A Polynomial-Time Algorithm for Computing a Shortest Path of Bounded Curvature Amidst Moderate Obstacles

Jean-Daniel Boissonnat 1 Sylvain Lazard
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this paper, we consider the problem of computing a shortest path of bounded curvature amidst obstacles in the plane. More precisely, given prescribed initial and final configurations (i.e. positions and orientations) and a set of obstacles in the plane, we want to compute a shortest $C¨$ path joining those two configurations, avoiding the obstacles, and with the further constraint that, on each $C©$ piece, the radius of curvature is at least 1. In this paper, we consider the case of moderate obstacles (as introduced by Agarwal et al.) and present a polynomial-time exact algorithm to solve this problem.
Type de document :
Rapport
RR-2887, INRIA. 1996
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073803
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:47:01
Dernière modification le : samedi 27 janvier 2018 - 01:31:28
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:58:50

Fichiers

Identifiants

  • HAL Id : inria-00073803, version 1

Collections

Citation

Jean-Daniel Boissonnat, Sylvain Lazard. A Polynomial-Time Algorithm for Computing a Shortest Path of Bounded Curvature Amidst Moderate Obstacles. RR-2887, INRIA. 1996. 〈inria-00073803〉

Partager

Métriques

Consultations de la notice

221

Téléchargements de fichiers

173