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Abstract: Point availability and expected interval availability are dependability mea-
sures respectively defined by the probability that a system is in operation at a given instant
and by the mean percentage of time during which a system is in operation over a finite
observation period. We consider a repairable computer system and we assume as usual
that the system is modeled by a finite Markov process. We propose in this paper a new
algorithm to compute these two availability measures. This algorithm is based on the
classical uniformization technique in which a test to detect the stationary behavior of the
system is used to stop the computation if the stationarity is reached. In that case, the
algorithm gives not only the transient availability measures but also the steady state avail-
ability, with significant computational savings especially when the time at which measures
are needed is large. In the case where the stationarity is not reached, the algorithm pro-
vides the transient availability measures and bounds for the steady state availability. It is
also shown how the new algorithm can be extended to the computation of performability
measures.

Key-words:  Repairable computer systems, dependability, availability, performability,
Markov processes, stationarity detection.
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Analyse de disponibilité et détection du régime
stationnaire des processus markoviens

Résumé : La disponibilité ponctuelle et la disponibilité moyenne sur un intervalle
sont des mesures de sureté de fonctionnement respectivement définies par la probabilité
qu’un systeme soit opérationnel a un instant donné et par le pourcentage de temps moyen
durant lequel le systeme est opérationnel sur une période d’observation finie. On considere
un systeme informatique réparable et ’on suppose, comme souvent, que le systeme est
modélisé par un processus markovien fini. On propose dans cet article un nouvel algorithme
pour calculer ces deux mesures de disponibilité. Cet algorithme est basé sur la technique
classique de 'uniformisation dans laquelle un test détectant le comportement stationnaire
du systeme est utilisé pour arréter le calcul si le régime stationnaire est atteint. Dans
ce cas, |’algorithme fournit non seulement les mesures de disponibilité transitoires mais
aussi la disponibilité stationnaire, avec une économie de calculs significative, en particulier
lorsque 'instant auquel les mesures sont demandées est important. Dans le cas ou le régime
stationnaire n’est pas détecté, I’algorithme fournit les mesures transitoires et des bornes
pour la disponibilité stationnaire. On montre aussi comment ce nouvel algorithme peut
étre étendu au calcul de mesures de performabilité.

Mots-clé : Systeme informatique réparable, streté de fonctionnement, disponibilité,
performabilité, processus markovien, détection du régime stationnaire.
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1 Introduction

In the dependability analysis of repairable computing systems, there is an increasing inter-
est in evaluating transient measures, in particular, the point availability and the availability
over a given period. This paper deals with the computation of the point availability and of
the expected interval availability respectively defined by the probability that the system
is in operation at a given instant and by the mean percentage of time during which the
system is in operation over a finite observation period. Formally, the system is modeled
by a Markov process. Its state space is divided into two disjoint sets which represent the
up states in which the system delivers the specified service and the down states in which
there is no more service delivered. Transitions from the up (resp. down) states to the
down (resp. up) states are called failures (resp. repairs). The interval availability over
(0,%) is then the fraction of the interval (0,¢) during which the process is in the up states.
This random variable has been studied in previous papers as for instance in [1], [2] and
[3] where its distribution is evaluated using the uniformization technique. This approach
is interesting because it has good numerical properties and it allows the user to perform
the computation with an error as small as desired.

An approach to detect the stationarity of Markov processes has been proposed in [4],
[5]. This approach is based on the uniformization method. The state probability vectors of
the uniformized Markov chain are successively computed and the iterates that are spaced
m iterations apart are compared. When the difference between two such iterates is small
enough, the computation is stopped. The main problem with this method is that, unlike
the standard uniformization, there is no ability to specify error bounds easily computable.

In this paper, we develop a new method to compute the point availability and the
expected interval availability which is also based on the uniformization technique and
on the stationary regime detection. In practice one usually does not know whether the
time horizon he/she is considering is large enough for a steady state analysis. The main
advantage of our algorithm is that the computation is stopped when the steady state
availability of the system is reached giving both transient and steady state measures with
an error tolerance specified in advance. When the stationarity is not reached, the algorithm
gives the transient measures and bounds for the steady state availability.

The remainder of the paper is organized as follows. In the following section, we recall
the classical way to compute the point availability and we derive new results to stop the
computation when the stationary regime is reached. We also give in this section the pseudo
code of both algorithms. In Section 3, we consider the expected interval availability and
we show how it can be computed using the stationarity detection. In Section 4, we show
by means of a numerical example that our new algorithm can considerably reduce the
computation time of the availability measures considered here, when the time at which
measures are needed is sufficiently large. It is also shown that computational savings
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4 Bruno Sericola

can be obtained even when the time horizon is small. In Section 5, we show how the
results obtained for the availability measures can be easily extended to the corresponding
performability measures. The last section is devoted to some conclusions.

2 Point Availability Analysis

Consider an irreducible continuous-time homogeneous Markov process X = {X;,t > 0},
over a finite state space denoted by S. The states of S are divided into two disjoint subsets:
U, the set of the operational states (or the up states) and D, the set of the unoperational
states (or the down states). For a system, modeled by such a process, the point availability

at time ¢ is denoted by PAV(t) and defined by
PAV(t) = Pr{X, € U}.

The process X is, as usual, given by its infinitesimal generator, denoted by A, in which the
ith diagonal entry A(z,4) verifies A(i,1) = —Y,; A(z, 7). Its initial probability distribution
is denoted by the row vector a.

The uniformized Markov chain associated to the process X is characterized by its uni-
formization rate v and by its transition probability matrix P [6]. The uniformization rate
v verifies v > max(—A(7,1);1 € S) and P is related to A by P = [+ A/v, where [ denotes

the identity matrix. Using this notation, we get

N +oo (I/t)n
PAV (t) = ae™1y = Z e_”t—‘apnlU, (1)
= n!

where 1y is a column vector whose 2th entry is 1 if ¢ € U, and 0 if : € D. We denote
by V,, the column vector defined by V,, = P"1y. It follows that for every n > 0, we have
V., = PV,_y and V5 = 1p. In the following, we define for every n > 0, v, = aP"1y = aV,,.

2.1 The classical uniformization method

The classical way to compute the point availability at time ¢ is based on Relation (1). Let
¢ be a given specified error tolerance and N be defined as

N =min<n € IN Ze_”t(y_‘) >1—cy. (2)
]:O .]'
Then we obtain
N (T/t)n
PAV(t) = E eVt v, + e(N),

n!

INRIA



Availability analysis and stationary regime detection of Markov processes 5

where the rest of the series e(N) verifies

()" ()" ()"
e(N) = Z (& tT'Un S Z € tT: 1—26 t n' §€.
n=N+1 : n=N+1 : n=0 :

The computation of integer N can be made without any numerical problems even for
large values of vt by using the method described in [7].

The truncation level N is in fact a function of ¢, say N;. For a fixed value of €, N, is
an increasing function of ¢. It follows that if we want to compute PAV (t) for J distinct

values of ¢, denoted by t; < --- < t;, we only need to compute v, for n =1,..., N, since

J
the values of v,, are independent of the parameter ¢.

The pseudo code of the classical uniformization method can then be written as follows.

input : &, t; <--- <ty
output : PAV(ty),..., PAV(t;)
Compute N from Relation (2) with ¢t = ¢,
Vo = lu; vo = alo
forn=1to N do

V,=PV,_1; v, =aV,

endfor
for j=1to J do
PAV(t;) = Z eVl Mvn
= n!
endfor

Table 1: Classical algorithm for the computation of PAV/ ().

2.2 Stationarity detection

The stationarity detection that we consider is based on the control of the sequence of
vectors V,, = P"1ly. Let the row vector m denote the stationary probability distribution
of the Markov process X. This vector verifies 7A = 0 and 7P = 7. The steady state
availability is given by PAV(co) = wly. To ensure the convergence of the sequence of
vectors V,,, we require that the uniformization rate v verifies v > max(—A(¢,2);¢ € S)
since this guarantees that the transition probability matrix P is aperiodic. We then have,
for every 1 € S,

lim V,(¢) =nly.

n—rroo

We describe now the test used to detect that, for a given value of n, the entries of vector
V,, are close to wly. For every n > 0, we define

my, = minV, (1) and M, = maxV, (7).
€S 1€ES
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6 Bruno Sericola

Note that, since V5 = 1y, we have My = 1 and mg = 0. The following result gives bounds
of the steady state availability PAV (o0) = wly.

Lemma 2.1 The sequences m,, and M,, are respectively non decreasing and non increasing
and, for every n > 0, we have

Up

Moreover, both sequences m, and M, converge to 7ly.

Proof. For every i € S, we have V,41(i) =Y P(i,7)Va(j). It follows that m, <
jes
Vit1(1) < M, and so we get m,, < my41 and M, < M,,, which shows that the sequences
m, and M, are respectively non decreasing and non increasing.
Since v,, = Z a())Va(j), we get m,, < v, < M,, which is equivalent to

JES
M _
‘Un _ n —I_ mn < MTL mn.
2 - 2
Writing now wly = 7P"1ly =7V, = E m(7)Va(7), we get in the same way m,, < wly <
JjES
M,,, which is equivalent to
7T1U — =~
2 2

It is shown in [8], page 270, that

Jim min P ) = lim max P*(i, ) = (7).
The proof of this result can be easily adapted to our problem, to show that both sequences
m, and M, converge to mly. [ |
This lemma shows that the difference M,, — m,, converges to 0, that is, for a fixed error
tolerance ¢ > 0 there exists an integer £ such that for n > k we have M,, — m,, < e. Since
my, < M,, we have m,, < m,41 < M,y1 < M, and so the sequence (M,, — m,) is non
increasing. We can then define the following integer

K =inf{n > 0|M,, — m, <¢c/2}.

Using the integer K, Relation (1) can be written as

K )" M{ + . K +)7
PAV(t) =) e_”t(yn') vn + %m[ (1 -2 e_yt@) +el(K), (3)
n=0 )

n=0

INRIA
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where (1) Iy (1)
- = ()" K+ mrg & —ut vt)"”
e1(K) = Z et v, — _ Z eV ——
n=K+1 n’ 2 n=K+1 n'
Using Lemma 2.1, the rest e;(K) verifies
o0 17 M .
e(K) < Y e—”(”n,) U — % < e/d. (4)

n=K+1
This last inequality follows from the fact that, for n > K, we have from Lemma 2.1
Mr +mel  Me —mx
mrg <m, <v, <M, < Mg and so |v,, — Kt MK < K 5 K <e/4.
The time K can be interpreted as the discrete time to stationarity with respect to the
subset U.
For every t > 0 and for every integer [ > 0, we denote by Fj(t) the function defined by

) = Y e

n=0

(M, — m,,).

It is easy to check that for a fixed value of [, the function Fj(¢) decreases, from 1 to 0 over
the interval [0,00[. We can then define for every integer [ > 0 and for every ¢ > 0, the
time T; as

T] = inf{t 2 0; Fl(t) § 5/4}
We then have the following theorem :
Theorem 2.2 For every ¢ > 0, for every t > Tx we have

|PAV (1) — 7 1y| < 3¢/4 (5)
M&" K

Ty — ;rmf <e/d (6)

‘PAV(t) - w < (7)

Proof. First note that, from Lemma 2.1, we have m,, < v, < M, and m,, < 7ly < M,,
for every n > 0. It follows that |v, — 7ly| < M,, — m,, for every n > 0. We then have

PAV(H) —7lo] = |3 @ mlu
n=0 )
S io: e—l/t (V;')n |Un 7T1U|
n=0 .
< i ot (V;')n (M,, — my,)
n=0 .
_ F]{(t) + io: vt (Vt’)n (Mn B mn)
n=K+1 n:
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Since t > Tk, we have Fi(t) < /4. In the second term, since n > K, we have M,, —m,, <
Mg — mgi < ¢e/2 and so we get Relation (5).
Relation (6) is immediate from Lemma 2.1. Finally combining Relation (5) and Rela-
tion (6), we get Relation (7). [
The time Tk can be interpreted as the continuous time to stationarity with respect to

the subset U.

2.3 The new algorithm

Using these results, we obtain the following new algorithm. To simplify the writing of this
algorithm, we define

M, +my
—

ity =S e Uy =1 -y e D g

n! = n!
input : &, 1, <--- <ty
output : PAV(ty),..., PAV(t;)
Compute N from Relation (2) with ¢t = ¢,
Vo = lu; vo = alp
My=1;my=0; K=N+1
forn=1to N do
V,=PV,_1; v, =aV,
Compute M,,, m, and S,
if (M, —m,, <¢e/2)
K = n; break
endif
endfor
if ( K=N+1)
for j =1 to J do PAV(t;) = Gn(t;) endfor
endif
if (K <N)
Compute Tk = inf{t > 0; Fr(t) < ¢/4}
for j=1to J do
if (t]‘ S TK) then PAV(t]) = G]{(tj) -+ S[{H]{(tj)
if (t]‘ > TK) then PAV(t]) = PAV(OO) = SK
endfor

endif

Table 2: Algorithm for the computation of PAV(t) using stationarity detection.

INRIA



Availability analysis and stationary regime detection of Markov processes 9

Note that it is not necessary to compute the continuous time to stationarity Tk with a
high precision. It is sufficient to obtain an upper bound of Tk such as for instance [T ]|
which is the smallest integer greater or equal to T'k.

It must be also noted that, in this algorithm, the truncation step NV is a function of the
time t; as in the classical unformization algorithm but the times to stationarity K and
Tk are independent of the time parameter, when the discrete time K is reached.

The computational time complexity of both algorithm is essentially due to the com-
putation of the vectors V,. To compute this vectors, the classical algorithm requires
N matrix-vector products and our new algorithm requires only min( K, N) matrix-vector
products.

3 Expected Interval Availability Analysis

We show in this section how the new algorithm proposed above for the point availability
computation can be adapted to compute the expected interval availability taking account
of the stationarity detection.

The expected interval availability represents the mean percentage of time during which
the system is in operation over a finite observation period (0,¢). The interval availability
over (0,1) is denoted by ITAV(t) and its expectation is given by

¢
EIAV(t) = % / PAV (s)ds.
0
Using Relation (1) and by integration over (0,t), we obtain
400 (I/t)n 1 n

E[AV(t) = E e_ytTn——l_l Z OéPklU.

n=0 k=0

We denote by V! the column vector defined by

> Py,

k=0

1
V' =
" on+1

and we define v/ = aV!. By definition of V,, and v,, in the previous section, we get, for
every n > 0,

1 & 1 &
V/ - V d v’ = V..
n n+1]§) k ana v, n+1]§)Uk
It follows that V! and v/ are recursively given, for n > 1, by
n 1
Vi=——V! —Va
"op4l ! + n+1"

RR n" 2886



10 Bruno Sericola

and
4 n 1

!
- . o, 8
Un n_l_lvn—l—l_n_l_lv ()

with Vj = Vo = 1y and thus v) = vo. For every n > 0, we have 0 < v/ < 1. It follows
that, using the truncation step N defined in Relation (2), we get the classical algorithm
to compute the expected interval availability, by writing

EIAV(t) = i e—”f(’/;')n

n=0

v, + €' (N),

where

(vt)"

n!

el(N) — io: e—l/t

n=N+1

()" > t)
’U;S _%:_He t ’ =1—Z_%e t i <e.

n. n

This algorithm is basically as the one depicted in Table 1. More precisely the computation
of v, in Table 1 must be followed by the the recursion (8), with v, = vg, and in the last
loop over j, v, must be replaced by v/ in order to get FIAV(¢;) instead of PAV (t;).

3.1 Stationarity detection for the expected interval availability

Using the results obtained for the point availability, we can derive a new method to obtain
the expected interval availability using the stationarity detection. This method is based on
the two following theorems. Both theorems will be used in the case where the discrete time
to stationarity K is such that K < N. The first theorem states that in order to compute
the expected interval availability, EIAV(t), we only need the values of v/, for n < K.
The second theorem states that in order to compute the expected interval availability,
EIAV(t), for t > Tk, we only need the value ETAV(t') at a time ¢’ such that ¢t > ¢’ > Tk.
We denote by G (t) the function

X —vt (Vt)n !

/Ix(t) = Z € — Uns

!
n=0 n.

and recall that

K £ M{ {
Hig(t)=1- Z e_”t(yn') and Sk = ! :Zl_ml
n=0 :
Theorem 3.1 For every t > 0, we have
, K+1, ,
BIAV() - [Gielt) + 5 0 = Si)Hia () + Sce()] <2/ (9

INRIA
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Proof. For every t > 0, we have

EIAV(t) = Ghe (1) + 6(t),

where
o0 t n
o)= 3 et ,) ol
n=K+1 n.
For n > K + 1, we have

!
v, = v
LS us 3
= UV + Vi
n+l = k=K +1
K+1 1 "
= ' }x Z Uk
+1 +1 .50
K+1, 1 L (n— K)
= K v Sk )+ Sk
n+1 * _|_1k:%;+1(k K) T -k
K+1, (n—K)
= Vi S&" n
_I_ 1 UIX _I_ 1 K —I_ X
where
1 - 1 i (n—K)e
0] = |—— > (vx = Sk)| < S for = Sk < —== <e/d
n+ 1,5 n+1, 5 n+1l 4

The inequality |vy — Sk| < /4, for k > K, follows from Lemma 2.1; it has already been
used to bound the error e;(K') in Relation (4). If ¢(¢) is the function defined by

o=y
n=K+1 :

we obtain [¢(t)] < ¢/4. We then have

o= 3 et (—K +11 o+ =) SK) +9(t).

e K41 n! n+ n+1
By writing (n — K) =n + 1 — (K + 1) in this last expression, we get

B K+1
ot

B(t) (vik — Sk)Hr41(t) + Sk Hr (1) + (1)

RR n" 2886
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We then obtain

K+1
BIAV() — [Giclt) + 2= (0 = Si) Hica ) + S Hic(1)]| < 010,
which completes the proof since ¥(t) < /4. [ |

Theorem 3.2 For every e > 0, for every t and t' such that t > t' > Tx we have

‘E[AV(t) - l%,E[AV(t’) + (1 - %) Skl|| <e (10)

Proof. For every ¢t and ¢’ such that ¢t > ¢’ > Ty, we have

1
EIAV(t) = % / PAV (s)ds
0

t t
_ % l PAV(s)ds + PAV(s)ds]
0 t!

= % l Ot, PAV (s)ds + (t — t')Sk + /tj [PAV (s) — Sk] ds]

t! 2 1t
= ?E[AV(t/) + (1 — ;) SK + ;/ [PAV(S) — SK] ds
tl

Using Relation (7), we have, since t' > Tk,
‘ 1

tJi

t 1 rt t
[PAV (s) — Sk]ds| < ;/ |PAV (s) — Sklds < (1 — ?) e <e,
! t’

which completes the proof. [ |

Note that Theorem 3.2 is still valid if we replace Tk by [Tk]. So, as for the point
availability, we can use [Tk | instead of Tk to make easier the computation of the expected
interval availability.

Using these two theorems, we obtain a new algorithm to compute the expected interval
availability which is similar to the one described in Table 2 for the point availability. It
suffices to perform the following changes in the algorithm given in Table 2. The compu-
tation of v/, given by Relation (8) must be added just after the computation of v,, with
vy = vo. The relation PAV (t;) = Gk (t;) must be replaced by EIAV(t;) = G%(t;) and
the computations of PAV/(¢;) in the case where K' < N must be replaced by those of
EIAV(t;) given in Relation (9) for t; < Tk and in Relation (10) for ¢; > T. To use the
Relation (10), we need EIAV(t) for one value of ¢ such that ¢ > Tk. Such a value can be
obtained by using one more time the Relation (9) for the smallest value of ¢; such that
t; > Tk. Note that we have the well-known stationary relation PAV (o0) = ETAV (0).

INRIA
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4 Numerical Example

We consider a fault-tolerant multiprocessor system with finite buffer stages. This system
was first considered in [9] for two processors without repair and has been extended in [10]
to include repair for the computation of the moments of performability. Its has been also
used in [11] to obtain the distribution of performability. We use here the same model for
the computation of the point availability with our new method. It consists of n identical
processors and b buffer stages. Processors fail independently at rate A and are repaired
singly with rate p. Buffers stages fail independently at rate v and are repaired with
rate 7. Processor failures causes a graceful degradation of the system and the number
of operational processors is decreased by one. The system is in a failed state when all
the processors have failed or any of the buffer stages has failed. No additional processor
failures are assumed to occur when the system is in a failed state. The model is represented
by a Markov process with state transition diagram shown in Fig. 1. The state space of
the system is S = {(7,7);0 <17 < n, j =0,1}. The component i of a state (7,7) means
that there are 7 operational processors and the component j is zero if any of the buffer
stages is failed, otherwise it is one. It follows that the set U of operational states is
U=A{(,1);1<i<n}.

We evaluate the point availability given that the system started in state (n,1). The
number of processors is fixed to 16, each with a failure rate A = 0.01 per week and a repair
rate 1 = 0.1666 per hour. The individual buffer stage failure rate is v = 0.22 per week
and its repair rate is 7 = 0.1666 per hour. The error tolerance is ¢ = 0.00001.

2)

R

Fig. 1: State-transition diagram for a n-processor system

In Fig. 2, we plot the point availability, PAV (), as a function of ¢ for different values
of the number of buffer stages b. The largest value of ¢, that is the value of ¢; in the
algorithm, has been chosen equal to 10000 hours.

RR n" 2886
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0.95 i

0.9 .
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0.8 r i

o) 10 20 30 40 50 60 70
t

Fig. 2: From top to the bottom: PAV(t) for b = 2,4,8,16, 32

For that largest value of ¢t we show in Fig. 3 the truncation step N = Njgggo, the discrete
time to stationarity K and the continuous time to stationarity Tk (in fact we give [T |) for
different values of the number of buffer stages b. This figure shows for example that when
b = 16 the classical algorithm needs 3581 matrix-vector products and our new algorithm
needs only 18 matrix-vector products, the continuous time to stationarity being equal to
77. When b = 1024 the classical algorithm needs 15616 matrix-vector products and our
new algorithm needs only 86 matrix-vector products, the continuous time to stationarity
being equal to 62. Moreover our algorithm also computes the steady state point availability
with a precision equal to €/4. Fig. 3 also shows that both situations, K < Tk and K > Tk,
are possible.

b [ 2 | 4 [ 8 |16 | 32 [ 64 | 128 [ 256 | 512 | 1024 |
N || 3581 | 3581 | 3581 | 3581 | 3581 | 3581 | 3602 | 5334 | 8776 | 15616
K |19 |19 | 18 [ 18 | 18 | 18 [ 18 [ 28 | 48 | 86
[Tx] ] 81 [ 81 [ 80 | 78 | 77 [ 75 | 77 | 70 | 66 | 62

Fig. 3: Stationarity detection for different numbers of buffer stages

We consider in Fig. 4 smaller values of t;. The number of buffer stages is fixed to b = 8.
For t; < 10 we get Njp < 14 and the discrete time to stationarity K is not reached. This

INRIA
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means that K > 14. For {; > 20 we get Ny, > 20 and the discrete time to stationarity
is reached. Its value is K = 18 and the continuous time to stationarity is [Tx| = 80.
Fig. 4 shows that even for small values of t; (t; < Tx), our algorithm can reduce the
computation time with respect to the classical algorithm. For instance when ¢; = 60, the
classical algorithm needs 42 matrix-vector products and our new algorithm needs only 18
matrix-vector products.

ty || 10 {20 |30 [ 40 |50 | 60 | 70 | 80 | 90 | 100
N, || 14 |20 | 26 | 32 | 37 | 42 | 47 | 51 | 56 | 61

J

Fig. 4: Stationarity detection for small values of the time.

5 Extension to the performability analysis

The method proposed for the computation of the point availability and the expected
interval availability using the steady state availability detection can be extended to more
general measures such as the point performability and the expected interval performability.

In performability modeling (see, for instance, [9, 10, 11, 12, 13, 14, 15, 16] and the
references therein) reward rates are associated with states of the model to quantify the
ability of the system to perform in the corresponding states. We denote by p(z) the reward
rate associated to the state 1 € S. The reward rates p(i) are assumed to be nonnegative
real numbers. The point performability at time ¢, denoted by PP(t), and the expected
interval performability, denoted by EIP(t), are defined by

PP(t) = 3 p(i) Pr{X, = i} and EIP(t) = %/Ot PP(s)ds.

€S

We define p = max;es p(2) and (i) = p(i)/p and we denote by r the column vector whose
ith entry is equal to r(z). We then have PP(t) = pf(t) and EIP(t) = pg(t), where

f(t) = aetr and g(t) = %/Ot f(s)ds.

Since for every 1 € S, we have 0 < r(i) < 1, all the results and algorithms obtained for
the computation of the availability measures can be easily extended to the computation of
f(t) and ¢g(t). To do that it suffices to replace the column vector 1y by the column vector
r. The values My and mg becomes My = max;es (i) and mg = min;es (). Moreover we
have f(o0) = g(o0) = 7.
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16 Bruno Sericola

6 Conclusions

A new algorithm has been developed to compute the point availability and the expected
interval availability of repairable computer systems modeled by Markov processes. This
new algorithm is based on the uniformization technique and on the detection of the steady
state availability. It compares favorably with the classical uniformization algorithm when
the time horizon is large and it is shown through a numerical example that computational
savings can be obtained even when the time horizon is small. Moreover our algorithm
gives the steady state availability if the stationarity is reached and bounds of the steady
state availability otherwise. Finally this method can be easily extended to the computa-
tion of more general measures such as the point performability and the expected interval
performability.
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