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Abstract: Two images of a single scene/object are related by the epipolar geometry, which
can be described by a 3x3 singular matrix called the essential matrix if images’ internal
parameters are known, or the fundamental matrix otherwise. It captures all geometric
information contained in two images, and its determination is very important in many
applications such as scene modeling and vehicle navigation. This paper gives an introduction
to the epipolar geometry, and provides a complete review of the current techniques for
estimating the fundamental matrix and its uncertainty. A well-founded measure is proposed
to compare these techniques. Projective reconstruction is also reviewed. The softwares
which we have developed for this review are available on the Internet.
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Tout ce que vous voulez savoir sur le calcul de la matrice
fondamentale

Résumé : La géométrie épipolaire décrit la relation entre deux images d’une méme sceéne,
qui est caractérisée par une matrice 3x3 singuliere. Cette matrice est connue sous le nom
de matrice essentielle si les parametres intrinseques des images sont connus, de matrice fon-
damentale s’ils ne le sont pas. Elle contient toutes les informations géométriques des deux
images. Son estimation est tres importante pour beaucoup d’applications comme la modé-
lisation de scenes et le déplacement d’un robot mobile autonome. Cet article fournit une
introduction & la géométrie épipolaire, et fait une revue complete des techniques existantes
d’estimation de la matrice fondamentale et de son incertitude. Nous introduisons une mé-
thode de mesure permettant de comparer avec précision ces techniques. La reconstruction
projective est aussi passée en revue. Les logiciels que nous avons développés pour effectuer
cette revue sont disponible sur I’Internet.

Mots-clé : Géométrie épipolaire, matrice fondamentale, calibration, reconstruction, es-
timation de parametres, techniques robustes, caractérisation d’incertitude, évaluation de
performance, logiciel
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1 Introduction

Two perspective images of a single rigid object/scene are related by the so-called epipolar
geometry, which can be described by a 3 x 3 singular matrix. If the internal (intrinsic)
parameters of the images (e.g. the focal length, the coordinates of the principal point,
etc) are known, we can work with the normalized image coordinates (Faugeras 1993), and
the matrix is known as the essential matriz (Longuet-Higgins 1981); otherwise, we have
to work with the pizel image coordinates, and the matrix is known as the fundamental
matriz (Luong 1992, Faugeras 1995, Luong and Faugeras 1996). It contains all geometric
information that is necessary for establishing correspondences between two images, from
which three-dimensional structure of the perceived scene can be inferred. In a stereovision
system where the camera geometry is calibrated, it is possible to calculate such a matrix
from the camera perspective projection matrices through calibration (Ayache 1991, Faugeras
1993). When the intrinsic parameters are known but the extrinsic ones (the rotation and
translation between the two images) are not, the problem is known as motion and structure
from motion, and has been extensively studied in Computer Vision; two excellent reviews are
already available in this domain (Aggarwal and Nandhakumar 1988, Huang and Netravali
1994). We are interested here in different techniques for estimating the fundamental matrix
from two uncalibrated images, i.e. the case where both the intrinsic and extrinsic parameters
of the images are unknown. From this matrix, we can reconstruct a projective structure of
the scene, defined up to a 4 X 4 matrix transformation.

The study of uncalibrated images has many important applications. The reader may
wonder the usefulness of such a projective structure. We cannot obtain any metric in-
formation from a projective structure: measurements of lengths and angles do not make
sense. However, a projective structure still contains rich information, such as coplanarity,
collinearity, and cross ratios (ratio of ratios of distances), which is sometimes sufficient for
artificial systems, such as robots, to perform tasks such as navigation and object recogni-
tion (Shashua 1994, Zeller and Faugeras 1994, Beardsley, Zisserman and Murray 1994).

In many applications such as the reconstruction of the environment from a sequence
of video images where the parameters of the video lens is submitted to continuous modi-
fication, camera calibration in the classical sense is not possible. We cannot exact any
metric information, but a projective structure is still possible if the camera can be consi-
dered as a pinhole. Furthermore, if we can introduce some knowledge of the scene into
the projective structure, we can obtain more specific structure of the scene. For example,
by specifying a plane at infinity (in practice, we need only to specify a plane sufficiently
far away), an affine structure can be computed, which preserves parallelism and ratios of
distances (Quan 1993, Faugeras 1995). Hartley, Gupta and Chang (1992) first reconstruct a
projective structure, and then use 8 ground reference points to obtain the Euclidean struc-
ture and the camera parameters. Mohr, Boufama and Brand (1993) embed constraints such
as location of points, parallelism and vertical planes (e.g. walls) directly into a minimization
procedure to determine a Euclidean structure. Robert and Faugeras (1993) show that the
3D convex hull of an object can be computed from a pair of images whose epipolar geometry
is known.
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6 Zhengyou Zhang

If we assume that the camera parameters do not change between successive views, the
projective invariants can even be used to calibrate the cameras in the classical sense without
using any calibration apparatus (known as self-calibration) (Maybank and Faugeras 1992,
Faugeras, Luong and Maybank 1992, Luong 1992, Zhang, Luong and Faugeras 1996, Enciso
1995).

Recently, we have shown (Zhang 1996a) that even in the case where images are calibrated,
more reliable results can be obtained if we use the constraints arising from uncalibrated
images as an intermediate step.

This paper gives an introduction to the epipolar geometry, provides a new formula of
the fundamental matrix which is valid for both perspective and affine cameras, and reviews
different methods reported in the literature for estimating the fundamental matrix. Further-
more, a new method is described to compare two estimations of the fundamental matrix.
It is based on a measure obtained through sampling the whole visible 3D space. Projective
reconstruction is also reviewed. The software called FMatrix which implements the reviewed
methods and the software called Fdiff which computes the difference between two funda-
mental matrices are both available from my home page:

http://www.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html
FMatrix detects false matches, computes the fundamental matrix and its uncertainty, and
the projective reconstruction of the points as well.

2 Epipolar Geometry and Problem Statement

2.1 Notation

A camera is described by the widely used pinhole model. The coordinates of a 3D point
M = [z,y,2]T in a world coordinate system and its retinal image coordinates m = [u,v]T are
related by

x
U
sl =P Z ,
1
1
where s is an arbitrary scale, and P is a 3 x 4 matrix, called the perspective projection
matrix. Denoting the homogeneous coordinates of a vector x = [z,y,---]% by X, i.e., X =
[,9,---,1]7, we have sm = PM.

The matrix P can be decomposed as
P=A[Rt],

where A is a 3 x 3 matrix, mapping the normalized image coordinates to the retinal image
coordinates, and (R,t) is the 3D displacement (rotation and translation) from the world
coordinate system to the camera coordinate system.

INRIA
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The quantities related to the second camera is indicated by ’. For example, if m; is a
point in the first image, m/ denotes its corresponding point in the second image.

A line 1 in the image passing through point m = [u,v]” is described by equation au +
bv+c=0. Let 1 = [a,b,c]T, then the equation can be rewritten as 17m = 0 or m”1 = 0.
Multiplying 1 by any non-zero scalar will define the same 2D line. Thus, a 2D line is
represented by a homogeneous 3D vector. The distance from point my = [ug,vp]” to line
1=[a,b,c]T is given by

aug + bvg + ¢
d(mo,1) = W

Note that we here use the signed distance.

2.2 Epipolar Geometry and Fundamental Matrix

The epipolar geometry exists between any two camera systems. Consider the case of two
cameras as shown in Fig. 1. Let C' and C’ be the optical centers of the first and second

Figure 1: The epipolar geometry

cameras, respectively. Given a point m in the first image, its corresponding point in the
second image is constrained to lie on a line called the epipolar line of m, denoted by 1,,,. The
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line 17, is the intersection of the plane II, defined by m, C' and C’ (known as the epipolar
plane), with the second image plane Z’'. This is because image point m may correspond
to an arbitrary point on the semi-line CM (M may be at infinity) and that the projection of
CM on 7' is the line I’ . Furthermore, one observes that all epipolar lines of the points in
the first image pass through a common point €', which is called the epipole. Epipole €’ is
the intersection of the line C'C’ with the image plane Z’. This can be easily understood as
follows. For each point my in the first image 7, its epipolar line 1, in 7' is the intersection
of the plane TT*, defined by my, C and C’, with image plane Z’. All epipolar planes IT*
thus form a pencil of planes containing the line CC’. They must intersect Z' at a common
point, which is €'. Finally, one can easily see the symmetry of the epipolar geometry. The
corresponding point in the first image of each point mj, lying on I;,, must lie on the epipolar
line 1y, , which is the intersection of the same plane II* with the first image plane Z. All
epipolar lines form a pencil containing the epipole e, which is the intersection of the line
CC' with the image plane Z. The symmetry leads to the following observation. If m (a
point in 7Z) and m’ (a point in Z’) correspond to a single physical point M in space, then
m, m’, C' and C' must lie in a single plane. This is the well-known co-planarity constraint
in solving motion and structure from motion problems when the intrinsic parameters of the
cameras are known (Longuet-Higgins 1981).

The computational significance in matching different views is that for a point in the first
image, its correspondence in the second image must lie on the epipolar line in the second
image, and then the search space for a correspondence is reduced from 2 dimensions to 1
dimension. This is called the epipolar constraint. Algebraically, in order for m in the first
image and m' in the second image to be matched, the following equation must be satisfied:

m’Fim' =0 with F=A T[t],RA" !, (1)

where (R, t) is the rigid transformation (rotation and translation) which brings points expres-
sed in the second camera coordinate system to the first one, and [t]x is the antisymmetric
matrix defined by t such that [t]xx = t x x for all 3D vector x. This equation can be
derived as follows. Without loss of generality, we assume that the world coordinate system
coincides with the second camera coordinate system. From the pinhole model, we have

sm=A[Rt]M and s'm' =A'[I0N.

Eliminating M, s and s’ in the above two equations, we obtain equation (1). Geometrically,
Fm' defines the epipolar line 1,y of point m’ in the first image. Equation (1) says no more
than that the correspondence in the first image of point m’ lies on the corresponding epipolar
line l,,. Transposing (1) yields the symmetric relation from the first image to the second
image.

The 3 x 3 matrix F is called the fundamental matriz. Since det([t]x) =0,

det(F)=0. (2)

INRIA
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F is of rank 2. Besides, it is only defined up to a scalar factor, because if F is multiplied
by an arbitrary scalar, equation (1) still holds. Therefore, a fundamental matrix has only
seven degrees of freedom. There are only 7 independent parameters among the 9 elements
of the fundamental matrix.

Convention note: We use the second camera coordinate system as the world coordinate
system, which is in accordance with the convention used in (Faugeras 1993). Several resear-
chers prefer to use the first camera coordinate system, then (1) becomes m'? F/m = 0 with
F' = [t']«R/, where (R',t') transforms points from the first camera coordinate system to
the second. The relation between (R,t) and (R’,t') is given by R’ = R?, and t' = —R”t.
The reader can easily verify that F = F'T.

2.3 A General Form of Epipolar Equation for Any Projection Mo-
del

In this section we will derive a general form of epipolar equation which does not assume any
particular projection model (Xu and Zhang 1996).

A point m in the first image is matched to a point m’ in the second image. From the
camera projection model (orthographic, weak perspective, affine, or full perspective), we
have sm=PM and s'm’ =P'M , where P and P’ are 3 x 4 matrices. An image point
m’ defines actually an optical ray, on which every space point M projects on the second
image at m’. This optical ray can be written in parametric form as

M =sP*tm +p't, (3)
where P’T is the pseudo-inverse of matrix P’:
Pt =P7T(P'PT)", (4)
and p'* is any 4-vector that is perpendicular to all the row vectors of P’ i.e.
Ppt=0.

Thus, p'* is a null vector of P’. As a matter of fact, p’* indicates the position of the optical
center (to which all optical rays converge). We show later how to determine p’t. For a
particular value ', equation (3) corresponds to a point on the optical ray defined by m'.
Equation (3) is easily justified by projecting M’ onto the second image, which indeed gives
m'.

Similarly, an image point m in the first image defines also an optical ray. Requiring the
two rays to intersect in space implies that a point M’ corresponding to a particular s in (3)

must project onto the first image at m, that is

simh = PP+ m’ + Pp't .

RR n"2927



10 Zhengyou Zhang

Performing a cross product with Pp’* yields
s(Pp't) x m = s'(Pp't) x (PP'*m’) .
Eliminating s and s’ by multiplying m” from the left (equivalent to a dot product), we have
mIFm' =0, (5)
where F is a 3 x 3 matrix, called fundamental matriz:
F = [Pp'*|.PP'". (6)

It can also be shown that this expression is equivalent to (1) for the full perspective projection
(see Xu and Zhang 1996), but it is more general. Indeed, (1) assumes that the first 3 x 3
sub-matrix of P’ is invertible, and thus is only valid for full perspective projection but not
for affine cameras (see Sect. 5.3), while (6) makes use of the pseudoinverse of the projection
matrix, which is valid for both full perspective projection as well as affine cameras. Therefore
the equation does not depend on any specific knowledge of projection model. Replacing the
projection matrix in the equation by specific projection matrix for each specific projection
model (e.g. orthographic, weak perspective, affine or full perspective) produces the epipolar
equation for that specific projection model. See (Xu and Zhang 1996) for more details.

The vector p'* still needs to be determined. We first note that such a vector must exist
because the difference between the row dimension and the column dimension is one, and
that the row vectors are generally independent from each other. Indeed, one way to obtain
pIJ_ is

pt=(I-P*"P)w, (7)

where w is an arbitrary 4-vector. To show that p’* is perpendicular to each row of P/, we
multiply p’t by P’ from the left: P'p’t = (P’ —P'P'T(P'P'T)"1P')w = 0, which is indeed
a zero vector. The action of I — P/*P’ is to transform an arbitrary vector to a vector that
is perpendicular to every row vector of P’. If P’ is of rank 3 (which is the case for both
perspective and affine cameras), then p’ Lis unique up to a scale factor.

2.4 Problem Statement

The problem considered in the sequel is the estimation of F from a sufficiently large set of
point correspondences: {(m;,m})|i=1,...,n}, where n > 7. The point correspondences
between two images can be established by a technique such as that described in (Zhang,
Deriche, Faugeras and Luong 1995). We allow, however, that a fraction of the matches may
be incorrectly paired, and thus the estimation techniques should be robust.

INRIA
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3 Techniques for Estimating the Fundamental Matrix

Let a point m; = [u;,v;]” in the first image be matched to a point m! = [u},v!]T in the
second image. They must satisfy the epipolar equation (1), i.e. m? Fm} = 0. This equation
can be written as a linear and homogeneous equation in the 9 unknown coeflicients of matrix
F:

uf=0, (8)
where
R 'l-l--l-l'lllT
u; = [uzui7uzvnuuvzuiavzvnvzauiavﬂ ]
T
f = [Fu, Fi2, Fis, Fo1, Fay, Fo3, F31, F30, F33]"

where F;; is the element of F at row ¢ and column j.
If we are given n point matches, by stacking (8), we have the following linear system to
solve:

where
UTL = [ula"' 7uTL]T -

This set of linear homogeneous equations, together with the rank constraint of the matrix
F, allow us to estimate the epipolar geometry.

3.1 Exact Solution with 7 Point Matches

As described in Sect.2.2, a fundamental matrix F has only 7 degrees of freedom. Thus,
7 is the minimum number of point matches required for having a solution of the epipolar
geometry.

In this case, n = 7 and rank(Uy) = 7. Through singular value decomposition, we obtain
vectors f; and fs which span the null space of U7. The null space is a linear combination of
fi and f5, which correspond to matrices F; and F5, respectively. Because of its homogeneity,
the fundamental matrix is a one-parameter family of matrices aF; + (1 — a)F,. Since the
determinant of F must be null, i.e.

det[aF1 + (1 — Oé)FQ] =0,

we obtain a cubic polynomial in o. The maximum number of real solutions is 3. For each
solution a, the fundamental matrix is then given by

F:OéF1+(1—a)F2.

RR n"2927



12 Zhengyou Zhang

Actually, this technique has already been used in estimating the essential matrix when 7
point matches in normalized coordinates are available (Huang and Netravali 1994). It is also
mentioned in (Torr 1995) for estimating the fundamental matrix.

As a matter of fact, the result that there may have three solutions given 7 matches
has been known since 1800’s (Hesse 1863, Sturm 1869). Sturm’s algorithm (Sturm 1869)
computes the epipoles and the epipolar transformation (see Sect. 2.2) from 7 point matches.
It is based on the observation that the epipolar lines in the two images are related by a
homography, and thus the cross-ratios of four epipolar lines is invariant. In each image, the
7 points define 7 lines going through the unknown epipole, thus providing 4 independent
cross-ratios. Since these cross-ratios should remain the same in the two images, one obtains
4 cubic polynomial equations in the coordinates of the epipoles (4 independent parameters).
It is shown that there may exist up to three solutions for the epipoles.

3.2 Analytic Method with 8 or More Point Matches

In practice, we are given more than 7 matches. If we ignore the rank-2 constraint, we can
use a least-squares method to solve

. ~ T~ 32
m};ng(mi Fm))*, (9)

which can be rewritten as:

min U] . (10)

The vector f is only defined up to an unknown scale factor. The trivial solution f to the
above problem is f = 0, which is not what we want. To avoid it, we need to impose some
constraint on the coefficients of the fundamental matrix. Several methods are possible and
are presented below. We will call them the 8-point algorithm, although more than 8 point
matches can be used.

3.2.1 Linear Least-Squares Technique

The first method sets one of the coefficients of F to 1, and then solves the above problem
using linear least-squares techniques. Without loss of generality, we assume that the last
element of vector f (i.e. fo = F33) is not equal to zero, and thus we can set fo = —1. This
gives

|[Uf]|? = |ULE — o> = £7UTULE — 2] UL +clco

INRIA
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where U’ is the n x 8 matrix composed of the first 8 columns of U,,, and c¢g is the ninth
column of U,,. The solution is obtained by requiring the first derivative to be zero, i.e.

ONUfI* _

oF 0.

By definition of vector derivatives, d(aTx)/dx = a, for all vector a. We thus have
2UTULF —2UT ey =0, or £ =(UTU,)  UTc.

The problem with this method is that we do not know a priori which coefficient is not zero.
If we set an element to 1 which is actually zero or much smaller than the other elements,
the result will be catastrophic. A remedy is to try all nine possibilities by setting one of the
nine coefficients of F to 1 and retain the best estimation.

3.2.2 Eigen Analysis

The second method consists in imposing a constraint on the norm of f, and in particular
we can set ||f]| = 1. Compared to the previous method, no coefficient of F prevails over the
others. In this case, the problem (10) becomes a classical one:

mfin |ULf||* subject to [|f]| = 1. (11)

It can be transformed into an unconstrained minimization problem through Lagrange mul-
tipliers:

mfin F(£,N), (12)

where
F(£,2) = [[ULf|I* + A1 — [I£]]*) (13)

and A is the Lagrange multiplier. By requiring the first derivative of F(f, \) with respect to
f to be zero, we have

UTU,f = \f.

Thus, the solution f must be a unit eigenvector of the 9 x 9 matrix UL U,, and X is the
corresponding eigenvalue. Since matrix U? U, is symmetric and positive semi-definite, all
its eigenvalues are real and positive or zero. Without loss of generality, we assume the nine
eigenvalues of UZU,, are in non-increasing order:

AL 222X 20.
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14 Zhengyou Zhang

We therefore have 9 potential solutions: A = A; for ¢ = 1,...,9. Back substituting the
solution to (13) gives

FE, )=\

Since we are seeking to minimize F(f, A), the solution to (11) is evidently the unit eigenvector
of matrix UZUH associated to the smallest eigenvalue, i.e. Ag.

3.2.3 Imposing the Rank-2 Constraint

The advantage of the linear criterion is that it yields an analytic solution. However, we have
found that it is quite sensitive to noise, even with a large set of data points. One reason is
that the rank-2 constraint (i.e. det F = 0) is not satisfied. We can impose this constraint a
posteriori. The most convenient way is to replace the matrix F estimated with any of the
above methods by the matrix F which minimizes the Frobenius norm (see Sect. B) of F — F'
subject to the constraint det F=0. Let

F=Usv”T

be the singular value decomposition of matrix F, where S = diag (01, 02, 03) is a diagonal
matrix satisfying o1 > 02 > 03 (0; is the i*? singular value), and U and V are orthogonal
matrices. It can be shown that

F=usSv?’

with § = diag (o1, 02, 0) minimizes the Frobenius norm of F — I (see the appendix Sect. B
for the proof). (This method was used by Tsai and Huang (1984) in estimating the essential
matrix, and is introduced by Hartley (1995) to estimate the fundamental matrix.)

3.2.4 Geometric Interpretation of the Linear Criterion

Another problem with the linear criterion is that the quantity we are minimizing is not
physically meaningful. A physically meaningful quantity should be something measured in
the image plane, because the available information (2D points) are extracted from images.
One such quantity is the distance from a point m; to its corresponding epipolar line 1; =
Fm/ = [I1, 1y, 13)7, which is given by (see Sect.2.1)
~T
d(m,, 1) =~ = TR (14

VEFE

where ¢; = \/I? + [5. Thus, the criterion (9) can be rewritten as

. 2920 1.
min Zcid (m;,1;) .

=1
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This means that we are minimizing not only a physical quantity d(m;,1;), but also ¢; which
is not physically meaningful. Luong (1992) shows that the linear criterion introduces a bias
and tends to bring the epipoles towards the image center.

3.2.5 Normalizing Input Data

Hartley (1995) has analyzed, from numerical computation point of view, the high instability
of this linear method if pixel coordinates are directly used, and proposed to perform a simple
normalization of input data prior to running the 8-point algorithm. This technique indeed
produces much better results, and is summarized below.

Suppose that coordinates m; in one image are replaced by m; = Tm,, and coordinates
m} in the other image are replaced by m) = T'm!, where T and T’ are any 3 X 3 matrices.
Substituting in the equation m7 Fm/) = 0, we derive the equation i/ T-TFT'~'m! = 0.
This relation implies that T-7FT’'~! is the fundamental matrix corresponding to the point
correspondences m; < 1}. Thus, an alternative method of finding the fundamental matrix
is as follows:

1. Transform the image coordinates according to transformations m; = Tm; and 1m} =
I Bely )
T'm;.

2. Find the fundamental matrix F' corresponding to the matches ; < .
3. Retrieve the original fundamental matrix as F = TTRT.

The question now is how to choose the transformations T and T'.

Consider the second method described above, which consists in finding the eigenvector
of the 9 x 9 matrix UZU,, associated with the least eigenvalue (for simplicity, this vector is
called the least eigenvector in the sequel). This matrix can be expressed as UL U,, = UDUT7,
where U is orthogonal and D is diagonal whose diagonal entries A; (i = 1,...,9) are assumed
to be in non-increasing order. In this case, the least eigenvector of UZU,, is the last column
of U. Denote by & the ratio A\1/)s. The parameter « is the condition number! of the
matrix UL U,,, well known to be an important factor in the analysis of stability of linear
problems (Golub and van Loan 1989). If x is large, then very small changes to the data can
cause large changes to the solution. The sensitivity of invariant subspaces is discussed in
detail in (Golub and van Loan 1989, p.413).

The major reason for the poor condition of the matrix UL U, = X is the lack of ho-
mogeneity in the image coordinates. In an image of dimension 200 x 200, a typical image
point will be of the form (100,100,1). If both m; and m! are of this form, then u; will
be of the form [10%,10%,102,10%,10%,102,10%,10%,1]7. The contribution to the matrix X
is of the form u;ul, which will contain entries ranging between 10® and 1. The diagonal
entries of X will be of the form [10%,10%,10%,108,108,10%,10%,10%,1]*. Summing over all
point matches will result in a matrix X whose diagonal entries are approximately in this

1Strictly speaking, A1/)g is the condition number, but X1 /)g is the parameter of importance here.
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proportion. We denote by X, the trailing r x r principal submatrix (that is the last r
columns and rows) of X, and by \;(X,.) its i*? largest eigenvalue. Thus Xy = X = ULU,,
and kK = A(Xy)/As(Xy). First, we consider the eigenvalues of X5. Since the sum of the
two eigenvalues is equal to the trace, we see that A;(Xs) + M2(X3) = trace(Xs) = 10* + 1.
Since eigenvalues are non-negative, we know that \;(X3) < 10* + 1. From the interlacing
property (Golub and van Loan 1989, p.411), we arrive that

As(Xg) < M(Xg) < -+ < M(Xp) <10 +1.

On the other hand, also from the interlacing property, we know that the largest eigenvalue
of X is not less than the largest diagonal entry, i.e. A\;(Xg) > 108. Therefore, the ratio
k= A\ (Xg)/Xs(Xg) > 108/(10* + 1). In fact, A\g(Xg) will usually be much smaller than
10* + 1 and the condition number will be far greater. This analysis shows that scaling the
coordinates so that they are on the average equal to unity will improve the condition of the
matriz ULU,,.

Now consider the effect of translation. A usual practice is to fix the origin of the image
coordinates at the top left hand corner of the image, so that all the image coordinates are
positive. In this case, an improvement in the condition of the matriz may be achieved by
translating the points so that the centroid of the points is at the origin. Informally, if the
first image coordinates (the u-coordinates) of a set of points are {1001.5,1002.3,998.7, ...},
then the significant values of the coordinates are obscured by the coordinate offset of 1000.
By translating by 1000, these numbers are changed to {1.5,2.3,—1.3,...}. The significant
values become now prominent.

Based on the above analysis, Hartley (1995) propose an isotropic scaling of the input
data:

1. As a first step, the points are translated so that their centroid is at the origin.

2. Then, the coordinates are scaled, so that on the average a point m; is of the form
m; = [1,1,1]7. Such a point will lie at a distance v/2 from the origin. Rather than
choosing different scale factors for 4 and v coordinates, we choose to scale the points
isotropically so that the average distance from the origin to these points is equal to

V2.

Such a transformation is applied to each of the two images independently.

An alternative to the isotropic scaling is an affine transformation so that the two principal
moments of the set of points are both equal to unity. However, Hartley (1995) found that the
results obtained were little different from those obtained using the isotropic scaling method.

Beardsley et al. (1994) mention a normalization scheme which assumes some knowledge
of camera parameters. Actually, if approximate intrinsic parameters (i.e. the intrinsic
matrix A) of a camera are available, we can apply the transformation T = A~! to obtain a
“quasi-Euclidean” frame.

Boufama and Mohr (1995) use implicitly data normalization by selecting 4 points, which
are largely spread in the image (i.e. most distant from each other), to form a projective
basis.
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3.3 Analytic Method with Rank-2 Constraint

The method described in this section is due to Faugeras (1995) which imposes the rank-2
constraint during the minimization but still yields an analytic solution. Without loss of
generality, let f = g7, fs, fo]?, where g is a vector containing the first seven components of
f. Let cg and cg be the last two column vectors of U,,, and B be the n x 7 matrix composed
of the first seven columns of U,,. From U,f = 0, we have

Bg = —fgCg - fgCg .
Assume that the rank of B is 7, we can solve for g by least-squares as
g=—/fs(B"B)"'BTcs — fo(B"B)"'B7cy .

The solution depends on two free parameters fg and fg. As in Sect.3.1, we can use the
constraint det(F) = 0, which gives a third-degree homogeneous equation in fg and fy, and
we can solve for their ratio. Because a third-degree equation has at least one real root, we
are guaranteed to obtain at least one solution for F. This solution is defined up to a scale
factor, and we can normalize f such that its vector norm is equal to 1. If there are three
real roots, we choose the one that minimizes the vector norm of U,f subject to ||f|| = 1. In
fact, we can do the same computation for any of the 36 choices of pairs of coordinates of f
and choose, among the possibly 108 solutions, the one that minimizes the previous vector
norm.

The difference between this method and those described in Sect. 3.2 is that the latter
impose the rank-2 constraint after application of the linear least-squares. We have experi-
mented this method with a limited number of data sets, and found the results comparable
with those obtained by the previous one.

3.4 Nonlinear Method Minimizing Distances of Points to Epipolar
Lines

As discussed in Sect. 3.2.4, the linear method (10) does not minimize a physically meaning-
ful quantity. A natural idea is then to minimize the distances between points and their
corresponding epipolar lines: ming ), d?(m;, Fm!) , where d(-,-) is given by (14). Howe-
ver, unlike the case of the linear criterion, the two images do not play a symmetric role.
This is because the above criterion determines only the epipolar lines in the first image. As
we have seen in Sect. 2.2, by exchanging the role of the two images, the fundamental matrix
is changed to its transpose. To avoid the inconsistency of the epipolar geometry between
the two images, we minimize the following criterion

. 2~ Tl 2(m Flm.
m};n; (d*(m;, Fm}) + d*(m}, F'm,)) , (15)

which operates simultaneously in the two images.

RR n"2927
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Let I, = Fm! = [Iy,l,13]7 and I; = FTm; = [I},15,15]7. Using (14) and the fact that
m! Fm) = m/TFTm,, the criterion (15) can be rewritten as:

. 2= Toary2
3 ! . 1
min % wj (m; Fm;)* (16)

where

1, 1\ (BB 1z
w; = - =
B+ 12+17 (12 + 1212 +1%2)
We now present two methods for solving this problem.

3.4.1 Iterative Linear Method

The similarity between (16) and (9) conducts us to solve the above problem by a weighted
linear least-squares technique. Indeed, if we can compute the weight w; for each point
match, the corresponding linear equation can be multiplied by w; (which is equivalent to
replacing u; in (8) by w;u;), and exactly the same 8-point algorithm can be run to estimate
the fundamental matrix, which minimizes (16).

The problem is that the weights w; depends themselves on the fundamental matrix.
To overcome this difficulty, we apply an iterative linear method. We first assume that all
w; = 1 and run the 8-point algorithm to obtain an initial estimation of the fundamental
matrix. The weights w; are then computed from this initial solution. The weighted linear
least-squares is then run for an improved solution. This procedure can be repeated several
times.

Although this algorithm is simple to implement and minimizes a physical quantity, our
experience shows that there is no significant improvement compared to the original linear
method. The main reason is that the rank-2 constraint of the fundamental matrix is not
taken into account.

3.4.2 Nonlinear Minimization in Parameter Space

From the above discussions, it is clear that the right thing to do is to search for a matrix
among the 3 x 3 matrices of rank 2 which minimizes (16). There are several possible pa-
rameterizations for the fundamental matrix (Luong 1992), e.g. we can express one row (or
column) of the fundamental matrix as the linear combination of the other two rows (or
columns). The parameterization described below is based directly on the parameters of the
epipolar transformation (see Sect. 2.2).
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Parameterization of fundamental matrix. Denoting the columns of F by the vectors
c1, ¢2 and c3, we have:

rank(F) = 2
—
(Fjo,j1.J2 € [1,3]) (A1, X2 € R), Cjo + Aicj, + Aacj, =0 (17)
(AN ER), cj, +Acj, =0. (18)

Condition (18), as a non-existence condition, cannot be expressed by a parameterization: we
shall only keep condition (17) and so extend the parameterized set to all the 3 x 3-matrices
of rank strictly less than 3. Indeed, the rank-2 matrices of, for example, the following forms:

[cl Co )\cz] and [cl 03 03] and [cl Co 03]

do not have any parameterization if we take jo = 1. A parameterization of F is then given
by (cj;,€jy, A1, A2). This parameterization implies to divide the parameterized set among
three maps, corresponding to jo =1, jo = 2 and jo = 3.

If we construct a 3-vector such that A\; and A\g are the jl"h and jzth coordinates and 1
is the 5ot coordinate, then it is obvious that this vector is the eigenvector of F, and is thus
the epipole in the case of the fundamental matrix. Using such a parameterization implies
to compute directly the epipole which is often a useful quantity, instead of the matrix itself.

To make the problem symmetrical and since the epipole in the other image is also worth
being computed, the same decomposition as for the columns is used for the rows, which now
divides the parameterized set into 9 maps, corresponding to the choice of a column and a
row as linear combinations of the two columns and two rows left. A parameterization of the
matrix is then formed by the two coordinates z and y of the first epipole, the two coordinates
z' and y’ of the second epipole and the four elements a, b, ¢ and d left by c;,, c;,, 1;, and
1;,, which in turn parameterize the epipolar transformation mapping an epipolar line of the
second image to its corresponding epipolar line in the first image. In that way, the matrix
is written, for example, for ip = 3 and j = 3:

a b —az' — by’
F= c d —cx' — dy' . (19)
—axr—cy —br—dy (az'+by)x+ (cx’'+dy')y

At last, to take into account the fact that the fundamental matrix is defined only up to a
scale factor, the matrix is normalized by dividing the four elements (a, b, ¢, d) by the largest
in absolute value. We have thus in total 36 maps to parameterize the fundamental matrix.

Choosing the best map. Giving a matrix F and the epipoles, or an approximation to
it, we must be able to choose, among the different maps of the parameterization, the most
suitable for F. Denoting by f; ;, the vector of the elements of F once decomposed as in
equation (19), ip and jo are chosen in order to maximize the rank of the 9 x 8 Jacobian
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matrix:

df;,
J= ﬁ where p = [z,y,2",9,a,b,¢,d]" . (20)
This is done by maximizing the norm of the vector whose coordinates are the determinants
of the nine 8 x 8 submatrices of J. An easy calculation shows that this norm is equal to

(ad — be)* /22 + y2 + 122 +y2 + 1.

At the expense of dealing with different maps, the above parameterization works equally well
whether the epipoles are at infinity or not. This is not the case with the original proposition
in (Luong 1992). More details can be found in (Csurka, Zeller, Zhang and Faugeras 1996).

Minimization. The minimization of (16) can now be performed by any minimization pro-
cedure. The Levenberg-Marquardt method (as implemented in MINPACK from NETLIB (More
1977) and in the Numeric Recipes in C (Press, Flannery, Teukolsky and Vetterling 1988))
is used in our program. During the process of minimization, the parameterization of F
can change: The parameterization chosen for the matrix at the beginning of the process is
not necessarily the most suitable for the final matrix. The nonlinear minimization method
demands an initial estimate of the fundamental matrix, which is obtained by running the
8-point algorithm.

3.5 Gradient-based technique

Let f; = m! Fm/. Minimizing ), f? does not yield a good estimation of the fundamental
matrix, because the variance of each f; is not the same. The least-squares technique produces
an optimal solution if each term has the same variance. Therefore, we can minimize the
following weighted sum of squares:

mFin fo/of: , (21)

where 0’2i is the variance of f;, and its computation will be given shortly. This criterion now

has the desirable property: fi;/oy, follows, under the first order approximation, the standard
Gaussian distribution. In particular, all f;/oy, have the same variance, equal to 1. The
same parameterization of the fundamental matrix as that described in the previous section
is used.

Because points are extracted independently by the same algorithm, we make a reasonable
assumption that the image points are corrupted by independent and identically distributed
Gaussian noise, i.e. their covariance matrices are given by

Am, = Ay =07 diag(1,1),
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where ¢ is the noise level, which may be not known. Under the first order approximation,
the variance of f; is then given by

af; T af;  of; T
JJ%" - om; Am; om; + om) Am;

=B+ +12+17],

ofi

!
i Om]

where |; = Fm/, = [I1,15,15]7 and 1, = FT'm; = [I{,15,15]7. Since multiplying each term by
a constant does not affect the minimization, the problem (21) becomes

min 3°(! Fii)?/g?
K2

where g; = \/I? + 12 + 12 + I1? is simply the gradient of f;. Note that g; depends on F.
It is shown (Luong 1992) that f;/g; is a first order approximation of the orthogonal
distance from (m;, m}) to the quadratic surface defined by m” Fm' = 0.

3.6 Nonlinear Method Minimizing Distances Between Observation
and Reprojection

If we can assume that the coordinates of the observed points are corrupted by additive noise
and that the noises in different points are independent but with equal standard deviation
(the same assumption as that used in the previous technique), then the maximum likelihood
estimation of the fundamental matrix is obtained by minimizing the following criterion:

F(f,4) = Z(Ilmi = h(f,1)|* + [lm — b'(£,1)]%) , (22)

K3

where f represents the parameter vector of the fundamental matrix such as the one described
in Sect.3.4, M = M{,... ,MI]7 are the structure parameters of the n points in space, while
h(f,M;) and h'(f,M;) are the projection functions in the first and second image for a given
space coordinates M; and a given fundamental matrix between the two images represented by
vector f. Simply speaking, F(f,M) is the sum of squared distances between observed points
and the reprojections of the corresponding points in space. This implies that we estimate
not only the fundamental matrix but also the structure parameters of the points in space.
The estimation of the structure parameters, or 8D reconstruction, in the uncalibrated case
is an important subject and needs a separate section to describe it in sufficient details (see
Sect. A). In the remaining subsection, we assume that there is a procedure available for 3D
reconstruction.

A generalization to (22) is to take into account different uncertainties, if available, in the
image points. If a point m; is assumed to be corrupted by a Gaussian noise with mean zero
and covariance matrix Am, (a 2 x 2 symmetric positive-definite matrix), then the maximum
likelihood estimation of the fundamental matrix is obtained by minimizing the following

RR n"2927



22 Zhengyou Zhang

criterion:

FEM =Y (AmfA:nliAmi + AmgTA;éAmg)

with
Am; =m; —h(f,M;) and Am,=m)—h'(f,M,).

Here we still assume that the noises in different points are independent, which is quite
reasonable.

When the number of points n is large, the nonlinear minimization of F(f,M) should be
carried out in a huge parameter space (3n + 7 dimensions because each space point has 3
degrees of freedom), and the computation is very expensive. As a matter of fact, we can
separate the structure parameters from the fundamental matrix such that the optimization
of the structure parameters is conducted in each optimization iteration for the parameters
of the fundamental matrix, that is:

min {Z min (|lm; — h(f,1)[” + [[m} - h'(£, Mi)IIQ)} : (23)

i

Therefore, a problem of minimization over (3n + 7)-D space (22) becomes a problem of mi-
nimization over 7-D space, in the latter each iteration contains n independent optimizations
of 3 structure parameters. The computation is thus considerably reduced. As will be seen in
Sect. A, the optimization of structure parameters is nonlinear. In order to speed up still more
the computation, it can be approximated by an analytic method; when this optimization
procedure converges, we then restart it with the nonlinear optimization method.

The idea underlying this method is already well known in motion and structure from
motion (Faugeras 1993, Zhang 1995) and camera calibration (Faugeras 1993). Similar tech-
niques have also been reported for uncalibrated images (Mohr, Veillon and Quan 1993,
Hartley 1993).

3.7 Robust Methods

Up to now, we assume that point matches are given. They can be obtained by techniques
such as correlation and relaxation (Zhang, Deriche, Faugeras and Luong 1995). They all
exploit some heuristics in one form or another, for example, intensity similarity or rigid/affine
transformation in image plane, which are not applicable to most cases. Among the matches
established, we may find two types of outliers due to

bad locations. In the estimation of the fundamental matrix, the location error of a point
of interest is assumed to exhibit Gaussian behavior. This assumption is reasonable
since the error in localization for most points of interest is small (within one or two
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pixels), but a few points are possibly incorrectly localized (more than three pixels).
The latter points will severely degrade the accuracy of the estimation.

false matches. In the establishment of correspondences, only heuristics have been used.
Because the only geometric constraint, i.e., the epipolar constraint in terms of the
fundamental matriz, is not yet available, many matches are possibly false. These will
completely spoil the estimation process, and the final estimate of the fundamental
matrix will be useless.

The outliers will severely affect the precision of the fundamental matrix if we directly apply
the methods described above, which are all least-squares techniques.

Least-squares estimators assume that the noise corrupting the data is of zero mean, which
yields an unbiased parameter estimate. If the noise variance is known, a minimum-variance
parameter estimate can be obtained by choosing appropriate weights on the data. Further-
more, least-squares estimators implicitly assume that the entire set of data can be interpreted
by only one parameter vector of a given model. Numerous studies have been conducted,
which clearly show that least-squares estimators are vulnerable to the violation of these
assumptions. Sometimes even when the data contains only one bad datum, least-squares
estimates may be completely perturbed. During the last three decades, many robust tech-
niques have been proposed, which are not very sensitive to departure from the assumptions
on which they depend.

Recently, computer vision researchers have paid much attention to the robustness of vi-
sion algorithms because the data are unavoidably error prone (Haralick 1986, Zhuang, Wang
and Zhang 1992). Many the so-called robust regression methods have been proposed that
are not so easily affected by outliers (Huber 1981, Rousseeuw and Leroy 1987). The reader
is referred to (Rousseeuw and Leroy 1987, Chap. 1) for a review of different robust methods.
The two most popular robust methods are the M-estimators and the least-median-of-squares
(LMedS) method, which will be presented below. Recent works on the application of
robust techniques to motion segmentation include (Torr and Murray 1993, Odobez and
Bouthemy 1994, Ayer, Schroeter and Bigiin 1994), and those on the recovery of the epipolar
geometry include (Olsen 1992, Shapiro and Brady 1995, Torr 1995)

3.7.1 M-Estimators

Let r; be the residual of the i*" datum, i.e. the difference between the " observation
and its fitted value. The standard least-squares method tries to minimize Y, r2, which is
unstable if there are outliers present in the data. Outlying data give an effect so strong in
the minimization that the parameters thus estimated are distorted. The M-estimators try
to reduce the effect of outliers by replacing the squared residuals r? by another function of
the residuals, yielding

minz p(r:), (24)
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where p is a symmetric, positive-definite function with a unique minimum at zero, and is
chosen to be less increasing than square. Instead of solving directly this problem, we can
implement it as an iterated reweighted least-squares one. Now let us see how.

Let p = [p1,...,pp]” be the parameter vector to be estimated. The M-estimator of p
based on the function p(r;) is the vector p which is the solution of the following p equations:

or;
ri)=— =0, forj=1,...,p, 25
Xijw( )apj j P (25)

where the derivative ¢¥(z) = dp(z)/dz is called the influence function. If now we define a
weight function

w(e) = 12 (26)
T
then Equation (25) becomes
67”1' .
w(r;)r;— =0, forj=1,...,p. 27
S ulror j (21)

%

This is exactly the system of equations that we obtain if we solve the following iterated
reweighted least-squares problem

rninZw(rl(-k_l))n2 , (28)

where the superscript (*) indicates the iteration number. The weight w(rgkfl)) should be
recomputed after each iteration in order to be used in the next iteration.

The influence function t¢(z) measures the influence of a datum on the value of the
parameter estimate. For example, for the least-squares with p(z) = z2/2, the influence
function is ¥ (z) = z, that is, the influence of a datum on the estimate increases linearly
with the size of its error, which confirms the non-robustness of the least-squares estimate.
When an estimator is robust, it may be inferred that the influence of any single observation
(datum) is insufficient to yield any significant offset (Rey 1983). There are several constraints
that a robust M-estimator should meet:

e The first is of course to have a bounded influence function.

e The second is naturally the requirement of the robust estimator to be unique. This
implies that the objective function of parameter vector p to be minimized should have
a unique minimum. This requires that the individual p-function is convex in variable
p- This is necessary because only requiring a p-function to have a unique minimum
is not sufficient. This is the case with maxima when considering mixture distribution;
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the sum of unimodal probability distributions is very often multimodal. The convexity

2
constraint is equivalent to imposing that 662 () i non-negative definite.

2
e The third one is a practical requirement. Whenever < (2') is singular, the objective
op

should have a gradient, i.e. Bg—;) # 0. This avoids having to search through the
complete parameter space.

There are a number of different M-estimators proposed in the literature. The reader is
referred to (Zhang 1996b) for a comprehensive review.

It seems difficult to select a p-function for general use without being rather arbitrary.
The result reported in Sect. 4 uses Tukey function:

c? Ti 213 .
re— E(l—[l—(a)]) if |r;| < co
(c2/6) otherwise,

where ¢ is some estimated standard deviation of errors, and ¢ = 4.6851 is the tuning
constant. The corresponding weight function is

{[1 —(z/c)?)? if ri| < co

0 otherwise.

=

Another commonly used function is the following tri-weight one:

1 |7‘,| SO’
w; = a/|rs o <|ri| <30
0 3o < |7“,‘| .

In (Olsen 1992, Luong 1992), this weight function was used for the estimation of the epipolar
geometry.

Inherent in the different M-estimators is the simultaneous estimation of o, the standard
deviation of the residual errors. If we can make a good estimate of the standard deviation
of the errors of good data (inliers), then data whose error is larger than a certain number
of standard deviations can be considered as outliers. Thus, the estimation of ¢ itself should
be robust. The results of the M-estimators will depend on the method used to compute it.
The robust standard deviation estimate is related to the median of the absolute values of
the residuals, and is given by

0 =1.4826[1 + 5/(n — p)] median |r;| . (29)

The constant 1.4826 is a coeflicient to achieve the same efficiency as a least-squares in the
presence of only Gaussian noise (actually, the median of the absolute values of random
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numbers sampled from the Gaussian normal distribution N(0,1) is equal to ®7(3) ~
1/1.4826); 5/(n — p) (where n is the size of the data set and p is the dimension of the
parameter vector) is to compensate the effect of a small set of data. The reader is referred
to (Rousseeuw and Leroy 1987, page 202) for the details of these magic numbers.

Our experience shows that M-estimators are robust to outliers due to bad localization.
They are, however, not robust to false matches, because they depend heavily on the initial
guess, which is usually obtained by least-squares. This leads us to use other more robust
techniques.

3.7.2 Least Median of Squares (LMedS)

The LMedS method estimates the parameters by solving the nonlinear minimization pro-
blem:

min median 77 .
K3

That is, the estimator must yield the smallest value for the median of squared residuals
computed for the entire data set. It turns out that this method is very robust to false
matches as well as outliers due to bad localization. Unlike the M-estimators, however, the
LMedS problem cannot be reduced to a weighted least-squares problem. It is probably
impossible to write down a straightforward formula for the LMedS estimator. It must be
solved by a search in the space of possible estimates generated from the data. Since this
space is too large, only a randomly chosen subset of data can be analyzed. The algorithm
which we have implemented (the original version was described in (Zhang, Deriche, Luong
and Faugeras 1994, Deriche, Zhang, Luong and Faugeras 1994, Zhang, Deriche, Faugeras
and Luong 1995)) for robustly estimating the fundamental matrix follows the one structured
in (Rousseeuw and Leroy 1987, Chap. 5), as outlined below.

Given n point correspondences: {(m;, m’)|i =1,...,n}, we proceed the following steps:

1. A Monte Carlo type technique is used to draw m random subsamples of p = 7 different
point correspondences (recall that 7 is the minimum number to determine the epipolar
geometry).

2. For each subsample, indexed by J, we use the technique described in Sect.3.1 to
compute the fundamental matrix F ;. We may have at most 3 solutions.

3. For each F;, we can determine the median of the squared residuals, denoted by My,
with respect to the whole set of point correspondences, i.e.,

M; = grzledian[dQ(rYli, F,;m!) + &*(m}, Fim;)] .

1,...,n

Here, the distances between points and epipolar lines are used, but we can use other
error measures.

4. Retain the estimate F; for which M ; is minimal among all m M ’s.
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The question now is: How do we determine m 7 A subsample is “good” if it consists of p
good correspondences. Assuming that the whole set of correspondences may contain up to a
fraction e of outliers, the probability that at least one of the m subsamples is good is given
by

P=1-[1-(1—-¢)PI™. (30)
By requiring that P must be near 1, one can determine m for given values of p and e:

= log(1 — P)
Clog[l - (1—¢)F]

In our implementation, we assume ¢ = 40% and require P = 0.99, thus m = 163. Note that
the algorithm can be speeded up considerably by means of parallel computing, because the
processing for each subsample can be done independently.

As noted in (Rousseeuw and Leroy 1987), the LMedS efficiency is poor in the presence of
Gaussian noise. The efficiency of a method is defined as the ratio between the lowest achie-
vable variance for the estimated parameters and the actual variance provided by the given
method. To compensate for this deficiency, we further carry out a weighted least-squares
procedure. The robust standard deviation estimate is given by (29), that is,

& =1.4826[1+5/(n — p)]v/ My ,

where M is the minimal median estimated by the LMedS. Based on &, we can assign a
weight for each correspondence:

1 ifr? < (2.56)2
w; = .
0 otherwise ,

where
r? = d*(m;, Fm!) + d*(m;, FTm}) .

The correspondences having w; = 0 are outliers and should not be further taken into account.
We thus conduct an additional step:

5. Refine the fundamental matrix F by solving the weighted least-squares problem:
min Z wir? .

The fundamental matrix is now robustly and accurately estimated because outliers have
been detected and discarded by the LMedS method.
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