger defined on a relation R. Let I} be the database
state just before an operation op in the action of r is executed, and I;; the state
resulting from the execution of op. If for any state I and operation op of r’s action
we have

e [ii1[ins_R] C Ii[ins_R]
o [i1lup R] C Ix[up R]
e Iy 1[del_R] C (Ix[del_R] U Ix[up_R)])

and if op does not modify any instance of a relation other than R, then r is said to
be an RCA trigger.

Thus, an RCA trigger does not insert new tuples, and does not delete or update
tuples that were not previously inserted or updated by the transaction.

'"RCA stands for Rollback, Compensative, Alerter trigger. Indeed, the action part of triggers that
do not acquire new exclusive lock typically (i) perform a rollback, (ii) raise an alert or (iii) overwrite
database items that have been already inserted, updated or deleted by the triggering transaction.

RR n°2940



20 F. Llirbat, E, Simon, D. Tombroff

Example 3: Suppose we have two relations Purchase (custkey, item, quantity, sup-
key) and Supplier (supkey, address), and a constraint saying that “the suppliers
specified in Purchase must exist in Supplier”. The following trigger enforces this
constraint by undoing deletions to Supplier that violate the constraint. In this trig-
ger, the relation deleted refers to tuples deleted by the triggering transaction.

after delete on Supplier
then insert into Supplier
select (supkey, address) from deleted
where exists (select * from Purchase
where supkey = deleted.supkey);

In this trigger, deleted refers to del_Supplier. This trigger is an RCA, i.e., it only
inserts tuples that were initially deleted by the triggering transaction.

To determine if a trigger is safe, we use a triggering action graph (TAG), as
defined in [Mel93], whose nodes are triggers and edges represent the “activate”
relationship between triggers. If no path goes from an RCA trigger r to a non-RCA
trigger, then r is safe. Clearly, triggers whose action part only generates a rollback
or raises an alert are safe since they do not change the database. Only triggers that
“repair” some data modifications may be both RCA and unsafe.

Example 4: Suppose we have two triggers r and ry defined on relation R1(al, a2).
r1 is activated by updates to a1, and its action updates attribute as for those a1’s
updated tuples. ry is activated by updates to as and its action deletes some tuples
of a relation Ry. r1 is RCA yet unsafe because it may activate r9 which is non-RCA.

We now sketch out how the rule manager of an active database system can
dynamically detect the lockpoint of a W|R transaction. When the rule manager
receives the “end-of-transaction” signal from a transaction, the set of triggers that
have been activated is examined. If all these triggers are RCA and safe'®, then the
rule manager immediately signals the lockpoint to the Transaction Manager (TM)
since only RCA triggers are going to be executed.

Otherwise (i.e., if some triggers are unsafe, or non-RCA), the rule manager consi-
ders a first trigger for execution. Usually, the order in which triggers are executed
is determined by pre-defined priorities. If this order is total, the rule manager has
no other choice than examining, after having executed a trigger, if all the remaining
triggers are safe RCA triggers. If so, it signals the lockpoint to the TM. If the order
of trigger execution is partial, the rule manager has some freedom to schedule the
triggers. Non-RCA and unsafe RCA triggers are scheduled first (as far as possible),
until all remaining triggers are safe and RCA. At that point, the rule manager signals
the lockpoint of the transaction to the TM.

18This is supposed to be determined at the time triggers are defined.

INRIA



Using Versions in Update Transactions 21

4.3 Procedural versus Declarative Approach

The declarative approach offers several advantages over the procedural approach
(see also [WC96] and [SKD95] for more details). First, the maintenance of inte-
grity constraints is facilitated. Since assertions and triggers are modular, adding a
constraint amounts to defining new assertions or triggers that will automatically be
invoked by application programs when necessary. On the contrary, adding (changing,
or removing) a constraint in application programs requires to change existing ap-
plication code. As reported in [SKD95], a consequence for very large applications is
that the number of integrity checking procedures invoked from succeeding releases
of application programs uses to increase monotonically. Calls to these procedures
are rarely removed from transactions, though it turns out that changes in the data
acquisition process have made some controls obsolete. Discovering such situations
requires a lot of effort usually not considered as deserving in individual application
programs.

Second, assertions and triggers are reliable since they are automatically invoked
whenever an appropriate data modification is issued by a transaction. This provides
a safe way to ensure that every application obeys specific constraints, regardless
of the method used to access the database. On the contrary, with the procedural
approach, the correct enforcement of constraints is guaranteed only if every single
transaction implements it correctly. This makes data quality dependent on the re-
liability of programmers and programming methodologies and may be the reason
of severe inconsistencies as to the enforced policies. As noted by [CPM96], since an
increasing number of applications are being developed by small, autonomous groups
of developers with narrow views of the overall enterprise, the enterprise information
system is very vulnerable to integrity violations.

The main advantage of the procedural approach is that one can precisely control
and tune the performance of integrity checks within each individual transaction.
In [SKD95], the authors show that this is a major reason why an application is
usually less efficient when it is developed with the declarative approach instead of
the procedural approach. This is not possible with the declarative approach for two
main reasons. First, a trigger or an assertion is defined in a unique way whatever
is the transaction that will invoke it. It is therefore not possible to specialize an
integrity check for a specific transaction. Furthermore, for triggers, the activation
time (immediate before or after, or deferred) is also determined once for all when
the trigger is defined. The “deferrable” mode gives slightly more flexibility since it
enables to change the activation time of an assertion (either immediate or deferred)
in a particular transaction. Second, the optimization offered by the check-before-
write method cannot be implemented using the declarative approach. For instance,
it is not possible to specify that an assertion or a trigger must be activated just after
a “begin transaction” command and checked prior to the execution of updates that
occur in the transaction. Immediate before-triggers are the only exception for single
update statements.

Both the procedural and the declarative approaches can benefit from the use
of EMV2PL, as shown by Table 1 that summarizes the patterns of transactions

RR n°2940



22 F. Llirbat, E, Simon, D. Tombroff

procedural declarative
R|W | check-before-write for none
transactions granularity
W|R | write-then-check for deferred checking :

transactions granularity | deferred or deferrable assertions,
and deferred safe RCA triggers

w - check-before-write or - immediate checking :
write-then-check for immediate assertions and triggers
update granularity - others
- others

Table 1: patterns of transactions and integrity checking methods

induced by the implementation methods presented before. However, lockpoints can
be detected automatically in the declarative approach (as explained before), whereas
they have to be explicitly set in transactions in the procedural approach.

5 Performance Study

5.1 Objectives

The experiments presented in this section have been designed with several objectives
in mind.

Objective 1: concurrency versus version overhead

A multiversion scheme exposes to a well known tradeoff between the increased
concurrency and the I/O and storage overheads caused by the use of versions. This
tradeoff was previously studied in [CM86] and [BC92a] in the case of multiversion
two phase locking when read-only transactions execute concurrently with update
transactions. In the case of EMV2PL, the problem is complicated by the fact that
write-then-read transactions use versions and conflict between each other. Thus, our
first objective is to analyze how EMV2PL behaves with respect to the above tradeoff
for different transaction workloads that combine both W and W|R transactions.

Objective 2: application to integrity checking

There are many situations where both the check-before-write and write-then-
check methods are applicable to program transactions. For instance, in Section 2, we
assumed that integrity checks were performed at the end of transaction entry_order,
thereby conforming to the write-then-check method. However, since the two updates
on Order and Lineitem are independent, the check-before-write method could be
used instead. As shown by Table 1, the check-before-write method yields R|W or
W transactions which cannot be executed under EMV2PL. Hence, our first interest
is to study if the use of EMV2PL for executing W|R transactions yielded by the
(procedural) write-then-check method or the (declarative) deferred checking (see
Table 1) can counterbalance the optimization brought by the check-before-write
method under S2PL.

INRIA



Using Versions in Update Transactions 23

Suppose now that we are interested in some integrity checks that only involve
database read operations, then as indicated by Table 1, (declarative) immediate
checking yields W transactions while (declarative) deferred checking yields W|R
transactions. Hence, our next interest is to compare the performance of immediate
checking under S2PL with the performance of deferred checking under EMV2PL.
This comparison is attractive because deferred checks are usually considered to be
less efficient than immediate checks while immediate checks may complicate the
activity of tuning and maintaining database applications [SKD95].

5.2 Multiversion Background

In this section, we briefly review the CCA scheme ([CFL*82]) and the on page
version caching ([BC92a]). We decided to simulate the on-page version caching tech-
nique because it is one of the most efficient technique for maintaining version and
processing transactions. For simplicity, we shall call both read-only transactions and
W|R transactions “readers” since with EMV2PL, both kinds of transactions read
versions.

In the CCA scheme, versioning is done at the page level and the database is
divided into two parts: a main segment and a version pool. The main segment
contains the current version of pages, and the version pool contains their prior
versions in reverse order. The version pool is a log-like circular buffer. This scheme
has several advantages. First, updates are performed in place and current versions are
always clustered. Second, writes in the version pool are sequential and thus efficient.
Finally, garbage collection of obsolete versions merely results from the sequential
nature of the version pool. The two major disadvantages of this approach are that
(i) a long running reader may prevent the garbage collection of version pages and
(ii) I/Os to the version pool are expensive as one I/O may be required for each
version in the list of chained versions of a page. As a consequence, readers may start
to trash if they are sufficiently long. To alleviate these problems, a refine scheme is
proposed in [BC92a).

First, versions are maintained for records (instead of pages). Second, a small
portion of each page is used for caching previous versions of records. As a result
readers may find the adequate version without performing any additional I/Os. Also,
these versions may sometimes be eliminated while still in the page and thus have
not to be appended into the the version pool at all. With on-page caching, when a
record is updated (or deleted), an attempt is made to append it into the cache. If
the cache is full, garbage collection is attempted on the cached versions. Intuitively,
a version X(t) can be discarded if no reader might possibly read it. This is easily
checked by looking at the timestamp of the oldest active reader : if this timestamp is
greater than the timestamp associated with the version that immediately precedes
X(t), then X(t) can be discarded. Consider the example of Figure 9. If the oldest
active reader has timestamp 15, then versions X (5) and X (0) of record X can be
discarded. If the oldest active reader has timestamp 25, X (10) can also be discarded.

If garbage collection frees a slot, the prior version of the updated record is ap-
pended into the cache. If garbage collection was unsuccessful, then one or several

RR n°2940



24 F. Llirbat, E, Simon, D. Tombroff

X(20)
current
versions
X(5)
cache X(10)
””” X(0)
Page
Version Pool

Figure 9: Chained versions of a record X. The timestamp is written between paren-
thesis.

prior versions in the cache are chosen for replacement and moved to the version pool.
With the write-one policy, only one version is moved to the version pool. With the
write-all policy, all the cached versions are moved to the version pool at once. In the
following we only consider the write-all policy as it is generally more efficient than
the write-one policy (see the simulation results of [BC92al]).

5.3 The Simulation Model

Our simulation model is strongly derived from [CM86], [ACL87], [BC92a] and [SLSV95].
It has two parts: the system model simulates the behavior of the various operating
system and DBMS components, while the application model simulates the database
items and the transactional workload.

5.3.1 The System Model

In our simulation, we model the concurrent execution of transactions on a single
site database. To keep the simulator simple, we simulate page-level locking. This
allows us not to simulate indexes and index locking, and transactions access records
randomly.

The system model (Figure 10a) is divided into four main components: a Transac-
tion Manager (TM), a Concurrency Control Manager (CCM), a Data Manager (DM)
and a Log Manager (LM). The TM is responsible for issuing concurrency control
requests and their corresponding database operations. It also assures the durability
property by flushing all log records of committed transactions to durable memory.
The CCM schedules the concurrency control requests according to either the S2PL

INRIA



Using Versions in Update Transactions 25

TERMINALS TERMINALS

restart_delay
RESTART
cpu
aéﬁsﬁé” LTI
Transaction CC_REQUEST :
Manager — — .CC .
CC REQUEST A gent
QUEUE
ACK Data disk
DATA ACCESS ~ Data j]]%( >
Manager .
LOG REQUEST ] :
ABORTED Datadisk
[
TITH |0
M
anager Log disk
L]
COMMITED DONE — 1]
(a) Logica Queuing Model (b) Physical Queuing Model

Figure 10: The Simulation Model

or EMV2PL protocol. The LM provides read and insert-flush interfaces to the log
table. The DM is responsible for granting access to the physical data objects and
executing the database operations.

The DM encapsulates the details of a LRU Buffer Manager. The number of
pages in the buffer cache is num_buffer. These pages are shared by the main segment
and the version pool. When a dirty version pool is chosen for replacement by the
LRU algorithm, the DM first checks if it contains needed versions. If not (i.e., if
it contains only obsolete versions), the page is considered non-dirty and simply
discarded. Otherwise, it is written on disk.

The physical queuing model is shown on Figure 10b. There are k resource units,
each containing one CPU server and two I/O servers ([CM86]). The requests to the
CPU queue and I/O queues are serviced FCFS (first come, first serve). Parameter
record_cpu is the amount of CPU time for accessing a record in a page. Parameter
page_io_access is the amount of I/O time associated with accessing a data page from
the disk. We added one separate I/O server dedicated to the log file. The parameter
log_disk_io represents the fixed I/O time overhead associated with issuing the I/O.
Parameter log_rec_io_w is the amount of I/O time associated with writing a log
record on the Log disk in sequential order. Parameter commit_cpu is the amount of
CPU time associated with executing the commit (releasing locks, etc). Parameter
abort_cpu is the amount of CPU time associated with executing the abort statement

RR n°2940



26 F. Llirbat, E, Simon, D. Tombroff

Parameter Description Value
num_buffer Number of pages in the buffer pool 150

k Resource Unit ( kCPUs and 2k Disks ) 1,20r3
page_cpu CPU time for accessing a record 10 millisecond
page_io_access | I/0 time for accessing a page 35 milliseconds
log_disk_io time for issuing a I/0 log access 35 milliseconds
log_rec_io_w I/0 time for sequentially writing 1 page on log disk | 1 milliseconds
commit_cpu cpu time for executing a commit 10 milliseconds
abort_cpu cpu time for executing an abort 10 milliseconds
restart_delay restart delay of an aborted transaction 5 milliseconds
cpu_cc_request | cpu time for servicing one cc_request 1 millisecond

Table 2: System Parameters Definitions and Values

(executing undo operations, releasing locks etc). Table 1 summarizes the parameters
of the system model and their values for the experiments.

5.3.2 The Application Model

The database contains num_rec Wisconsin benchmark-sized records ([Gra91]). With
S2PL, 36 records fit in one page (this corresponds to pages of 8K containing records
of 227 bytes). With MV2PL or EMV2PL the records are assumed to contain an
additional 8 bytes to store the timestamp and version pointer. As a result, only
34 records fit in one page, whose num_cached records are used to cache previous
versions.

Transactions are either R|W, W|R or W transactions. We vary the structure of
these transactions, i.e., the number of read and write operations and the probability
of executing a rollback at the end of the read part of R|W and W|R transactions.
When the read part consists of integrity checks, this enables to simulate the detection
of an integrity violation that leads to reject the transaction.

A transaction workload consists of a mix of transactions of different kinds. We
use the following parameters. There are num_terms terminals executing transactions.
Parameter WR_frac is the fraction of terminals executing W|R (or R|W) transac-
tions. Parameter W_size is the average number of operations executed by the W
transactions and by the write part of W|R (R|W) transactions. Among these opera-
tions, percent_write.W (percent_write. WR) are write operations. Parameter R_size
represents the number of read operations executed by the W|R transactions in their
read parts. These parameters are summarized in Table 2 (where “transaction” is
abbreviated “tx”).

Regarding the measurements, each simulation consisted of 3 to 5 repetitions,
each consisting of 2000 seconds of simulation time. These numbers were chosen in
order to achieve more than 90 percent confidence intervals for our results.

INRIA



Using Versions in Update Transactions 27
Parameter Description Value
num-rec Number of records in the database 20000
num-_cached Number of records cached in each page | 3
num_terms Number of terminals 20
WR_frac fraction of W|R tx -
W_part_size mean size of W|R tx write part -
R_part_size mean size of W|R tx read part -
percent_write.WR | fraction of write in W|R tx write part -
W_size mean size of W tx -
percent_write_ W fraction of write in W tx -
Table 3: Workload Parameters Definitions
Parameter Value
WR_frac 100%
percent_write. WR 50%
W_part_size = R_part_size | 3to 7
ts
17.00 S2PL
16.00
15.00 EMV2PL
14.00
13.00
12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
3 4 5 6 7 R _part_size

Figure 11: W|R transaction throughput

5.4 Experiment 1

The goal of this experiment is to show the value of EMV2PL for applications contai-
ning W|R transactions. The workload contains only W|R transactions and the va-
riable is the size of the transactions. The write part and the read part of W|R
transactions contain the same number of operations. In the write part, 50% of ope-
rations are write operations. W|R transactions executed with S2PL (resp. EMV2PL)

are noted W|Ry9p; transactions (resp. W|Repyop transactions).

RR n°2940



28 F. Llirbat, E, Simon, D. Tombroff

Sec Sec
S2PL

4.00 EMV2PL

3.00
350 o

1/0

3.00 2.50
2% 2.00
2.00

150

WAIT
150
WAIT

1.00
1.00
0.50 0.50

_
0.00 — i 000 } o
3 4 5 6 7 R_part_size 3 4 5 6 7 Ropart_size
Figure 12 W|R, tx response time (S2PL) Figure 13: W|R tx response time (EMV2PL)
t/IsEMV2PL
tsS2PL

140

130

120

110

1.00

3 4 5 6 7 R pat_size

Figure 14: W|R transaction throughput

Figure 11 shows the throughput of W|R transactions. The throughput of W|Remu2pi
transactions is always better than the throughput of W|Rgp transactions. The lon-
ger are the W|R transactions, the bigger is the gain in performance. Figure 12 (resp.
13) shows the response time of W|R transactions and how it is splitted into CPU,
wait and I/O times under S2PL (resp. EMV2PL). EMV2PL significantly reduces
the wait time of W|R transactions while the contention on disk servers increases
because transactions execute operations at a faster rate. The number k of resource
units is thus an important parameter.

Figure 14 shows the gain in throughput of W|R transactions relative to S2PL
with one, two or three resource units. It shows that EMV2PL is more efficient as
there are more resource units since the gain in concurrency is less affected by a higher

INRIA



Using Versions in Update Transactions 29

Parameter Value
W_size 1
percent_write. W = percent_write.WR | 100%
W_part_size 1
R_part_size 5 to 20
t/s
S2PL
450
EMV2PL 400
350
3.00
250
200
1.50
5 10 15 20 Rpatsize 5 10 15 20
Figure 15: W transaction throughput Figure 16: W|R-R|W transaction throughput

contention on disk servers. In this simulation, the maximum abort rate was 12% un-
der S2PL and 0.7 % with EMV2PL, with transactions of size 14. EMV2PL eliminates
most deadlocks. These results are achieved with a very low storage overhead'®.

5.5 Experiment 2

In this experiment, we refine the analysis of the previous experiment. The work-
load consists of W and W|R transactions. W transactions update one record, as does
the write part of W|R transactions. We vary the length of the read part of W|R from
5 to 20 operations. WR_frac is set to 20 %. The buffer size is held fixed at 150 pages
and there are 2 resource units (k = 2).

Figure 15 (resp. 16) shows the throughput of W (resp. W|R) transactions. These
figures illustrate the well-known tradeoff of multiversion concurrency control. S2PL
provides good performance for long W|R transactions: the system resources are lar-
gely devoted to the execution of W|R transactions while W transactions are blocked.
The longer are W|R transactions, the more W transactions have to wait. This corres-
ponds to the observation made in [BC92b] where long read-only transactions execute
concurrently with short W transactions.

In contrast, by completely eliminating read-write blockings between W and W|R
transactions, EMV2PL achieves a high throughput for W transactions. Consequently

Yin fact, W|R transaction almost always read the most recent versions. No version was written
back to the Version Pool; they were all eliminated while in the page caches using garbage collection

RR n°2940

EMV2PL

R_part_size



t/s

7.50
7.40
7.30
7.20
7.10
7.00
6.90
6.80
6.70
6.60
6.50

6.40

Figure 17: transaction throughput (0% rollback)

30 F. Llirbat, E, Simon, D. Tombroff

Parameter Value |
W_part_size = R_part_size | 6
percent_write. WR 50%
W_size 12
percent_write. W 25%
tls
8.20
WIREW
””” 8.00
RIW+W G
7.80
WIR+W |
emv2pl 760
7.40
7.20
7.00
6.80
6.60
0 20 20 60 80 100 WR.frac 0 & 40 60 8 100

the throughput of W transactions is unaffected by longer W|R¢p2p transactions.
The throughput of W|Repy2p transactions is below W|R42,; because the dispute for
system resources with W transactions is more intense and in addition, they per-
form slightly more I/Os for reading versions. These factors counterbalance the gain
in concurrency achieved by EMV2PL: for R_part_size = 15, a W|R42p; transaction
spends 1.8 seconds in I/Os and waits 0.14 seconds for locks, whereas a W|R¢mu2pi
spends 0.5 more seconds in I/Os and 0.1 less seconds waiting for locks.

5.6 Experiment 3

In this experiment, we evaluate the effectiveness of EMV2PL in workloads containing
a varying proportion, W R_frac, of W and W|R (or R|W) transactions. We selected
parameters W_part_size, R_part_size, percent_write. WR, W_size, and percent_write_. W
so that each W, W|R, and R|W transaction executes 3 writes and 9 reads, among
which 6 reads are assumed to model integrity checks. The 6 reads are either placed
at the beginning or at the end of the transaction, yielding respectively R|W or W|R
transactions, or interleaved with write operations, yielding W transactions. Using
these assumptions, W|R transactions model a deferred checking or a write-then-check
policy, R|W transactions model a check-before-write policy, and W transactions
model all other integrity checking policies (including immediate checking, as shown
by Table 1).

INRIA

WR_frac

Figure 18: transaction throughput(11.5% rollback)



6.60
6.50
6.40
6.30
6.20
6.10
6.00
5.90
5.80
5.70
5.60
5.50

5.40

Figure 19: transaction throughput (0% rollback)

Using Versions in Update Transactions 31

Parameter Value
W_part_size 8
R_part_size 4
percent_write. WR | 50%
W_size 12
percent_write. W 33%

ts

7.00

s2pl 6.90
6.80
6.70
6.60
emv2pl 6.50

LTI e 6.40
6.30
6.20
6.10
6.00
5.90
5.80
570

0 20 40 60 80 100 WR_frac
0 20 40 60 80 100

A workload of W and W|R transactions is executed under S2PL (curve W|Rgg;)
and EMV2PL (curve W|R p02p1), while a workload of W and R|W transactions is
executed under S2PL only (curve R|Wgp). We vary WR_frac from 0% to 100%.

Figure 17 shows the total transaction throughput?® when no integrity check can

issue a transaction rollback. Curve R|W o, shows that when WR_frac increases i.e.,
more and more transactions execute their checks prior to any update, the through-
put increases because there are fewer lock conflicts. Thus, checking integrity at the
beginning of transactions provides the best performance result under S2PL. On the
contrary, curve W|R,2,; shows that when more transactions check integrity at the
end, the throughput decreases due to more lock conflicts. Thus, checking integrity
at the end of transactions gives the worst performance result under S2PL.

Interestingly, curve W|R¢pp2p shows that with EMV2PL, (i) when more tran-
sactions check integrity at the end, the transaction throughput increases, and (ii)
the throughput is almost always as good as the throughput for R|W g, transactions.

We now show the influence of transaction rollbacks, caused by integrity checks.
In a W transaction, a rollback is assumed to occur after every 4 operations in
order to simulate the dissemination of checks within the transaction. In a W|R

20j.e. the sum of the W transaction throughput and the W|R (or R|W) transaction through-
put. Since all transactions have the same number of operations and the same proportion of write
operations, the total throughput enables us to directly compare the immediate, deferred and check-
before-write strategies.

RR n°2940

WR_frac

Figure 20: transaction throughput(11.5% rollback)



32 F. Llirbat, E, Simon, D. Tombroff

(or R|W) transaction, a rollback can only occur in the read part after every two
read operations. If each check has a probability p to roll back the transaction, the
transaction has a total probability of 1— (1—p)? to roll back and (1—p)? to commit.

Figure 18 shows the transaction throughput when p = 0.04, that is, 11.5 %2
of the transactions roll back. R|Wo, transactions are now more efficient than
W|R,em1,2pl transactions because they do not execute unecessary operations.

Figures 19 and 20 show the results of the same simulations when each transaction
executes 8 reads, among which 4 represent integrity checks, and 4 writes. Thus,
percent_write. W = 33%. The resulting curves have the same shape as before but
the throughput of W|Rep2p is now higher than the throughput of R|Wop, i.e.,
checking integrity at the end of transactions under EMV2PL is better than checking
integrity at the beginning of transactions under S2PL. With a larger fraction of write
operations (33% instead of 25%), there are more lock conflicts. This significantly
increases the proportion of aborts due to deadlocks for R|W and W transactions
under S2PL (8% for R|Wyop at WR_frac = 100%) while EMV2PL eliminates most
of the deadlocks?? (2% for W|Remozp at WR_frac = 100%). Moreover, since there are
more lock conflicts, the system resources are less utilized. This situation favours the
performance of W|R,p2p transactions since EMV2PL consumes more resources>>
than S2PL (At WR_frac = 100%, W|R¢my2p transactions spend 0.4 less seconds in
waiting time than W|Rg9,; and spend only 0.10 more seconds in I/Os).

5.7 Experiment 4

In this experiment, we refine the analysis of the previous experiment. We fix WR_frac
to 100%, so that each workload consists either in W|R or R|W transactions. We keep
percent_write_. WR equal to 50%, and we vary W_part_size and R_part_size from 3 to 7.
Thus, W|R transactions access n records in their write part (from 3 to 7) whose half
(in average) are updated, and read n records in their read part. R|W transactions
do the reverse.

Figure 21 shows the throughput of W|Remp2p1, W|Rs2p1, and R|W g9y transactions
when no transaction rolls back. The time spent by transactions to wait for some locks
and to perform I/Os is respectively shown on Figure 23 and 24. Clearly, W|R oy are
slowed down by lock conflicts (see Figure 23) because their write locks are held for
a longer time, while the read part is executed. Hence, lock conflicts between write
operations and concurrent read operations are more likely to occur. In comparison,
R|Wgp; transactions hold their write locks only during their write part: their waiting
time is about 22% smaller than the waiting time of W|Rsop; transactions.

Figure 23 shows that W|Remy2p transactions suffer less from lock conflicts than
R|Wjgop. The difference increases as the transaction is longer because the effect of
releasing read locks earlier and accessing versions becomes more effective. However,
as shown by figure 24, this gain is completely traded off by a higher contention

211 — (1 —0.04)®
225ee section 3.4
Zpecause of versions

INRIA



Using Versions in Update Transactions 33

Parameter Value
W_part_size = R_part_size | 3to 7
percent_write. WR 50%
WR_frac 100%
t/s Us
17.00 . WiRgy 18.00 W R gy
16.00 1700 N
1500 N 16.00 RIW
RIW g 2pl
1200 1500
13.00 WIR gmy2pl 1400 WIR emy2pl
12.00 1300
1200
11.00
11.00
10.00
10,00
9.00
2,00
800 8.00
7.00 7.00
6.00 6.00
5.00 5.00
400
3 4 5 6 7 Ropatsze 3 4 5 6 7 R _pat_size
Figure 21: Transaction throughput (0% rollback) Figure 22:Transaction throughput (10% rollback)
sec Ssec
320 win. Lo
- WIR
300 = 160 WIR sz
280 e T
2,60 RIW i 150 RIW o
240
220 WIR 140
200 emv2pl WIR emv2pl
180 130
160 -
140 120
120
100 110
080
060 100
040
0.20 090
0.00
0.80
3 4 5 6 7 R part_size 3 4 5 6 7 R_pat_size
Figure 23: Transaction wait time Figure 24: Transaction I/O time

on I/O resources (including the additional I/O cost incurred by the versions). As
a result, R|Wyy,; transactions exhibit slightly better performance than W|Remauopi
(see Figure 21). Only long W|Reyp2p transactions (R_part_size greater than 6) out-
perform R|W52pl transactions because R|W52pl transactions start beeing affected by
deadlocks (12%).

We ran the same experiment with more resource units (k = 4): With a lower resource

RR n°2940



34 F. Llirbat, E, Simon, D. Tombroff

contention, W|Remy2p transactions exhibit almost similar performance as R|W g
transactions (curves are not shown).

Last, Figure 22 shows the throughput of W|R and R|W transactions when 10% of
the transactions roll back. Clearly, R|W o, transactions exhibit better performance
than W|Remyop transactions, which sometimes may execute unecessary update ope-
rations.

INRIA



Using Versions in Update Transactions 35

5.8 Lessons learned

e Concurrency Versus Version Overhead

EMV2PL has some similarities with MV2PL. In a workload where W|R tran-
sactions execute concurrently with short W transactions, EMV2PL dramatically
reduces the number of lock conflicts between W|R and W transactions, thereby en-
abling a high throughput for W transactions (to the detriment of W|R transactions).
Furthermore, with respect to S2PL, EMV2PL reduces the conflicts and deadlocks
between concurrent W|R transactions. If the system resources are sufficiently large,
this gain in concurrency yields a significant increase of W|R transaction throughput,
and it is achieved with a small utilization of versions.

e Application to Integrity Checking

Consider now integrity constraints, which can possibly trigger a transaction roll-
back if a constraint is violated, and whose enforcement only requires database read
operations. The main result of our experiments is to show that: if the probability
that a transaction violates integrity is small (below 10% in our experiments)?4, then
checking integrity at the end of transactions run under EMV2PL, often achieves
a better total transaction throughput than all other methods. In the other case,
checking integrity at the beginning of transactions under S2PL is usually better,
which justifies a posteriori the check-before-write method often used by application
developers.

As our experiments show, EMV2PL optimizes transactions that check integrity
at the end by enabling those checks to use versions, but also by releasing the read
locks taken by the transaction earlier. For instance, in the experiment 3, EMV2PL
gives a high throughput when the write part of the transactions perform as many
read operations as the read part. This is worth noticing because the read locks may
be required by integrity checks that involve both read and write operations (e.g,
“cascade” immediate referential constraints). As a consequence of the above result,
(declarative) deferred checking generally offers better performance that immediate
checking for “read-only” integrity checks. However, our modeling only considers
the low level read and write operations incurred by integrity checks. We ignore
the overhead associated with deferred checking to record the tuples affected by the
updates in the write part of W|R transactions?®. Likewise, we ignore the possibility
of grouping database accesses, common to multiple integrity checks, enabled by
the deferred checking method. Thus, although EMV2PL relaunches the interest of
deferred checking, deeper performance analysis is needed to explore the tradeoff
between deferred and immediate checking.

24Note that for transaction processing applications, (e.g., in the banking domain), the percentage
of integrity errors is reported to be below 1%.

25This overhead is one of the declared reasons why database products do not implement deferred
checking today.

RR n°2940



36 F. Llirbat, E, Simon, D. Tombroff

6 Related Work

An extensive literature addresses the problem of designing concurrency control algo-
rithms that augment the performance of concurrent transactions. Our work directly
builds on previous work on MV2PL protocols ([CFL*82], [BHG87], [AS89], [AK91],
[BC92a], [MPL92]), but differs from those by focusing on the specific class of write-
then-read transactions. In [BC92a] and [MPL92], the authors propose techniques in
which an update transaction does not systematically create a new version of its up-
dated items. Hence, read-only transactions do not access versions which are the most
up-to-date before their starting time. Instead, they all read a given older state which
is periodically refreshed. The goal is to reduce the number of versions stored in the
database (see [BD92] and [MWC92] who studied the impact of these techniques).
However, this technique cannot be used in our protocol because the read part of
W|R transactions must access the most up-to-date versions that precede their star-
ting time. Otherwise, the read part of a W|R transaction may read versions out-of
date with respect to the one read by the write part, and a serialization fault may
occur.

So far, the largest body of work on the enforcement of semantic integrity constraints
has focused on efficient algorithms to detect if a constraint is violated (e.g, [HI85],
[BD95], [CW90]). The problem of optimizing the execution of multiple integrity
checks within a transaction has been first addressed in [BP79]. This paper compares
the performance of different constraint checking policies (including the check-before-
write and the write-then-check methods) and show that the check-before-write me-
thod is the most efficient (in terms of transaction response time) because it avoids
redundant computations and expensive rollbacks. However, all these works do not
consider the possible concurrency between transactions.

A very few research papers have addressed the problem of optimizing the through-
put of concurrent transactions that perform integrity checks. The Commit_LSN me-
thod, proposed in [Moh90], is used (among other things) to avoid taking a lock when
checking a referential integrity constraint. More precisely, no read lock is acquired
on data items involved in a “no action” referential integrity constraint 26 if (i) the
constraint is satisfied, and (ii) a property of the Commit_LSN is verified. In contrast,
our proposal is not limited to referential constraints (verified or not) but can be ap-
plied to any integrity check as long as it does not require new write locks. However
our method only applies to W|R transactions.

In [Laf82], the author proposes to use semantic integrity dependencies between
data items to improve the efficiency of constraint checking. The checking of data,
which “depend” on the data items currently updated by a transaction, is delayed
until other operations actually need them. This gives the possibility to perform these
checks in parallel, thereby improving the concurrency of transactions. In the field
of active databases, a related idea has been proposed in [DHL90], which consists of
executing triggers in separate transactions from the triggering transaction. When
a trigger is defined, a decoupled coupling mode can be chosen, indicating that the

26immediate or deferred

INRIA



Using Versions in Update Transactions 37

trigger is run in a separate transaction. This mode is subdivided into dependent de-
coupled where the separate transaction is not spawned unless the triggering transac-
tion commits, and independent decoupled, where the separate transaction is spawned
regardless of weather the triggering transaction commits. As shown in [CJL91], defi-
ning triggers in a decoupled mode may greatly improve the throughput of concurrent
transactions. However, these two methods require some semantic analysis in order
to guarantee that no transaction sees a temporary inconsistent database state. In
constrast, our solution preserves the full isolation of all transactions.

7 Conclusions

EMV2PL is a simple yet efficient extension of MV2PL which enables a W|R transac-
tion that has acquired all its write locks to (i) release its read locks, and (ii) execute
new read operations on versions without taking locks. We proved the correctness of
this protocol, and showed that its implementation only requires a few changes with
respect to an existing implementation of MV2PL. Performance studies show that
for workloads containing W|R transactions, EMV2PL can significantly improve the
overall throughput of transactions (i.e., W|R, and W transactions), with a relatively
small utilization of versions.

We then presented a specific, yet important, application of our protocol to the
problem of integrity checking. We described various possible methods for imple-
menting integrity checking. For “read-only” integrity checks, we showed that: if the
probability that a transaction violates integrity is small, then checking integrity at
the end of transactions run under EMV2PL, is the method that often achieves the
best total transaction throughput. Hence, (declarative) deferred checking generally
offers better performance that immediate checking for “read-only” integrity checks,
which in our view relaunches the interest of implementing deferred assertions and
deferred triggers in relational database systems.

We foresee two directions of future work. One is to extend our simulation ex-
periments to handle non uniform lock conflicts between data items. An interesting
application of this is given by “summary tables”, which consist of materialized views
computed from base relations. Relations Totals_item and Totals_cust in the example
of Section 2 are two examples of summary tables. These tables are quite frequent in
decision support applications and for integrity checking. We plan to investigate the
performance of EMV2PL in application scenarios where summary tables are read at
the end of transactions. Another direction is to compare more in depth the perfor-
mance of immediate versus deferred checking by taking into account the respective
overheads associated with these two methods.

Acknowledgments

We are grateful to Anthony Tomasic for his detailed comments that enabled to
improve this paper. We also thank Francoise Fabret, Angelika Kotz-Dittrich, C.
Mohan, and Dennis Shasha for constructive discussions about the paper.

RR n°2940



38

F. Llirbat, E, Simon, D. Tombroff

References

[ACLST]

[AD]
[AK91]

[AS89)

[BBG*95]

[BCY92a]

[BCY2b)

[BD92]

[BD95]

[BHGS7]

[BP79)

[CFL*82]

R. Agrawal, M.J. Carey, and M. Livny. Concurrency control performance
modeling: Alternatives and implications. ACM Transactions on Compu-
ters and Systems, 12(4):609-654, December 1987.

A Kotz-Dittrich. private communication.

D. Agrawal and V. Krishnaswamy. Using multiversion data for non-
interfering execution of write-only transactions. Proc. ACM SIGMOD
Int. Conf. on Management of Data, Denver, Colorado, 20:98-107, May
1991.

D. Agrawal and S. Sengupta. Modular synchronisation in multiversion
databases: Version control and concurrency control. Proc. ACM SIG-
MOD Int. Conf. on Management of Data, Portland, Oregon, pages 408—
417, 1989.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ansi sql isolation levels. Proc. of the ACM SIGMOD Int.

Conf. on Management of Data, San Jose, California, pages 1-8, May
1995.

P. M. Bober and M. J. Carey. On mixing queries and transactions via
multiversion locking. Proc. Int. Conf. on Data Engineering, Tempe, Ari-
zona, pages 535-545, February 1992.

P. M. Bober and M. J. Carey. On mixing queries and transactions via

multiversion locking. Proc. Int. Conf. on Data Engineering, Tempe, Ari-
zona, pages 535545, February 1992.

P. Bober and D.M. Dias. Storage cost tradeoffs for multiversion concur-
rency control. Technical Report RC 18367, IBM Research Division, T.J.
Watson Research Center, July 1992.

V. Benzaken and A. Doucet. Thémis: A database programming language
handling integrity constraints. The International Journal on Very Large
Databases, 4(3):493-518, July 1995.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Publishing Com-
pany, 1987.

D.Z. Badal and G.J. Popek. Cost and performance analysis of seman-
tic integrity validation methods. Proc. ACM SIGMOD Int. Conf. on
management of Data, Boston, Mass., pages 109-115, 1979.

A. Chan, S. Fox, W.K. Lin, A. Nori, and D.R. Ries. The implementation
of an integrated concurrency control and recovery scheme. Proc. ACM

INRIA



Using Versions in Update Transactions 39

[CIL91]

[CMS6]

[Coc]
[CPMY6]

[CW90]

[DHLYO]

[GRO3]

[Gra91]

[HE91]

[HI85]

[Hor92]

[11194]

[Laf82]

[Mel93]

RR n°2940

SIGMOD Int. Conf. on Management of Data, Orlando, Florida, pages
184-191, June 1982.

M. C. Carey, R. Jauhari, and M. Livny. On transaction boundaries in
active databases : A performance perspective. IFEEE Transactions on
Knowledge and Data Engineering, 3(3), September 1991.

M. J. Carey and W. A. Muhanna. The performance of multiversion
concurrency control algorithms. ACM Transactions on Computers and

Systems, 4(4):338-378, November 1986.
B. Cochrane. private communication.

R.J. Cochrane, H. Pirahesh, and N. Mattos. Integrating triggers and
declarative constraints in sql database systems. Technical Report
4861/RJ9989, IBM Almaden, 1996.

S. Ceri and J. Widom. Deriving production rules for constraint main-
tenance. Proceedings of the 16th Int. Conf. on Very Large Data Bases,
Brisbane, Australia, pages 566-577, 1990.

U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with
triggers and transactions. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, Atlantic City, New Jersay, pages 204-214, May 1990.

J. Gray and A. Reuter. Transaction Processing. Morgan Kaufmann,
1993.

J. Gray, editor. The Benchmark Handbook for Database and Transaction
Processing systems. Morgan Kauffmann, 1991.

L. Hobbs and K. England. Rdb/vms, a comprehensive guide. Digital
press, 1991.

A. Hsu and T. Imielinski. Integrity checking for multiple updates. Proc.
of the Int. Conf. on Management of Data, Austin, Tezas, May 1985.

B.M. Horowitz. A run-time execution model for referential integrity
maintenance. Proceedings of the Eight Int. Conf. on Data Engineering,
Tempe, Arizona, February 1992.

[Mustra Information technologies, Oakland, CA. Illustra user’s guide,
1994.

G.M. Lafue. Semantic integrity dependencies and delayed integrity che-
cking. Proc. of the 8th Int. Conf. on Very Large Database Systems,
Mezico City, Mezico, pages 292-299, 1982.

J. Melton, editor. (ISO/ANSI Working Draft) Database Language SQLS3.
Number ANSI X3H2-90-412 and ISO DBL-YOK 003. February 1993.



40

F. Llirbat, E, Simon, D. Tombroff

[MHLP91] C. Mohan, D. Haderle, B.G. Lindsay, and H. Pirahesh. Aries: A tran-

[Moh]
[Moh90]

[MPL92]

[MWC92]

[Par89]

[Sha]

[SKD95]

[SLSV95]

[SQLYO]

[Tha94]

[TPCY5]

[WC96]

saction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Transaction on Database Sys-
tems, 17(1):94-162, 1991.

C. Mohan. private communication.

C. Mohan. Commit_lsn: a novel and simple method for reducing locking
and latching in transaction processing systems. Proc. of the 16th Int.
Conf. on Very Large Data Bases, Brisbane, Australia, pages 406-418,
August 1990.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible methods for
transient versioning of records to avoid locking by read-only transactions.
Proc. ACM SIGMOD Int. Conf. on Management of Data, San Diego,
California, pages 124-133, June 1992.

A. Merchant, K.-L. Wu, and M.-S. Chen. Performance analysis of dy-
namic finite versioning for concurrent transaction and query-processing.
Proc. of ACM SIGMETRICS Int. Conf. on Measurement and Modeling
of Computer Systems, Newport, Rhode island, 20(1):103-114, June 1992.

Part 800-V1.0, Oracle Corp. PL/SQL User’s Guide and Reference, Ver-
siton 1.0, 1989.

D. Shasha. private communication.

E. Simon and A. Kotz-Dittrich. Promises and realities of active database
systems. Proc. of the 21st Int. Conf. on Very Large data Bases, Zurich,
Switzerland, pages 642—-652, September 1995.

D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping:
Algorithms and performance studies. ACM Transactions on Database
Systems, 20(3), December 1995.

Iso /ansi sql2. working draft, October 1990.

M. Thakur. Transaction models in interbase 4. Proc. of the Borland Int.
Conf., June 1994.

Tpc benchmark?™ D. (Decision Support), Standard Specification, Re-
vision 1.0, May 1995.

J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, San Fransisco, 1996.

INRIA



Using Versions in Update Transactions 41

Appendix 1

The code of the check_read function follows (see [GR93] for a precise description of
the data structures used here). For simplicity, only the shared (S) and exclusive (X)
modes are considered.

lock_reply check_read(lock_-name name)

{

long bucket; /*index of hash bucketx/

lock_headx head; /*pointer to lock header blocks/
lock_request* request; /+this lock request blockx/

TransCB* me=MyTransCB(); /xpointer to caller’s transaction descriptors/
bucket= lockhash(name); /x+find hash chainx/
Xsem_get(&lock_hash[bucket].Xsem); /+*get semaphore on itx/

head = lock_hash[bucket].chain; /*traverse hash chainx/

while((head !=NULL) && (head— >name != name) /*with this namesx/

{head = head— >chain;};
/+lock already taken in X mode : %/
if ((head != NULL) && (head— >mode == X))

{ Xsem_get(&head— >Xsem); /*acquire semaphore on lock headerx/
Xsem_give(&head_hash[bucket].Xsem); /xrelease semaphore on lock chainx/
request = head— >queue /«the first request is the granted onex/
if(request— >tran == me)
return(LOCK_OK); /*ok to write an item already X-locked by the callerx/
else if (request— >tran— >tn < me— >tn) /xthe read must be delayed (“critical read”)x/
{ append(me— >pid,head— >pid_list);
Xsem._give(&head— >Xsem); /+release semaphore on lock headx*/
wait(); /xwait*/
return(LOCK_OK);
}
else

return(LOCK_OK);
}

RR n°2940



/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399



