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Abstract: In this paper we consider some numerical issues in computing solutions to
networks of stochastic automata (SAN). In particular our concern is with keeping the amount
of computation per iteration to a minimum, since iterative methods appear to be the most
effective in determining numerical solutions. In a previous paper we presented complexity
results concerning the vector-descriptor multiplication phase of the analysis. In this paper
our concern is with implementation details. We experiment with the size and sparsity of
individual automata; with the ordering of the automata; with the percentage and location
of functional elements; with the occurrence of different types of synchronizing events and
with the occurrence of cyclic dependencies within terms of the descriptor. We also consider
the possible benefits of grouping many small automata in a SAN with many small automata
to create an equivalent SAN having a smaller number of larger automata.

Key-words:  Markov chains, Stochastic automata networks, Vector-descriptor multipli-
cations, Grouping of automata, Tensor algebra.
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Optimisations numériques pour les Réseaux
d’Automates Stochastiques.

Résumé : Dans cet article, nous étudions quelques optimisations numériques pour les
réseaux d’automates stochastiques. En particulier, nous cherchons a diminuer le cofit d’une
itération, sachant que les méthodes itératives apparaissent comme les plus performantes
pour déterminer numériquement la solution. Dans un article précédent, nous avions présenté
des résultats de complexité sur ’opération de multiplication vecteur-descripteur. Dans cet
article, on s’intéresse a 'implantation de ’algorithme. On cherche & identifier 'influence,
sur les performances de l'algorithme, de la taille et la densité des divers automates, du
pourcentage et de la position des éléments fonctionnels, de 'occurrence de divers types
d’événements synchronisants et de 'occurrence de dépendances cycliques dans les termes
du descripteur. On montre aussi les bénéfices qui peuvent étre obtenus en groupant les
petits automates d’un réseau afin d’obtenir un réseau équivalent avec un plus petit nombre
d’automates plus gros.

Mots-clé : Chaine de Markov, Réseaux d’automates stochastiques, multiplication
vecteur-descripteur, groupement, Algebre tensorielle.
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1 Introduction

The use of Stochastic Automata Networks (SANs) is becoming increasingly important in
performance modelling issues related to parallel and distributed computer systems. Models
that are based on Markov chains allow for considerable complexity, but in practice they
often suffer from difficulties that are well-documented. The size of the state space generated
may become so large that it effectively prohibits the computation of a solution. This is
true whether the Markov chain results from a stochastic Petri net formalism, or from a
straightforward Markov chain analyzer.

In many instances, the SAN formalism is an appropriate choice. Parallel and distributed
systems are often viewed as collections of components that operate more or less indepen-
dently, requiring only infrequent interaction such as synchronizing their actions, or opera-
ting at different rates depending on the state of parts of the overall system. This is exactly
the viewpoint adopted by SANs. The components are modelled as individual stochastic
automata that interact with each other. Furthermore, the state space explosion problem as-
sociated with Markov chain models is mitigated by the fact that the state transition matrix
is not stored, nor even generated. Instead, it is represented by a number of much smaller
matrices, one for each of the stochastic automata that constitute the system, and from these
all relevent information may be determined without explicitly forming the global matrix.
The implication is that a considerable saving in memory is effected by storing the matrix in
this fashion. We do not wish to give the impression that we regard SANs as a panacea for
all modelling problems, just that there is a niche that it fills among the tools that modellers
may use. It is fairly obvious that their memory requirements are minimal; it remains to
show that this does not come at the cost of a prohibitive amount of computation time.

Stochastic Automata Networks and the related concept of Stochastic Process Algebras
have become a hot topic of research in recent years. This research has focused on areas
such as the development of languages for specifying SANs and their ilk, [17, 18], and on
the development of suitable solution methods that can operate on the transition matrix
given as a compact SAN descriptor. The development of languages for specifying stochastic
process algebras is mainly concerned with structural properties of the nets (compositiona-
lity, equivalence, etc.) and with the mapping of these specifications onto Markov chains for
the computation of performance measures [18, 2, 6]. Although a SAN may be viewed as a
stochastic process algebra, its original purpose was to provide an efficient and convenient
methodology for the study of quantitive rather than structural properties of complex sys-
tems, [21]. Nevertheless, computational results such as those presented in this paper can
also be applied in the context of stochastic process algebras.

There are two overriding concerns in the application of any Markovian modelling me-
thodology, viz., memory requirements and computation time. Since these are frequently
functions of the number of states, a first approach is to develop techniques that minimize
the number of states in the model. In SANs, it is possible to make use use of symmetries as
well as lumping and various superpositioning of the automata to reduce the computational
burden, [1, 8, 25]. Furthermore, in [14], structural properties of the Markov chain graph
(specificially the occurrence of cycles) are used to compute steady state solutions. We point

RR n 2938



4 Paulo Fernandes, Brigitte Plateau and William J. Stewart

out that similar, and even more extensive results have previously been developed in the
context of Petri nets and stochastic activity networks [7, 8, 9, 15, 24, 26].

Once the number of states has effectively been fixed, the problem of memory and com-
putation time still must be addressed, for the number of states left may still be large. With
SANs, the use of a compact descriptor goes a long way to satisfying the first of these,
although with the need to keep a minimum of two vectors of length equal to the global
number of states, and considerably more than two for more sophisicated procedures such as
the GMRES method, we cannot afford to become complacent about memory requirements.
As far as computation time is concerned, since the numerical methods used are iterative,
it is important to keep both the number of iterations and the amount of computation per
iteration to a minimum. The number of iterations needed to compute the solution to a
required accuracy depends on the method chosen. In a previous paper, [29], it was shown
how projection methods such as Arnoldi and GMRES could be used to substantially reduce
the number of iterations needed when compared with the basic power method. Additionally,
some results were also given concerning the development of preconditioning strategies that
may be used to speed the iterative process even further, but much work still remains to be
done in this particular domain. In this paper we concentrate on procedures that allow us
to keep the amount of computation per iteration to a minimum. In a previous paper, [13],
we proved a theorem concerning the complexity of a matrix-vector multiplication when the
matrix is stored as a compact SAN descriptor, since this step is fundamental to all itera-
tive methods and is usually the most expensive operation in each iteration. Additionally,
we provided an algorithm that implements the multiplication procedure. The objective of
this paper is to analyze the cost of the implementation of this algorithm and to propose
improvements that bring its performance close to those of the more usual sparse methods.

2 The SAN Descriptor and Examples
2.1 The SAN Descriptor

There are basically two ways in which stochastic automata interact:

1. The rate at which a transition may occur in one automaton may be a function of the
state of other automata. Such transitions are called functional transitions.

2. A transition in one automaton may force a transition to occur in one or more other
automata. We allow for both the possibility of a master/slave relationship, in which
an action in one automaton (the master) actually occasions a transition in one or more
other automata (the slaves), and for the case of a rendez-vous in which the presence (or
absence) of two or more automata in designated states causes (or prevents) transitions
to occur. We refer to such transitions collectively under the name of synchronizing
transitions. Synchronizing transitions may also be functional.

The elements in the matrix representation of any single stochastic automaton are either
constants, i.e., nonnegative real numbers, or functions from the global state space to the
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nonnegative reals. Transition rates that depend only on the state of the automaton itself,
and not on the state of any other automaton, are to all intents and purposes, constant
transition rates. A synchronizing transition may be either functional or constant. In any
given automaton, transitions that are not synchronizing transitions are said to be local
transitions.

As a general rule, it is shown in [20], that stochastic automata networks may always be
treated by separating out the local transitions, handling these in the usual fashion by means
of a tensor sum and then incorporating the sum of two additional tensor products per syn-
chronizing event. Furthermore, since tensor sums are defined in terms of the (usual) matrix
sum (of N terms) of tensor products, the infinitesimal generator of a system containing N
stochastic automata with E synchronizing events may be written as

2E+N
~ )
Q= Z ®9J=1Q§'z)'
=1
This formula is referred to as the descriptor of the stochastic automata network. The
subscript g denotes a generalization of the tensor product concept to matrices with functional
entries. We now illustrate these concepts via two examples. These examples will also be
used later in our numerical experiments.

2.2 A Model of Resource Sharing

In this model, N distinguishable processes share a certain resource. Each of these processes
alternates between a sleeping state and a resource using state. However, the number of
processes that may concurrently use the resource is limited to P where 1 < P < N so that
when a process wishing to move from the sleeping state to the resource using state finds P
processes already using the resource, that process fails to access the resource and returns to
the sleeping state. Notice that when P = 1 this model reduces to the usual mutual exclusion
problem. When P = N all of the the processes are independent. We shall let A(?) be the
rate at which process ¢ awakes from the sleeping state wishing to access the resource, and
p{9 | the rate at which this same process releases the resource when it has possession of it.

In our SAN representation, each process is modelled by a two state automaton A, the
two states being sleeping and using. We shall let s.A(?) denote the current state of automaton
A Also, we introduce the function

N
f=9 (Z 8(sAD = using) < P) ,

i=1
where §(b) is an integer function that has the value 1 if the boolean b is true, and the value
0 otherwise. Thus the function f has the value 1 when access is permitted to the resource

and has the value 0 otherwise. Figure 1 provides a graphical illustration of this model.
The local transition matrix for automaton A® is

G0 _ NN I \ON
@ =1 0" Zd )
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AM AWN)

sleeping L. sleeping

AW f Coe AN f

using using

Figure 1: Resource Sharing Model

and the overall descriptor for the model is

N

N . .

D=@F QY= 5L, 8hLe,Q 0,Le, @,
9 =1 i=1

where ®, denotes the generalized tensor operator.

The SAN product state space for this model is of size 2. Notice that when P = 1, the
reachable state space is of size NV + 1, which is considerably smaller than the product state
space, while when P = N the reachable state space is the entire product state space. Other
values of P give rise to intermediate cases.

2.3 A Queueing Network with Blocking and Priority Service

The second model we shall use is an open queueing network of three finite capacity queues
and two customer classes. Class 1 customers arrive from the exterior to queue 1 according
to a Poisson process with rate A\;. Arriving customers are lost if they arrive and find the
buffer full. Similarly, class 2 customers arrive from outside the network to queue 2, also
according to a Poisson process, but this time at rate Ay and they also are lost if the buffer
at queue 2 is full. The servers at queues 1 and 2 provide exponential service at rates p
and po respectively. Customers that have been served at either of these queues try to join
queue 3. If queue 3 is full, class 1 customers are blocked (blocking after service) and the
server at queue 1 must halt. This server cannot begin to serve another customer until a slot
becomes available in the buffer of queue 3 and the blocked customer is transferred. On the
other hand, when a (class 2) customer has been served at queue 2 and finds the buffer at
queue 3 full, that customer is lost. Queue 3 provides exponential service at rate us, to class
1 customers and at rate ps, to class 2 customers. It is the only queue to serve both classes.

INRIA
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In this queue, class 1 customers have preemptive priority over class 2 customers. Customers
departing after service at queue 3 leave the network. We shall let Cy, — 1, k = 1, 2, 3 denote
the finite buffer capacity at queue k.

Queues 1 and 2 can each be represented by a single automaton (A™) and A® respecti-
vely) with a one-to-one correspondance between the number of customers in the queue and
the state of the associated automaton. Queue 3 requires two automata for its representation;
the first, AG1), provides the number of class 1 customers and the second, A®2), the number
of class 2 customers present in queue 3. Figure 2 illustrates this model.

AWM

AL
| Gy —1 [ A(31) A(32)

loss s —1 || -

:u‘31

Ao
T 02 -1 — M3,
H2

loss loss

Figure 2: Network of Queues Model

This SAN has two synchronizing events: the first corresponds to the transfer of a class
1 customer from queue 1 to queue 3 and the second, the transfer of a class 2 customer from
queue 2 to queue 3. These are synchronizing events since a change of state in automaton
AM or A®) occasioned by the departure of a customer, must be synchronized with a cor-
responding change in automaton A1) or A(32) representing the arrival of that customer to
queue 3. We shall denote these synchronizing events as s; and s, respectively. In addition
to these synchronizing events, this SAN required two functions. They are:

F=0(sAB) +5AB2) < 05 —1)
9 =206(sABY =0)

The function f has the value 0 when queue 3 is full and the value 1 otherwise, while the
function g has the value 0 when a class 1 customer is present in queue 3, thereby preventing
a class 2 customer in this queue from receiving service. It has the value 1 otherwise.

Since there are two synchronizing events, each automaton will give rise to five separate
matrices in our representation. For each automaton k, we will have a matrix of local tran-
sitions, denoted by Ql(k); a matrix corresponding to each of the two synchronizing events,
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8 Paulo Fernandes, Brigitte Plateau and William J. Stewart

lef) and Qg’;), and a diagonal corrector matrix for each synchronizing event, Qg’f) and Q&’;’

In these last two matrices, nonzero elements can appear only along the diagonal; they are
defined in such a way as to make (®ng’;)) + (®nglj)) , j = 1,2, generator matrices (row

sums equal to zero). The five matrices for each of the four automata in this SAN are as
follows (where we use I,,, to denote the identity matrix of order m).

For A():
X N 0 - 0 0 0 O 0
0O =X A -+ 0 pm 0 0 0
1(1): . . . QW= :
0 0 A& N 0 m 0 0
0 0O 0 0 0 0 m 0
0 0 0 0
0 —m 0 0
aw - T T
0 0 —m 0
0 0 0 —m
For A®):
.V Y o - 0 o o o0 --- 0
0 —Xd X - 0 g 0 0 - 0
e T e R
0 0 -2 Ao 0 H2 0 O
0 0 0 0 0 0 pa O
0 0 0 0
0 —p2 O . 0
QY= : . |, Q@P=In=0R.
0 0 —ps 0
0 0 0 —p
For A®G1):
0 0 0 0 0 f O 0
p3,  —p3, 0 e 0 0 0 f 0
QM= 1 eI s
0 S S | 0 - 0 0 f
0 0  ps, —pa, 0 --- 0 0 0

INRIA
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f 0 0
0 f 0 -+ 0
le) = : : ’ ngl) = IC:; = Q.(szl)
0 -~~~ 0 f O
0o --- 0 0 0
For AB2):
0 0 0 0 1-f f 0
H3,9 —H3,9 O 0 0 1-f f
of" - S SR SR
0 o M3,9 —Hs,g 0 0 0 1-f
0 0 H3: 9 —H3,9 0 0 0

Qgﬂ =1Ic, = ngz) = ng)
The overall descriptor for this model is given by
- (9 (4) (%) (4) 910)
D= @0+ @00+ ®,00 +®,00 + ®,2,
where the generalized tensor sum and the four generalized tensor products are taken over
the index set {1, 2, 3; and 3>}. The reachable state space of the SAN is of size C; x Ca X

C3(C3+1)/2 whereas the complete SAN product state space has size C; x Cy x Cs?. Finally,
we would like to draw our readers attention to the sparsity of the matrices presented above.

3 Algorithm Analysis

3.1 The Complexity Result and Algorithm

We present without proof, the theorem concerning vector-descriptor multiplication and its
accompanying algorithm, [13]. We use the notation B[A] to indicate that the matrix B may
contain transitions that are a function of the state of the automaton A, and more generally,
AMAD AG) | Am=1] to denote that the matrix A™) may contain elements that are
a function of the state variable of one or more of the automata A1, A2 . Alm=1)

Theorem 3.1 The multiplication
X (A(l) ®, AD[AD] @, AOAD, AP g, - @, A(N>[A<1>,,,_,A(N—1>])

where x is a real vector of length Hi\il n; may be computed in O(pyn) multiplications, where

N N N
PN:an(PN—1+Hni) = Hnixznia
=1 i=1

i=1

by the algorithm described below.
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Algorithm: Vector Multiplication with a Generalized Tensor Product

T (A(l) ®, A(Q)[A(l)] ®y A(3)[A(1),A(2)] ®y @y A(N)[A(I)J___JA(N—U]) =

x ( Ii.n—1 Qg AW [./4(1), . ,A(N_l)]
X Il:N—2 ®g A(N_l) [A(1)7 DR A(N_2)] ®g IN:N
X “e
X 11;1 ®g A(2) [A(l)] ®g Ig:N
x AW ®, Ly) (1)
2. Initialize: nleft = ning---ny—_1; nright = 1.
2. Fori=N,...,2,1do
2. e base = 0; jump = n; X nright;
2. e For k=1,2,...,nleft do
3. oFor j=1,2,...,i—1do
3 * kj = ([(k - 1)/]_[;;1,_‘_1 nl] mod (H;;]l nl)) +1
2. oFor j=1,2,...,nright do
2. * index = base + j;
2. *Forl=1,2,...,n; do
2. - 2l = Tindex; tndex = index + nright;
1. * Multiply: 2/ = z x A® [k1y- -, kioq]
2. * index = base + j;
2. x* Forl=1,2,...,n; do
2. X ew = 215 index = index + nright;
2. o base = base + jump;
2. e nleft = nleft/n;_;;
2. o nright = nright X n;;
2. x=ua;

Figure 3: SAN Algorithm Parts

It is useful to consider the code as consisting of the three parts illustrated in Figure 3.

INRIA
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e Part 1 corresponds to the vector-matrix multiplication, including evaluation of func-
tions when needed. Here k; € {1,2,...n;} denotes the state of the ith automaton.

e Part 2 corresponds to fetching the sub-vectors to be multiplied and the loop manage-
ment for computing the various permutations.

e Part 3 occurs only in models with functional transition rates and corresponds to the
transformation of a vector index into a SAN state, which is subsequently used as an
argument for the functions. It is performed only if the matrix A® in the inner loop
has functional entries.

Notice that the number of multiplications in the innermost loop of the algorithm may be
reduced by taking advantage of the fact that the block matrices are generally sparse. The
above complexity result was computed under the assumption that the matrices are full. The
cost of the function evaluations is included in the definition of the big Oh formula.

In equation (1), only one automata can depend on the (N — 1) other automata and so
on. One automaton must be independent of all the others. This provides a means by which
the individual factors on the right-hand side of equation (1) must be ranked; i.e., according
to the automata on which they may depend. A given automaton may actually depend on a
subset of the automata in its parameter list.

What is not immediately apparent from the algorithm as described is the fact that in
ordinary tensor products with no functional terms, the normal factors commute and the
order in which the innermost multiplication is carried out may be arbitrary. In generalized
tensor products with functional terms, however, this freedom of choice does not exist: the
order is prescribed. As indicated by the right hand side of equation (1), each automata A®
is represented by a normal factor of the form

Iiica ® AD[AW, . ATD @, Tipm

which must be processed before any factor of its arguments [AM), ..., A(i_l)] is processed.

Now consider an arbitrary permutation of the factors on the left-hand side of (1); In [13],
we show how to perform this simple transformation, which gives us the freedom of ordering
the factors of a term to optimize computation cost. We have on the left-hand side,

ATD[AD Al =1 ®y -+ Dy Al AD o Alon =1,

Indeed this is just such a permutation of equation (1). No matter which permutation
is chosen, the right-hand side remains essentially identical in the sense that the terms are
always ordered from largest to smallest set of possible dependencies. The only change results
from the manner in which each normal factor is written. Each must have the form

Ia1:¢7i—1 ®y A(Ui)['A(l)7 Tt A(m_l)] ®!) I"'i+1:‘7m7

. k
with Ip,.0, = Hi:l Ng;-
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We would like to point out that although we may reorganize the terms of the left-hand
side of equation (1), in any way we wish, the advantage of leaving them in the form given
by equation (1) is precisely that the computation of the state indices (part 3) can be moved
outside the innermost j-loop of the algorithm. A different rearrangement would require
more extensive index computation within the innermost j-loop. Note that the order given
by the left-hand side of equation (1) is precisely the opposite of that given by its right-hand
side.

Example:

Consider the following term in the descriptor of a SAN with 4 automata, A;, As, A3 and
Aj4. The term is constituted from four matrices as follows: A3, (a constant matrix, but 43
appears as an argument of A; and As); A;(As), (the automaton 4; is an argument of As);
As(Aj, As); and Ay. The algorithm imposes an order in ranking the factors (Az, A, A2):

A3 ® A1 (Az) ® Ax( A1, As) ® Ay

A4 may be placed anywhere, but the algorithm will perform better if it is placed in the
final position and thus avoid additional computation in part 3; the automaton .44 is not an
argument of any function. Note that the order of the factor multiplication is

(I1:4 ®g Aw) X (Il:l Ry AD[AW, A¥] ®, I3:4) % (A(l)[A(S)] ®g 1214) % (Im ®, A®) ®, 14:4)

From this first SAN, we can construct a second with an additional automaton, 45 and in
this term of the descriptor a single matrix A5(A4). The algorithm then requires, on the right-
hand side, that A3 must preceed A, that A4 preceeds As, and that A; and A3 preceed A,
(the arguments before the functions). This provides us with 11 different possible orderings.
To improve the running cost of the algorithm, the best choice is the one that minimizes part
3, which means that the size of the matrices should be taken into account, with the smallest
coming first and the greatest last. For example, if n7 < ny < ng < ng < ng, the best choice
is:

Az ® A1(A3) ® Az (A1, Az) ® Ay ® As(Asg)
which takes into account the imposed sub-orderings of 3 before 1, 1 and 3 before 2, and 4
before 5.

It is shown in [13] that if such an order cannot be found, that is to say, if there is a cyclic
dependency of function and argument in a term, this term can be exactly decomposed into
a number of non-cyclic terms.

So a rule of thumb in ordering a term is;

e Take the set of factors that are functions or arguments within functions. The func-
tions must be ranked after their arguments. Better performance is obtained when,
considering these constraints, they are ranked in non-decreasing size.

e Then take the automata that are neither functional nor arguments and rank them last,
in any order.

INRIA
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4 Some Small Examples

All numerical experiments were conducted using the software package PEPS, version 3.0
[23]. This version of PEPS is implemented in C++. Only the non-diagonal elements of
the descriptor are handled by this algorithm. The diagonal elements of the descriptor are
pre-calculated once and stored in a vector. The vector-matrix multiplication includes a
dot product with the diagonal entries. The computing platform was an IBM RS6000/370
workstation running AIX version 3.2.5.

Our first objective is to experiment with the size and sparsity of individual automata;
with the ordering of automata; with the percentage and location of functional elements;
with the occurrence of different types of synchronizing events and with the occurrence of
cyclic dependencies, (see [13]), within terms of the descriptor. We choose to do so by means
of the set of small examples given in table 1.

N1 %JM 8 I:EA% Q Q 3780 0.22%

N2 % Q % 4000 0.20%

R JATATATATATATA) I
N4 O @ I:I Q @ W 5040 0.15%

N5 %JMQQI:I Q O 5040 0.15%

Table 1: The Set of Small Examples

Example state space size | nonzero transitions

Observe that SAN N1 has sparse and non-sparse local automata. SAN N2 has larger
automata. SAN N3 has seven small automata. SANs N4 and N5 have automata of
different sizes and in different order, and so on. In these examples and their variations
with functional rates and synchronizing events (see Sections 4.2 and 4.3) the reachable state
space is the product state space. However, the sparsity of the global generator is significant
and measured as the percentage of nonzero transition rates in the global descriptor. For
each model, 1000 iterations of each vector-descriptor multiplications were performed, and
the cpu time in seconds is reported here. Each part of the SAN algorithm is evaluated as a
percentage of the total cpu time (SAN column).

RR n° 2938



14 Paulo Fernandes, Brigitte Plateau and William J. Stewart

| Example | SAN [ Part 1 | Part 2 | Diag. |

N1 63s 20s 38s 5s
100% 32% 60% 8%
N2 52s 20s 27s 5s
100% 38% 52% 10%
N3 39s 11s 25s 3s
100% 28% 64% 8%
N4 84s 24s 53s 7s
100% 29% 63% 8%
N5 84s 24s 53s 7s
100% 29% 63% 8%

Table 2: Simple SANs

4.1 Simple SANs

Let us first analyse the part of Table 2 showing the comparative cost of each part of the
code, according to the division give in Figure 3. Note that the cost of the dot product with
the diagonal is small (less than 10%) and this will be always the case for all experiments.
The cost of part 2 is very high, larger than the multiplication cost (part 1). Notice that the
greater the number of automata, the larger the overhead cost of the algorithm. This suggests
that it might be worthwhile, in SANs with a lot of small automata, to compose subgroups
with small automata to build up an equivalent SAN with less, but larger, automata. This
tendency has to be moderated by the cost of generating composed automata, as it will be
seen later. Finally, there is no apparent difference between N4 and N5, which confirms that
in these simple SANs without functions, ordering has no noticable effect on performance.

4.2 SANs with functional rates

In the next set of experiments, functional rates are added to the SANs. For example, F2a is
derived from SAN N2; it is composed of 4 automata of size 10, 5, 10, 8 as indicated in the
first column of Table 3. Functional rates are included in the automaton whose size (8) has
a tilde; functions entries are indicated by a circumflex. The percentage in the first column
of Table 3 indicates the percentage of nonzero entries that are functional.

Observe the effect of including functional rates on the overhead to compute the functions
(part 1) and on the computation of the SAN state (part 3). This is particularly noticable
when comparing N1 and F1 in which part 2 is identical. In general, the time spent in part
3 varies considerably (between 4% and 23%) and depends on the location of the automata
that have functional rates. This effect is particularly obvious in SANs F3a, F3b and F3c.
The reason for such a difference (expressed exclusively in part 3) is that the evaluation of the
function arguments is more expensive when the automata is in the last position. What really
counts is the product of the sizes of the automata that are ranked before the automata with
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| Example  Functions || SAN [[ Part 1 | Part 2 | Part 3 | Diag. |

F1 16% 94s 44s 38s 7s 5s
Tx8xdx5%x3x%x3 100% 47% 41% 7% 5%
F2a 2% 65s 23s 27s 10s 5s

10 x5 x 10 x 8 100% 35% 42% 15% 8%
F2b 2% 70s 23s 27s 15s 5s
10x8x10x5 100% 33% 39% 21% 7%
F3a 5% 46s 16s 25s 2s 3s
3x3x3x3x3x3x3 | 100% 35% 55% 4% 6%
F3b 5% 50s 16s 25s 6s 3s
3x3%x3x3x3x3x3 | 100% 32% 50% 12% 6%
F3c 5% 57s 16s 25s 13s 3s
3x3x3x3x3x3x3 | 100% 28% 44% 23% 5%

Table 3: SANs with functional rates

functional rates in the SAN. The larger this product, the more expensive part 3 becomes.
It can be seen in F2a and F2b that better efficiency of the SAN code is obtained when it
is the larger automata that has the functional rates, (which implies that the product state
of the automata ranked before is smaller). These experiments confirm the previous analysis
concerning algorithm cost.

4.3 SANs with synchronizing events and functional transition pro-
babilities

The last set of experiments on these small examples is obtained by adding synchronizing
events to the SANs (one to each model, except S2c¢ in which two events are added). The
automata concerned by the synchronizing event are those whose size is within a box in
column 1 of table 4. The percentage of nonzero transitions that are in fact synchronized
transitions is also indicated in the first column. When an automata size has a tilde on top
of it, this indicates that the corresponding automata has functional transition probabilities
in its synchronizing matrix while a circumflex indicates the location of arguments. Some
of these functional transition probabilities lead to dependency cycles in the synchronizing
terms of the descriptor, and this is indicated in the first column (cyclic). When an automata
size is in a bold box, this indicates that the automata is the cutset (see [13]) chosen to break
the functional dependency cycle.

If we compare, for example, the cpu times for SANs S2a and S2b, we see that it is
not sensitive to the proportion of synchronized transitions. If we compare the cpu time
for SANs S2a and S2c we see that it is sensitive to the number of synchronizing events
(each synchronized event adds one term to the descriptor). The position in the SAN of the
synchronizing event (without functions) is not relevant to the performance (see S4a and
S5a). The comparison of the time for SAN S1a, S1b and S1c, shows that a cycle decreases
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| Example Synch. || SAN [[ Part 1 | Part 2 | Part 3 | Diag. |
Sla 3% 88s 28s 46s 9s 5s
[#x3xax]5]x3x[3] | 100% | 2% | s2% | 10%| 6%
S1b 3% (cyclic) 95s 31s 50s 9s 5s
FlxaxaxBlxax|3]] 100% || 33%| s3%| 0% | 5%
Sic 3%(cyclic) 104s 34s 56s 9s s
|_|x3x4><lx3><E 100% 33% 54% 9% 5%
S2a 79s 23s 51s 0Os 5s
10 x 5 x 10 x 8 100% 29% 65% 0% 6%
S2b 17% 79s 23s 51s 0s 5s
10x5x 10 x 8 100% 29% 65% 0% 6%
S2c 9% 83s 23s 55s Os 5s
110 x 5% |10 x 8] 100% | 28% | 66% 0% | 6%
S4a 7% 99s 28s 64s Os 7s
2x3x4x5x[6x%x7 100% 28% 65% 0% 7%
S5a 7% 99s 28s 64s 0s 7s
TX6|x5x4x3x%x2 100% 28% 65% 0% 7%

Table 4: SANs with synchronizing events and functional transition probabilities

the performance (it adds terms in the descriptor), and that the best choice is to choose the
smaller cutset.

4.4 Summary

This concludes the experiment on the set of small examples. It gives rules of thumb to order
automata in a network to achieve better performance. More precisely, it is not the automata
in the SAN that must be ordered, but within each term of the descriptor, the best ordering
should be computed independently. It now remains to examine the effect of reducing the
number of automata in more detail, for it was observed that this also has a role to play in
the efficiency of the algorithm.

5 Grouping of Automata

The objective in this section is to show how we can reduce a SAN to an “equivalent” SAN
with less automata. The equivalence notion is with respect to the underlying Markov chain
and is defined below. Our approach is based on simple algebraic transformations of the
descriptor and not on the automata network. Consider a SAN containing N stochastic au-
tomata Aj, ..., Ay of size n; respectively, E synchronizing events s, ..., sg, and functional

INRIA



Numerical Issues for Stochastic Automata Networks. 17

transition rates. Its descriptor may be written as

N+2FE

Q=Y &).Q

i=1

Let 1,..., N be partitioned in B groups named b1, ...,bp, and, without loss of generality,
assume that by = [1,...,¢2], by = [c2 + 1,...,¢c3], etc, for some increasing sequence of ¢;,
with ¢; = 0, cgy1 = N. The descriptor can be rewritten, using the associativity of the
generalized tensor product, as

2E+N

— B c (@)
Q=) ®y,k=1( Dgrizentt @j )
i=1

The matrices Rg-k) = ®Z’fj+=1ck 11 Qgi), forje1,...,2E+ N, are, by definition, the transition
matrices of a grouped automaton, named Gy, of size by = J[;25!

be rewritten

1 ni- The descriptor may

2E+N ®
_ B k
Q=) @ By
j=1

This formulation is the basis of the grouping process. From this first algebraic expression,
several important simplifications may be carried out and are explained below. Before pro-
ceeding to these simplifications, we need to write the descriptor more precisely, separating
out the terms resulting from local transitions from those resulting from synchronizing events
(Our notation is similar to that used in Section 2 and can be easily interpreted by analogy):

" N A0 N0y Yoo Moo
Q= 1223 ®5mQ; = D, +j§:;(®g,i:1Qsj +®g,i:1Qsj)

Grouping by associativity gives

_mE am LN B (k) ()
- ®g,k:1Rl +]221 (®g’k:1RSj +®g’k:1RSJ' )

with
W @
and R _ ®ck+1 Qv
5 gri=cp+1 oI
and

S5k . Chk+41 (i
jo) o ®g,i=6k+1ng)'
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First simplification: Removal of synchronizing events.

Assume that one of the synchronizing event, say s1, is such that it synchronizes automata
within a group, say b;. Indeed, this synchronized event becomes internal to group b; and

may be treated as a transition that is local to G;. In this case, the value of Rl(l) may be
changed in order to simplify the formula for the descriptor. Using

R <= R" + R + R(V

the descriptor may be rewritten as

P (R R4 R
GBg,kzl‘Rl + ]:Z2 (®g,i:1st + ®g,i:1R31‘> )

The descriptor is thus reduced (two terms having disappeared). This procedure can be
applied to all identical situations.

Second simplification: Removal of functional terms.

Following this same line of thought, assume that the local transition matrix of G; is a tensor
sum of matrices that are functions of the states of automata in b; itself. Then the functions

O]
in Q;” of
l n _ 2 (4)
B = @g,i:cl-{-lQl

are evaluated when performing the generalized tensor operator and Rl(l) is a constant matrix.
This is true for all situation of this type, for local matrices and synchronized terms.
However, if RS) is the tensor product of matrices that are functions of the states of
automata, some of which are in b; and some of which are not in by, then performing the ge-
neralized tensor product Rg) = Q> le]) allows us to partially evaluate the functions

g,i=c1+1
for the arguments in b;. Others arguments cannot be evaluated. These must be evaluated
later when performing the computation ®f’i:1Rg? and may in fact, result in an increased
number of function evaluations. Some numerical effects of this phenomenon are provided in

the next section.

Third simplification: Reduction of the reachable state space.

In the process of grouping, the situation might arise that a grouped automata G; has a
reachable state space smaller than the product state space [1,.. ., Hf’;c; +1 M- This happens
after simplifications one and/or two have been performed. For example, functions may
evaluate to zero, or synchronizing events may disable certain transitions. In this case, a
reachability analysis is performed in order to compute the reachable state space. This

analysis is conducted on the matrix :

F
R + 3" R + R{)
=1
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where F' is the set of remaining synchronizing events for the SAN Gy, ...,Gpg. In practice,
in the SAN methodology, the global reachable state space is known in advance and the
reachable state space of a group may be computed with a simple projection.

6 The Numerical Benefits of Grouping

Let us now observe the effectiveness of grouping automata on the two examples discussed in
Sections 2.2 and 2.3. In particular, we would like to observe the effect on the time required
to perform 10 premultiplications of the descriptor by a vector and on the amount of memory
needed to store the descriptor itself. Intuitively we would expect the computation time to
diminish and the memory requirements to augment as the number of automata is decreased.
The experiments in this section quantify these effects.

We first consider the resource sharing model of Section 2.2 with parameter values N =
12,16 and 20 for both P =1 and P = N — 1. The models were grouped in various ways,
varying from the original (non-grouped) case in which B = N to a purely sparse matrix
approach in which B = 1, where B of course, denotes the number of automata that remain
after the grouping process. In the examples with a single resource (P = 1) we differentiate
between two distinct cases; the first when the automata are grouped but the state space in
each of the larger automata that result from the grouping is not reduced and the second when
the state space of the resulting automata is reduced (by the elimination of non-reachable
states from each new block of automata). The latter is indicated by the label (®) in the
tables. The elimination of non-reachable states only affects the states inside a grouped
automaton and not all the states of the global model. This reduction is not possible in
models with NV — 1 resources.

The results presented in Table 5 illustrate the substantial gain in CPU time as the number
of automata is reduced, and this with relatively little impact on memory requirements.
Furthermore, this is seen to be true even when the state space within the grouped automata
are not reduced. A more complete set of results for the reduced case is graphically displayed
in Figure 4. However, no results are presented for the two cases N =20; P=28, 19; B=1
since the amount of memory needed exceeded that available on our machine. Estimates
are presented by a dotted line. When reading these graphs, be aware that the scale varies
with increasing values of V. These graphs display both CPU curves and memory curves.
Consider first the memory curves. Two contrasting effects are at work here. First there is the
reduction in the reachable state space which entails a subsequent reduction in the size of the
probability vectors and hence an overall reduction in the amount of memory needed. On the
other hand, the size of the matrices representing the grouped automata is increased thereby
increasing the amount of memory needed. This latter effect becomes more important with
increasing value of P, and indeed becomes the dominant effect, as may be observed from
Figure 4. As for the CPU curves, observe that these always decrease with decreased number
of blocks of automata. This is a combined effect of a reduction in the reachable state space,
algorithm overhead, and the number of functions that need to be evaluated. Notice also that
the reduction in the number of function evaluated only occurs when the number of automata
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P=1 P=1 (%) P=N-1

Models CPU | Mem | CPU [ Mem | CPU | Mem
N=12 B=12 1.12 33 1.12 33 1.12 33
N=12 B=6 0.51 33 0.10 6 0.68 33
N=12 B=4 0.36 33 0.03 2 0.53 34
N=12 B=2 0.25 42 0.00 1 0.45 50
N=12 B=1 0.00 0 0.00 0 0.14 1 087
N=16 B=16 27.48 513 27.48 513 27.48 513
N=16 B=8 13.38 513 1.18 52 16.78 514
N=16 B=4 6.79 516 0.06 5 12.51 518
N=16 B=2 4.63 564 0.00 1 12.19 593
N=16 B=1 0.00 1 0.00 1 3.91 | 22 527
N=20 B=20 | 610.59 | 8 193 | 610.59 | 8 193 | 610.59 8 193
N=20 B=10 | 289.04 | 8 194 13.45 462 | 364.43 8 194
N=20 B=5 141.65 | 8 197 0.33 25 | 245.16 8 200
N=20 B=2 59.69 | 8 440 0.01 2 | 195.62 8 640
N=20 B=1 0.00 1 0.00 1 —

Table 5: Resource Sharing Model

in a group is greater than the number of resources. The combined effects of this and the
reduction in algorithm overhead and reachable state space leads to the different slopes that
are apparent in the CPU curves. Finally notice that although the gains obtained in models
with very few reachable states (those cases in which P = 1) are impressive, we must keep
in mind the fact that the SAN approach is not a realistic in these cases. It is much better
to generate the small number of states using a standard sparse matrix approach.
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Figure 4. Reduced Models: Computation Time and Memory requirements

It may be argued that the best approach (at least for this particular example) is to
combine all the automata into just two groups, for this allows us to avoid the store space
explosion problem with just a minimal increase in CPU time over a purely sparse approach.

Let us now turn our attention to the queueing network model presented in the Section

2.3. We analyzed two models with parameters C7, Co = 5,10 and 20 and C5 = 10, 20, 30 and
50. With these models, experiments were conducted using two different kinds of grouping:
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e A grouping of the automata according to customer class (4; and As,) and (A2 and
As,).

e A grouping of the automata according to queue (A; and As) and (As, and As,);

The second grouping allows for the possibility of a reduction in the state space of the joint
automata, (As, and As, ), since the priority queue is now represented by a single automaton.
The results obtained are presented in Table 6

(D)(2)(31)(32) | (1,31)(2,32) (1,2)(31,32) | (1,2)(31,32)R

Models CPU | Mem CPU [ Mem | CPU | Mem | CPU [ Mem

Ci=5 (Cy=5 (C3=10| 0.15 21 0.22 27 | 0.07 32 | 0.04 64
Ci=5 (Cy=5 (C5=20| 0.64 82 0.89 94 | 0.30 118 | 0.16 67

C1=10 Cy=10 (C5=10| 0.62 81 0.92 94 | 0.31 101 | 0.17 63
Ci=10 Cy=10 C5=20| 2.43 317 4.00 346 | 1.44 364 | 0.64 201
Ci=10 C3=10 (C5=30| 5.50 709 9.72 754 | 3.82 801 | 1.79 429
Ci=10 Cy=10 (Cs5=50| 1520 | 1963 | 29.04 | 2039 | 10.24 | 2200 | 5.28 | 1153

Ci1=20 C3=20 (C5=50| 58.92 | 7824 | 120.78 | 7989 | 47.53 | 8 106 | 24.37 | 4 186

Table 6: Queueing Network Model

The gains with this example are not as impressive as they were with the resource sharing
model, but it should be remembered that there are relatively few automata (just four) in
this example. Notice also that the CPU times obtained with the first grouping is worse
than in the non-grouped case. This is a result of the fact that this model incorporates
synchronizing events combined with functions that cannot be removed using simplification
2. The first grouping eliminates these events, but this results in an increase in the number of
functions that must be evaluated. In all models that possess synchronizing events, a grouping
procedure that includes a subset of these events must incorporate the evaluation of tensor
products (and not only tensor sums). The evaluation of tensor products can increase the
complexity by increasing the number of non-zero elements to be multiplied by the vector.
Especially if the tensor products contain functional elements, the number of functions to
be evaluated will increase. This effect is apparent in the table of results. Elimination of
synchronizing events may prove useful in certain very large problems since descriptors that
include sunchronizing events require an additional probability vector of size equal to the
global number of states.

The gains obtained from the second grouping result from the elimination of functional
elements from the grouped descriptors. All functions depend on the states of automata As,
and As,. Additionally, the elimination of non-reachable states reduces the CPU computation
time that is needed and also saves memory space.

The experiments clearly show that the benefits that accrue from grouping are non-
negligible, so long as the number of function evaluations do not rise drastically as a result.
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In fact, it seems that function evaluation should be the main concern in choosing which
automata to group together. Indirectly, functions also play an important role in identifying
non-reachable states, the elimination of which permit important reductions in CPU time
and memory.
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