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Programmation par Objets Colorés :
héritage par dimensions.

Résumé. Ce papier a trait a la programmation par objets colorés. Il est centré sur une
approche rigoureuse de I'héritage des classes via l'utilisation du formalisme des graphes
colorés. Celui-ci abstrait le comportement global des instances d'une classe dans un
espace a N-dimensions. :

Le papier relie donc le graphe coloré d'une classe aux graphes colorés de ses
superclasses. Ceci est fait d'abord au niveau abstrait des transitions, et ensuite au
niveau de l'implémentation (des représentations en mémoire sont attachées aux états
des pré- et post-méthodes, aux transitions), a chaque fois par €laboration et extension
des regles d'héritage dans un graphe coloré donné.

Ce travail ne dépend pas du formalisme visuel lui-méme. Il peut &tre incorporé aux
formalismes visuels par états et transitions fondés sur l'inclusion au lieu de la
connexion.

L]

Mots-clés. Objet coloré, état, transition, mixin, héritage, combinaison, conception de -
langage, formalisme visuel, programmation par objets, abstraction, modularité,
monotonicité, linéarité, propreté.



Colored-Object Programming :
Inheritance by Dimensions.

1. INTRODUCTION

1.1 GOAL OF THE PAPER

This paper is the third of a sery of three on Colored Object Programming (COP, for short)!. It focuses on a rigorous
approach of class inheritance using the formalism presented in the first companion paper [Borron, 1996d] and results
obtained about mixin behaviours (i.e. independent supplementary behaviours) in the second companion paper [Borron,
1996¢]. It also strongly relates to a forthcoming paper describing the design and properties of our linearization algorithm
[Borron, 1996x].

Let's substantiate this. The goal of COP is to push the idea of object to its ultimate. Consequently, the objects considered
in COP have states ; and transitions exist between these states. The transitions in question (termed "regular transitions")
are triggered by external events (messages or generic function calls). At this external level, no consideration at all is
given to methods nor memory representations? : these are really second citizens in our approach, yet they implicitely
exist for supporting the states and transitions. Given a class and its instances, the proposed formalism abstracts the
WHOLE behaviour of the considered instances (the whole behaviour, and not an increment) using these two concepts of
states and transitions.

We can now rephrase our goal into more precise questions :

(1) because a class and what is usually termed its superclasses are all given an abstract description of the WHOLE
behaviour of their instances, a first question is : «How does the abstract_global behaviour defined for one class of
objects relates to the abstract_global behaviour defined for "its superclasses” ?»

(2) considering implementations, another question is : «What is the relationship between an gbstract global behaviour
and its implementation, i.e. its methods and memory representations ?» ,

(3) the last question is : «<How does a class inherits (parts of) its implementation from its superclasses ?».

Class Superclass(es)
Abstract global
description 9
What is the
relationship ?
What is the
mapping ?

. —
Implementation O What is the @

relationship ?
Figure I,

The problem of inheritance is thus twofold : one is at the level of states and transitions (abstract or specification level) ;
one at the level of methods and memory representations (concrete or implementation level). In addition to that, we have

I The original version of this paper was written in October 1995. Since then, the description has been made much more detailed.
a memory representation is made of a number of cells, i.e. instance variables [Smalltalk wording] or slots [CLOS wording]
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to define how we attach an implementation to an abstract description-of states and transitions (such a description is
termed a "color graph").

Basically, for each inheritance question, our approach consists in :
(a) devising inheritance rules in ONE given color graph (these rules are termed the LOCAL inheritance rules) ;
(b) extending them to a HIERARCHY of color graphs (hence, the CLASS inheritance rules).

Local inheritance Rules  Class Inheritance Rules
(graph level) (hierarchy level)

' For Transitions

described in this paper
(specification level) g -

R

thodsMemory rep.| "V ibed in this paper.
Fc?r Meth : described in this paper} described in this paper
(implementation level) §422 T o512

Figure 2.

Two points are worth to be mentioned here for guiding the comprehension :

(1) the LOCAL inheritance rules at the ABSTRACT level are in fact supposed to be known in this paper : these are the
rules for inheriting TRANSITIONS in ONE given color graph (they have been described in companion paper n°l) ;

(2) the kéy point for inheritance is going to be the decomposition into dimensions (a color graph describes the behaviour
of a class of objects in a N-dimension space). -

1.2 PLAN OF THE PAPER

This plan is mostly driven by our goals and approach as defined above, the other factor being the necessary information

to give about our formalism. Besides an introductory part, it can be separated into three main parts :

— Part A is devoted to the inheritance of transitions (sections 3, 4 and 5) ;

— Part B focuses on the inheritance of implementations, i.e. memory representations and methods (sections 6 and 7) ;

— Part C generalizes the work done previously with, notably, systematic class level combination and multiple dispatch
(sections 8, 9 and 10).

Here is the detailed plan :

« Section 2 is devoted to a quick presentation of our formalism to enable the reading of this paper to those that haven't
gone through companion papers n°l and 2. LOCAL inheritance rules for TRANSITIONS are stated briefly in this
section. An example of color graph is given to ease the comprehension.

* Section 3 first presents the basic idea of our approach using the previous example for informal explanations, then it
focuses on the key concepts for inheritance.

* Section 4 is about the LOCAL inheritance of TRANSITIONS. Although supposed to be known from compamon paper
n° 1, this form of inheritance is rephrased here to provide a solid basis for the rest.

» Section 5 shows how the local inheritance rules for transitions can be generalized for handling CLASS inheritance for
transitions (in a HIERARCHY of classes, i.e. of color graphs). This section proposes operators for composing
dimensions or for adding dimensions in one point. This last aspect leads to mixins.

* Section 6 describes LOCAL implementations (in a given color graph). This has two aspects :

- the mapping of a color graph to an implementation (memory representations are attached to states, pre- and post-
methods to transitions) ;

- LOCAL inheritance for IMPLEMENTATIONS : how a memory representatlon or a pre/post-method attached in a
given node of a color graph may be inherited in onc another node of the same color graph ? Obviously enough, a
connection is made here with the local inheritance of transitions.



» Section 7 describes CLASS implementations (in a hierarchy of classes. i.e. of color graphs). This is done very
progressively first considering superclasses only, then adding a local description. When finally considering all ancestors,
the case of a DAG structure is analysed in detail. A dimension inherited along several paths is -by default- considered as
unique. At this point, the spatial interpretation of inheritance appears crucial. This section proposes, for each dimension,
a linearization of classes impacting it. Hence, a discussion on properties of linearization algorithin (a new property,
termed congruency, is defined and analysed). The section ends with a new monotonic linearization algorithm.

* Section 8 specifies how a systematic class-level combination style can be used. This contrasts with the previous
sections where a systematic masking style was supposed. An important property (termed regularity) is defined in this
section. This property enables the organization of the methods found along the dimensions of a hierarchy to be a list of
trees (provided that some natural rule is applicd). '

* Section 9 shows how multiple dispatch can be obtained.assuming an extension of the regularity property.

*» Section 10 shows that sophisticated combination methods can be obtained without the send-super anti-modular
construct (super in Smalltalk, call-next-method in CLOS). It shows that the CLOS-style of combination with qualifiers
(ex. : the standard combination mechanism) can be mimicked and generalized, iincluding in case of multiple dispatch. It
also shows there is no need in COP for individual methods.

* Section 11 proposes a short summary of the paper.
« Section 12 relates our proposal to other works.

* In the conclusion, we stress the fact that our proposal may well be incorporated into statecharts and derived formalisms,
since our own formalism is based on connectedness whereas statecharts are based on insideness. (This was shown in
companion paper n° 1).

Note.

(a) This paper (as well as its two companion papers) presents concepts and NOT a programming environment. A
forthcoming paper will show how a set of friendly tools may support the proposed notation in an interactive way.

(b) Footnotes are meant to provide details to the interested reader : they may be skipped in first reading.



INTRODUCTORY PART

In this part, the color graph formalism is first presented, then it is illustrated with a simple example.

2. COLOR GRAPHS : OVERVIEW

2.1 INTRODUCTION

To abstractly model classes, we use a special form of graphs. Each class is attached one. The graph describes the class
considered as a whole : in other words, it exhibits all the external properties of the class, including those inherited from
the class ancestors. [This wholistic view contrasts in some way with the traditional OOP view of classes where a class is
described as an increment of behaviour. Consider, for example, a Stack inheriting —in the OOP sense~— from a Bag, a
Collection and an Object classes : its color graph will not only express the external properties coded in Stack, but also
those that are inherited from Bag, Collection and Object (for example, print).]

The essence of OOP being to externally consider objects as black boxes and to be interested only in messages flowing
between them, the external properties we want to model are messages and their effects on objects. The expression
"message sending” is borrowed from Smalltalk, but we use it in a more general sense : for "generic function calls”
(CLOS wording), i.e. even when several classes are involved in method selection.

The external effect of a message is to possibly modify the set of messages of its receiver (more generally, of one or
several specializers of the corresponding generic function call)3. Hence, a color graph is made of nodes and transitions
between them : the source node of a transition T models the possibility to receive a message T in a certain state whereas
the destination node abstracts the external effect of this message T. We term such a graph a “"color graph” [Borron,
1996d], "color” being metaphorically used for expressing that, in our model, objects have states?.

From the point of view of our model, traditional OOP corresponds to considering but a single state for instances, with all.

state transitions flowing in and out of it (i.e. being circular and attached to it). Expressed differently, our approach
considers several message dictionaries, one per state, whereas traditional OOP considers but one.

2.2 MAIN CONCEPTS

In COP, a class is abstracted as a whole in the form of a color graph. Possible (reachable) instance states (or
contributions to them) are depicted by nodes (in finite number) ; the existence and effect of external events, by regular
transitions. Nodes arc organized into essential constructs. The skeleton of a color graph is the structure made by all its
constructs (nodes included), i.e. without the regular transitions.

2.2.1) Skeleton

* Possible instance states are described according to one or several dimensions’. In the first case, the simplest one, each
state is represented by a single node (a color) ; the corresponding color graph is termed a c-graph. In the second case,
each state is basically represented by N nodes, one per dimension (each such node is termed a pigment) ; the
corresponding color graph is termed a p-graph. The set of pigments along one same dimension is termed a scale (N
scales exist). A p-graph may also exhibit blends : each one is a node that recursively groups two or more pigments of
different scales. As clearly expressed in companion paper n° |, blends are strictly optional. We term p-chroma a
pigment or a blend : we term chroma (or, more loosely, node) a color or a p-chroma.

» Each node in a color graph is given a condition (evaluated by sending a side-effect free message to the instance) and/or
results from an essential construct. Each node has also an id.

3 Warning : in the rest of the paper. we usually consider messages (in the narrow sense) and omit to explicitely specify that the shown
properties are also valid in case of generic function calls : we do this for conciseness. The user should not forget about that.

4 1dioms often translate a state as a color. For example, someone may be green with envy, red with shame, etc.

5 These dimensions form a system of coordinates ("a palette™) in a N-dimension space.
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A Color Graph

!

Skeleton [Creation Transition(s)] Regular Transition(s)

Construct(s) Pseudo-color Color Source Chroma Destination Chroma

(Class) message/gf (Instance) Message/gf
(gf = generic function)
Reflex transitions Inherited along reflex transitions
. (except those flowing from a decompaosition)
Armed when source node belongs to instance state
Fires when the destination condition gets true

. Chroma
Source Chroma Destination Chroma
Armed when source node belongs to instance state \
Fires when the destination condition gets frue % Condition

Elements of a Color Graph
Figure 3.

* Essential constructs (selection, decomposition, conjunction) are one-level trees of nodes, either diverging (the first
two constructs) or converging (the last one), their root node being either of type OR (first construct) or AND (last two).
The source node of a selection is qualified as being ephemere. One or several destination nodes of a selection may be
chosen as INIT nodes. The destination node of a conjuction is a blend. In any essential construct, a source node and a
destination node are linked by a reflex transition.

* A reflex transition is armed when its source node participates to the current instance state. An armed reflex transition
fires when the condition attached to its destination node gets true. '

* Given a chroma C, its ancestor tree is obtained by recursively gathering the ancestors of this node along the reflex
transitions converging to it (except when they originate from the source node of a decomposition).

_C-graph Chroma (node) < pigment

' = (N=1) \ /
Color Graph p-chroma
\ (N>1)
P-graph \

o) ~ blend

(optional)

Typology of Color Graphs Typology of Chromas

c-construct

<~ =1 \ .
~ selection
Construct < / (diverging, OR-type)
\ p-construct — decomposition
(N>1) \ (diverging, AND-type)

conjunction
{converging, AND-type)

Typology of constructs

Figures 4,5 & 6.
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2.2.2) Regular transitions

* Regular transitions fire.on an external event (a message or a generic function call : in the first case, a single color
graph instance is considered ; in the second case, several ones may be involved).

* Regular transitions are inherited along reflex transitions (except along those flowing from a decomposition)® : this is
what we call the main LOCAL INHERITANCE RULE FOR TRANSITIONS.

* A regular transition is termed circular when its destination node is nothing but its source node. A transition is
outcoming vs. its source node and incoming vs. its destination node. A pure outcoming (incoming) transition is not
circular.

* A usual convention applies : the term "transition” means "regular transition" if not preceded by "reflex”.

2.2.3) Mark

The current instance state is marked by a token in a 1-dimension color graph, or by a set of N mini-tokens in a N-
dimension color graph (one per dimension). Mark is a generic term for token or mini-token(s). When it fires, a reflex
transition moves the mark of its source (selection, conjunction) or part of it (decomposition) to its destination. (A
decomposition explodes a token into N mini-tokens.) When it fires, a regular transition moves the mark from its source
to its destination.

2.2.4) P otential

A further (non mandatory) refinement of color graphs consists in attaching a value to each (mini-)token. This value,
termed potential, can be : (1) initialized at (mini-)token creation ; (2) updated when a transition gets fired (using or
discarding the arguments of the message) ; (2) tested for conditions evaluation. This gives an abstract body to regular
and testing transitions, and substantiates the color graph functioning (ex. : for animation).

2.3 VISUAL ASPECT

A textual syntax (derived from CLOS) and a visual syntax have been elaborated. Let's give some indications about the
visual syntax since it will be used extensively in our examples.

A node is pictured as-a small bubble : inside the bubble, a name or an integer identifies the node ; close to the bubble, the
condition attached to this node is named (inferred conditions are usually not displayed).

Regular graph transitions are represented with named solid thick arrows. Reflex transitions are depicted by unnamed-
thin arrows : using a dotted line for selections, a broken line for conjunctions. A decomposition is not represented
using reflex transition arrows, but by a small bar sluck between the root node and the leaf nodes (usually, the root node is
only expressed by its name).

These distinctions may be intensified when the medium enables colored drawings : it appears interesting to attribute a
same coloration to pigments of a same scale and to reflex transitions outcoming of them ; and to draw all their contours
the same way. .

Usually, one unnamed arrow ondulates from a special node to an initial color (numbered 1 by default) : it corresponds to
the default creation transition (make-instance)’. This special node, a small segment with the class name above it,
corresponds to the case an instance is not created or has been destroyed.

Circular transitions may be shown without arrows. They may be further qualified (and shown) as consulting or
modifying (default) for coherency checks.

Testing transitions (i.e. regular transitions associated to side-effect free messages used for evaluating conditions),
because automatically derived by the system, are usually not represented.

An INIT destination node of a selection is shown with a double contour.

6 A reflex transition may thus have two possible roles : one dynamic (firing, at run time) ; one static (factorization, before execution).
7 Several creation transitions may exist : in such a case, they should be named (the default one is cancelled).

.



2.4 A COLOR GRAPH EXAMPLE

The example given here has already been presented in companion paper n°1. Here, it is discussed much less extensively.
However, it is shown in both visual and textual form, the latter one being of interest for the rést of the paper.

2.4 .1 Description

Next figure is derived from the source code of the Person example given in section 4.2 of [Chambers, 199318, Person
instances are differentiated into male and female categories according to the sex ; child, teenager and adult categories,
according to the age. In addition, both criteria are used to distinguish boy and girl categories.

In terms of COP, two scales are used : first one groups pigments 2 to 5 ; second one, pigments 6 to 12. Color 1 is the
initial state : it is decomposed according to the two scales. Blends 13 and 14 result from two conjunctions. They may
be termed colors since their degree is the degree of the color graph, i.e. two. Pigments 2, 4 and 5 (resp. 6, 10, 11, 12) are
basic pigments in the first scale (resp. in the second one) ; pigments 3, 7, 8, 9 are ephemere pigments. Ephemere
pigment 7 is the source of a selection on three pigments : this is somewhat unusual since selections are quite often based
on a boolean value. :

PERSON

Gom
sex

. o
S
sex: . £
long-lived [3] E
bedtime '?a
Vi T, 2
expected- sex ; 'ﬁ
lifespan 5 i
p : .2
’. " .‘ hb : :
e 3
o " AN
“\male -
female .
g child “teenager adult

~
~
~a. bO_‘/ &\ Q'i rl

Figure 7.

Next figure shows the textual syntax for declaring the whole set of chromas (also termed the skeleton). (In the
following, we may well use condition names to refer to a chroma instead of its number : for example, pigment 7 will also
be termed age.)

8 For the purpose of the demonstration, a slight difference exists to create an instance of Person : the cited paper proposes a make-
person method with values for sex: and age:. The corresponding creation transition is not represented in figure 7.
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(defcolorgraph PERSON

( (colox 1 :decomposition 2 6)
(pigment 2 :test-not sex)
(pigment 3 :test sex)
(pigment 3 :selection 4 5)
(pigment 4 :test male)
(pigment 5 :test female)
(pigment 6 :test-not age)
(pigment 7 :test age)
(pigment 7 :selection 10 11 12)
(pigmant 8 :selection 10 11)
(pigment 9 :selection 11 12)
(pigment 10 :test child)
(pigment 11 :test teenager)
(pigment 12 :test adult)
(colox 13 :conjunction 4 10)
{colox 13 :test boy)
(color 14 :conjunction 5 10)
(color 14 :test girl)))

Figure 8.

Messages sex: and age: are used for initialization. Such messages modifies the instance state. Sending an expected-
lifespan to one instance does not change its state : expected-lifespan is thus represented. as a circular transition.
Expected-lifespan cannot be sent when the sex is unknown (the value it returns depends on whether the instance is male
or female) : one possibility is to attach an expected-lifespan circular transition to both male and female pigments. In fact,
given the local inheritance rule for transitions, it is equivalent and simpler to factorize this circular transition in the
ephemere sex pigment (the result is what we named an i-circular transition, each individual transition it replaces being
itself circular).

For similar reasons, bedtime is represented by an “i-circular” transition attached to the age pigment.

The have-birthday message is kind of special since, by incrementing the age, it makes an instance stay in its pigment
(ex : child) or move to the next one (ex: teenager) except when in the adult pigment. No symmetry exists we can take
advantage of. To model this situation, two selections are used (for the have-birthday transitions outcoming from the
child and feenager pigments) plus one circuiar transition (for the have-birthday transition outcoming from the adult
pigment). This makes pigments child, teenager and adult to inherit from two or three nodes.

Long-lived — which tells if a given instance has gone farther its expected-lifespan — is represented by a constrained
"i~circular” transition attached to the age pigment. This is because both the sex and the age should be known : one
condition is captured in having the transition attached to the age pigment ; one, in having a clause mentioning the sex
pigment (number 3). (The opposite choice is perfectly acceptable.) Long-lived is valid for any fully initialized state,
among which boy and girl : the notation we used avoids the enumeration of all these states (6 stable ones).?

user-defined regular transitions

(dsftransition sex: { (p PERSON (2 3)) s))
(deftransition expected-lifespan ( (p PERSON (3 3)) ))
(deftransition age: ' ( (p PERSON (6 7)) a))
(deftransition bedtime { (p PERSON (7 7)) ))
{(deftransition have-birthday { {(p PERSON (10 8) (11 9) (12 12)) ))
(deftransition long-lived ( (p PERSON 3.(7 7)) 1))
Figure 9.

Testing transitions are not shown. These are sex, male, female (for the first scale) ; age, child, teenager, adult (for the
second scale) ; boy and girl (valid not only for blends boy and girl, but for all fully initialized instances). Due to the local

9 Inour example, the long-lived transition does not affect the instance state : if it were the case, long-lived could still be represented
by onc constrained pure outcoming transition if only one contribution to the instance state was changed ; two constrained pure
outcoming transitions would be used otherwise (one from pigment sex, one from pigment age) thus examplifying what we call a
composite transition or (pure) multi-micro-transition.



inheritance rule, sex is attached to pigments 2 and 3 ;Imale and female, to pigment 3 ; age, to pigments 6 and 7 ; child,
teenager and adult, to pigment 7 ; boy and girl, to pigments 3 and/or 7 (both are required under some form)10,

As a matter of fact, a number of these testing transitions are in fact constant transitions (i.e. transitions that deliver a
constant answer in a given chroma) : for example, sex can be (externally) asked in pigments 2, 4 and 5, yielding constant
answers (resp. false, true, true). All constant answers (method bodies) arc automatically generated by the underlying
system.

The user will only be required to provide methods for male and female (automatically sent in pigment 3 for choosing
between pigments 4 and 5) and for child, teenager and adult (automatically sent in plnment 7 for choosing between
pigments 10, 11 and 12).

testing transitions (automatically defined)

(deftrangition sex { (p PERSON (2 2) (3 3)) ))
(deftransition male { (p PERSON (3 3)) ))
(deftransition female { (p PERSON (3 3)) ))

(deftransition age ( (p PERSON (6 6) (7 7)) ))
(deftransition child { (p PERSON (7 7)) ))
(deftrangition teenager ( (p PERSON (7 7)) ))
(deftrangition adult ( (p PERSON (7 7)) )

(deftransition boy ( (p PERSON (3 3).(7 7)) ))
(deftrangition girl . { (p PERSON (3 3).(7 7)) ))
Figure 10.

The creation of a Person instance is done using the default possibility (name : make-instance ; initial state : 1).

default creation transition (automatically defined)

(deftransition make-instance ( (p PERSON (- 1)) ))

Figure 11.

Acceptable messages for a fully uninitialized instance are sex: and age.:. Acceptable messages for a fully initialized
instance (like boy or girl) are sex, male, female, expected-lifespan, age, bedtime, have-birthday, child, teenager, adult,
long-lived, boy, girl. A partially initialized instance accepts age, bedtime, have-birthday, child, teenager, adult, and sex:
(if age is initialized) ; sex, male, female, expected-lifespan and age. (if sex is initialized).

A boy (or a girl) is dependent on sex anid age pigments. The sex is not supposed to change ; but, the age may (cf. the
have-birthday transitions). Hence boy and girl —as well as child, teenager and adult— depend on a modification of age
by have-birthday. So, if have-birthday occurs, the state of the instance is checked and —if necessary— computed again.
For example, a boy may become a (male teenager). .This is done by first moving the mini-token which is involved in -
the have-birthday inherited transition (age mini-token) to the source chroma of this transition (here, child) ; this
invalidates the blend boy : the mini-token which is not involved in the inherited transition (sex mini-token) is thus moved
back to its original pigment (here, male). Then the transition gets fired : the age mini-token remains in child or moves to
teenager. In the first case, the conjunction (male child) fires : boy defines again the instance state. In the second case,
the instance state is defined by (male teenager).

2.4 .2 Variations... and their impacts on complexity and inheritance rules

To introduce additional concepts and remarks, let's discuss a bit more deeply the above have-birthday and long- lzved
modellmgs Two important issues will appear (cognitive complexity, inheritances rules).

10 The boy and girl multi-micro-transitions are automatically installed by the underlying system at ephemere pigment 3 (séx) for the
first scale, and ~a priori— at ephemere pigment 7 (age) and 8 for thc second scale ; since the destinations of the selection in 8 (i.e
pigments 10 and 11) are all part of the destinations of the selection in 7 (i.e pigments 10, 11 and 12), the ephemere pigment 8 is
automatically eliminated. Given that boy and girl are i-circular, the underlying system may simplify the corresponding multi-micro-
transitions (in 3 and 7) into constrained i-circular transitions (either in 3 or 7). .

9



1) Variatjons

a) Concerning the have-birthday transition, two variations deserve some comments.

-> Because of this transition, pigments child, teenager and adult inherit from two or three nodes. A simplification of the
ancestor trees of these three pigments is possible at the expense of less precision. Instead of one or two possible
destinations, each have-birthday transition may be considered to have three (child, teenager and adult) : nodes 8 and
9 thus disappear. Next figure shows the simplified color graph.

PERSON

sex

expected- sex long-lived 3]
lifespan bedtime ‘
A have-birthday

> s 3 N A
male ) p
. 10 11
female .
~ child ““teenager adult
~ A
boy\ girl

Figure 12.

Less static information is captured into the simplified color graph. This modelling is obviously less efficient (notably in
the adultr case), yet perfectly correct vs. the effective destination. (In each case, after having been modified by
incrementation, the age contribution to the instance state will be tested against the three possible pigments.) Advantage :
this modelling is open to factorization. The three have-birthday transitions flowing to the ephemere pigment age get
naturally replaced by a single circular transition attached to this same pigment. This factorizing transition is not i-
circular. To avoid a possible confusion, it is marked as "g-circular” : "g" means the actual destination is to be
dynamically chosen among the group of the selection destinations!!. Note this variation is obtained without modifying
the cognitive principles underlying the design of color graphs. In the visual representation, a g-circular transition is
underlined.

-> Another possibility to model the situation would be to use two outcoming have-birthday transitions in pigments child

and teenager, thus violating our '"unique destination'’ principle. (See figure 19 for an excerpt of the Person graph.)
This principle is meant for regularity and simplicity. two important factors for diminishing the cognitive load
imposed on a programmer. It states a regular transition outcoming from a given node should have systematically but
one destination : in case several ones exist, this principle is obeyed via the use of a selection. '
This principle may well in fact be relaxed in situations like the one exposed, this because the ephemere nodes in
question (8 and 9) are not attached any transition except the testing ones : being not used for factorization facilities,
they somehow clutter the color graph with extra nodes and reflex transitions that can all be generated automatically
(for internal consistency) without any loss in power. Not considering the multiplication of regular transitions, this
abandon simplifies the visual and textual representations of the color graph. The ancestor trees of the destination
chromas of the suppressed selections (here, child, teenager and adult) are accordingly simpliﬁcdlz.

11 By default, a transition factorized in an ephemere node is considered to be g-circular. Explicit declarations are possible by
attaching an :updating or :consulting keyword to the transition declaration. Note the selector syntax may also be used for
discrimination. ‘

12 This may impact the placement of representation and methods (cf. the local inheritance rules for these items in a subsequent
section) : hence, the application designer may well decide to re-establish explicit sclection constructs.

10



b) Concerning the long-lived transition, an alternative to clauses naturally comes to mind. It consists in using a
conjunction on sex and age to physically represent the constraint on this transition. The resulting blend is termed a
super-blend as it is valid for all possible blends resulting from the selections on sex and age, among which are the actual
blends boy and girl. (To be more precise, the considered super-blend encompasses all possible combinations (x y) where
x (resp. y) is a destination of the selection on sex (resp. age)) Next figure shows the modified graph. Node 15 is the
super-blend : it is attached the long-lived transition.

PERSON

expected- sex
lifespan

have-birthday

O
@
hb =

=
(-2

adult

The existence of this super-blend brings three questions :

-> first question is cognitive : is the modified p-graph easier to understand than the initial one ? The former is slightly
more complex than the latter in terms of nodes and reflex transitions ; however, it requires no clause interpretation
since long-lived is now unconstrained. An ergonomical study will bring the answer. For the moment, we consider
the underlying system should support super-blends to let users do what they prefer.

-> second question is about the "non ubiquity” principle. This principle requires that an instance state should be
represented only once in a color graph : the mark is not to be duplicated. Is the existence of the super-blend playing
against this principle ? As a matter of fact, it is not : the mini-tokens marking the super-blend have not the same status
than the original mini-tokens. We call these new mini-tokens "traces" (or "replicas”).

-> third question is about inheritance rules. The ancestor trees of boy, girl and other fully initialized states are unchanged,
but long-lived is no longer inherited in these nodes. The local inheritance rule for transitions needs thus to be
modified for enabling a search from the super-blend too. From a conceptual point of view, this can be considered as

a new form of multiple inheritance (a form different from the usual structural one).

2) Two important issues

The above variations raise two significant issues :

— first issue, the cognitive complexity : depending on what design principle is obeyed or abandoned, a color graph may
be more or less complex statically (considering its structure) and/or dynamically (considering its use, notably from an
inheritance point of view). Static and dynamic complexities being usually antagonistic, careful experimental studies
are necessary to conclude firmly. To quote [Green, 1982], (p. 34), "The details of the notation profoundly influence
its usability (...) A saving too small to be measured [on a small scale] could become a major improvement a thousand
times.up.” The design principles we adopted represent a bet on the future results of such experiments. Our intent is

11



to produce a programming environment enabling to swich on or off each design principle (1) for supporting the
experiments ; (2) for allowing task-related and/or personal variations ;

— second issue, the inheritance rules : the proposed variations —and, more profoundly, the principles sustaining
them— do impact the placement of transitions (and methods as well) and hence their retrieving. One important
aspect is the resulting form of ancestor trees (actual trees or simple lists ?).

Inheritance is thus one major aspect to take into account for tuning the design principles of color graphs. Are we to

decide to restrict LOCAL inheritance. to be simple or multiple ? Mono-inheritance is a priori simpler ; multiple
inheritance, more powerfull. A study is necessary. The rest of the paper describes it.

Two points will appear :

(a) LOCAL rules for handling trees are actua]ly very simple ;
(b) LOCAL rules can be easily generalized to CLASS inheritance.

Compared to LOCAL simple inheritance, LOCAL multiple inheritance appears more in accordance with CLASS
multiple inheritance : we thus propose a support tor multiple ancestors in color graphs. This proposal is to be
contrasted with the strictly hierarchical style imposed in higraph-based formalisms (unique ancestor).




PART A : INHERITANCE OF TRANSITIONS

This part focuses on the inheritance of TRANSITIONS (implementations will be studied in PART B). First, it describes
LOCAL inheritance rules (i.e. inheritance along the reflex transitions of a SINGLE color graph), then it generalizes these
rules for handling CLLASS inheritance (in a HIERARCHY of classes, i.e. of color graphs).

3. FROM LOCAL TO CLASS INHERITANCE : THE PHILOSOPHY

This section presents an overview of inheritance, from graph-level inheritance to hierarchy-level inheritance. The basic
idea and the most fundamental concepts are described.

3.1 THE BASIC IDEA

Having just described the Person color graph (figure 7), suppose we are now required to specify the properties of the
Employee instances. Obviously enough, their color graph will share a lot of informations with the Person color graph,
even if a job dimension will make it different and express new functionalities. Sharing the common parts and making
Employee derive from Person appears most natural, just Jike in traditional OQP. The difference with traditional OOP is
that the information is now structured into color graphs (instead of being flat). Concerning Employee, the job dimension
is expected to remain at the local level. (Alternatively, it can be stored in a dedicated Job mixin.)

The basic idea is thus simple : in COP, a class is described in a N-dimensions space. Each partial description of this
class on less dimensions may potentially be itself interpreted as a new class. This new class is extracted from the
initial class. Then, the process may be recursively applied. By construction, the considered ¢lass shares a fair amount of
informations with the extracted classes. Sharing is thus natural : retrieving the shared information (stored in
"supcrclasses ) and constructively merging it with the local remaining information stored in the class itself (“increment")

is called class (or b]gr_a[_chy level]) inheritance and combination.

For example, if we consider the Person color graph itself, it is clear that the sex and age dimensions may be separated
and captured into a pair of superclasses (see next figure). The Person increment describes the boy and girl blends as well
as the long-lived transition.

Clearly enough, our "decomposition” operator appears as a pair of scissors for independent dimensions. For mixins, the
companion paper n° 2 makes clear that the role of scissors is played by the derivation, a specialized form of
decompositon. 13

Since we already know regular TRANSITIONS are LOCALLY inherited along the reflex transitions'4 ("locally" means
"considering a single color graph™), one goal is to build CLASS inheritance for transitions as a generalization of LOCAL
inheritance. (Concerning the IMPLEMENTATION aspects, the idea is to hypothesize that methods or memory

representations may also be inherited along reflex transitions (LOCAL inheritance), with a dependence on dimensions,

and then to generalize to CLASS inheritance.)

13 This is an intuitive point of view, since the decomposition and derivation are used for gluing behaviours : in fact their existence
makes the separation of parts possible.

4 except those flowing from a decomposition....
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Figure 14.

3.2 KEY CONCEPTS

Key points in the proposed description of inheritance are the concept of dimensions, inheritance along reflex transitions
and ancestor trees. These points have already been presented in companion paper n® 1. Yet, to make this paper self-
contained, we examine these points again, possibly in more details.

3.2.1 The concept of dimension

A color graph is a graphical representation of a system of (discrete) states and trarisitions.!> From a theoretical point of

view, the representation to be considered as a reference is a cartesian coordinate system in a N-dimensions space. In

such a space, each dimension is materialized by one axis. Each state is described as a point in this space, i.e. by N
coordinate points a priori, its projections onto each axis (a coordinate point is termed a color (N=1) or a pigment (N>1)).

Next figure illustrates that with a Circle skeleton. Two dimensions are used : the radius and center dimensions. Along
the radius dimension, two points (pigments) exist : one corresponds to radius-uninitialized (not r) ; one to radius-
initialized (r). Idem along the center dimension (not ¢ ; ¢). These two pairs of two pigments along each orthogonal axis
determine four points, the four reachable states of a Czr(,le For instance, a fully initialized instance (state 4) is
represented by the couple (7 ¢)/

15 An alternate representation, grounded on insidencss instead of connectedness. is one that derives from higraphs.
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Like the cartesian space, the color graph formalism enables the (easy) representation of points as such (ex. : point 4), and
—more generally— of sets of points (subspaces) that are parallel to one or several axes (ex. : a line in 3-dimensions
space). 16 This is what we name blends (subspaces), among -which are the colors (true points). For example, point 4 of
the above figure can be shown in a color graph as a blend (acually, it happens to be also a color).

Any transition between two states can itself be decomposed into its projections onto the coordinate axes. For example,
the radius: transition can be applied to point 1 or to point 3. It is represented as a simple, unconstrained transition along
the radius axis (from not r to r). The draw transition can also be represented by its projections onto the axes : this leads
to a coupleof circular constrained transitions respectively attached to r and c.
transition is in fact more simply represented when directly attached to the point 4. (See next figure.)

center
A, center: center:
— . —
c center-
'
1
radius:
2 4
radius b Q
surface
radius: draw
Figure 16.
Here is the corresponding color graph.
CIRCLE
1
""' Ty :_——_-‘
b, ,.-"" T c '=__‘ .__-‘
radius: center:
radius- center-
l‘adius o 'l,l —
radius: B ) - e -j :>center
surface -y R center:

Figure 17.

16 This statement is not valid when using a formalism deriving from higraphs.
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The cartesian representation is useful for interpreting the decomposition of states and transitions according to N-
dimensions. However, it is rarely practical : human beings having difficulties to vizualize a cartesian space when N
exceeds 3. Hence, the color graph representation.

3.2.2 Inheritance along reflex transitions

The fundamental LOCAL INHERITANCE RULE FOR TRANSITIONS was established in companion paper n°1 and re-
stated extremely briefly in §2.2.2. This subsection examines it in details and shows it can be enlarged to
implementations.

« If we examine the conjunction in the above figure, we notice that the transitions flowing out of pigments B and p
(resp. surface, radius, radius: and radius- ; center, center: and center-) are valid in node 4. (This is because the
condition of this node, a blend, ANDs the condition of pigments B and {.) All happens as if the origin of the transitions
in question could slip along the reflex transitions (p 4) and (1 4). '

This statement can be enlarged to methods and memory representations as well. For example, the surface method,
attached to node B, will be valid (inherited) in node 4 ; the radius and center cells (slots), respectively defined in B and p,
will both be present (combined) in 4. ’

» Reflex transitions also appear in selections. So, let's examine if inheritance works also in such constructs. Next figure
redraws the Age class shown in figure 14 while positioning all the basi¢ colors (6, 10, 11, 12) along the age axis. Here,
the ephemere colors (7, 8, 9) are not represented on the axis, but above it along some imaginary dimension!”. In addition
to materialize the fact that tests needs to be done, these nodes may also be used to factorize transitions (ex. : bedtime in 7)
as well as memory representations (ex. : an age cell in 7) and methods (ex. : have-birthday in 7). Here again, transitions,
methods and memory representations slip (are inherited) along the reflex transitions!8.

imaginary A age:

dimension
age
bedtime @

age
dimension

hb = have-birthday

Figure 18.

Inheritance rules in selections somehow express that ephemere colors are —strictly speaking— not necessary. Next
figure shows how the preceding one gets transformed when ephemere nodes are banned.

17 Other representations are possible, although less expressive : an ephemere color recursively corresponds to a cloud of basic colors ;
it could also be shown as an extra point on the same axis as a bsic color.

18 The reader of the second companion paper will have noticed the similarity between this representation and the canonic skeleton a
mixin is given. The corresponding c-graph may have been givena the same structure, as well as the other c- or p-graphs presented in
this paper.
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« Finally, reflex transitions also conceptually appear in decomposition constructs. However, they are not inherited in this
case.. (Our visual representation reflects that : a decomposition construct is drawn as a bar, and not as a diverging tree of
reflex transitions.)

3.2.3 The concept of ancestor tree

Regular transitions (as well as methods and memory representations) being inherited along reflex transitions, the concept
of ancestor tree (see §2.2.1) emerges immediately as an important one when interested in gathering inherited properties in
a given node. : :

More precise definitions are used :

— in a c-graph, the ancestor tree of a node is also termed its c-ancestor-tree ;

— in a p-graph, the ancestor tree gets a priori more complex as it depends on more involved dimensions : it may be
simple (if the root is a pigment) or multiple (if the root is a blend of degree d). We term p-ancestor-tree the restriction
of the ancestor tree to the nodes participating to one given dimension (i.e. which may hold the dedicated mini-token).

Let's take two examples in the Person color graph (figure 7). The ancestor tree of teenager (pigment 11) is simple : it is a
single p-ancestor-tree made by the reflex transitions (7 11), (8 11), (9 11) along the age dimension (figure 20). The
ancestor tree of boy (blend 13) is multiple. Its p-ancestor-trees are (figure 21) :

- for the sex dimension, the reflex transitions (3 4), (4 13) ;

- for the age dimension, the reflex transitions (7 10), (8 10), (10 13).

long-lived [3] 2%°
bedtime

expected- sex g

long-lived [3] %0 lifespan
bedtime @ / have-birthday

have-birthday @ml e
o

teenager

child

Clpmorroownrrmnrrran

o

o

Figures 20 & 21.
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4. LOCAL INHERITANCE OF TRANSITIONS (IN ONE COLOR GRAPH)

4.1 IN A C-GRAPH
4.1.1 Preamble

A c-graph is a color graph that exhibits but one dimension (N=1). The Age c-graph of figure 14, redrawn in figure 18,
typically depicts such a case. Except for the pseudo-color, any node is a color : it corresponds either to one reachable
instance state (it's a basic color) or to a set of reachable instance states (it's an ephemere color).

An ephemere color is the source of a selection, the only construct that may be instantiated in a c-graph. Two or more
selections may share a same destination color, thus creating a pseudo-conjunction : this destination color has several
fathers. Yet, this is not the common case : usually, a a color participates to at most one selection. The ancestor-tree (c-
ancestor-tree) of any color is thus a list (cf. the Sex c-graph in figure 14) or, more rarely, a tree (cf. the Age c-graph in
figure 14). '

As already established by the LOCAL INHERITANCE RULE FOR TRANSITIONS (see companion paper n°l),
regular (graph) transitions are inherited along the reflex transitions of a c-graph.

~ 4.1.2 Inheritance of transitions in a c-graph

a) Precise semantics

"Inheritance along reflex transitions" should be understood in the following way : if a graph transition T exists in the c-
ancestor-tree of a basic color, a graph transition similar to T conceptually flows from this basi¢ color ... to the destipation
of T. This transition is termed the "inherited transition".

This statement has two aspects :

1) a source aspect :

the considered color is source of an inherited graph transition 7. Since colors directly correspond to states or to sets of
states, any graph transition between two colors corresponds to a state transition or to a set of state transitions. Thus, any
instance in this basic color (i.e. in the stable state materialized by this basic color) may validly be sent the message T .
(This validity in term of message immediately extends to generic functions, i.e. when several color graph instances are
involved) ;

2) adestination aspect :

the destination of the T graph transition defines the new instance state once T has been received. Generally speaking, this
destination is to be determined at run-time among the uitimate descendants of the destination of T (i.e. among the leaves
of the tree of reflex transitions recursively flowing from this destination node). Of course, if this tree is reduced to a
single (basic) color, then the destination of T is that color itself and no run-time testing is necessary. Except this trivial
case, the destination of T may also be determined statically when T is an i-circular transition : the inherited graph
transition is also i-circular, thus its destination is its source (the considered basic color).

Companion paper n° | states these results using a token to mark the current state. Two steps are distinguished. Move
step : the token stays in its position if the transition is i-circular (final position) ; otherwise, the token is moved to the
destination of the transition. Propagation step : reflex transitions are activated : a number of them (selections) may then
fire, hence the new instance state. [This algorithm presupposes the c-graph satisfies the "unique destination”
principle!9.] :

b) Examples

Let's consider, for instance, the Age c-graph of figure 14. The transition labelledberdime is i-circular : it is obviously
inherited in basic colors 10, 11 and 12, each time as a circular transition (static property). Suppose now thehave-birthday
transition in the Age c-graph has been declared as a g-circular transition attached to the ephemere color 7. Then, it would
be inherited in 10 (child). If activated in this color, then may have been activated for a child instance, moves the token
from 10 to 8 ; a test is then dene ; depending on its result, the token is then moved to 10 (child) or 11 (teenager).

19 If the "unique destination" principle is disobeyed, severa! (inherited and/or locally defined) similar transitions are elected for firing.
The corresponding set of destinations is collected and tests are done (as if an ephemcre node was existing). From an animation point
of view, the token may be shown as visiting, for each transition in question, its source and then its destination. This may be done
either in sequence (dynamic view) or "in parallel” (static view). Whatever the animation, when tests are done, a unique destination is
selected : the token gets in there (if others were shown in the animation (static view), they disappear).
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4.1.3 At most a single transition T is ever valid in one color

As expressed above, the ancestor-tree of a color is either a list or a tree. The first case potentially corresponds to LOCAL
SIMPLE inheritance ; the second case, to LOCAL MULTIPLE inheritance. As a matter of fact, multiplicity does not
arise if the "unique destination" principle is enforced : no two similar transitions (each one being locally defined or
inherited) may be valid at the same time in a given color. (Figure 20 shows an example.) Reference [Borron, 1996b]
discusses variations and facilities. Yet strictly not necessary in a c-graph, a facility can be adopted : the masking by a
local transition of inherited similar transitions. (If this facility is used, then there is still one valid transition in a given
color.)

4.2 IN A P-GRAPH
4.2.1 Preamble

A p-graph is a color graph that exhibits two or more dimensions (N>1). Whereas a c-graph describes states as points
along one same axis, a p-graph decomposes a state onto several axes (one axis per dimension). As in a c-graph, we may
also add an imaginary dimension for selections. Next figure examplifies this addition, showing the Person p-graph of
figure 7 in 3 dimensions (N+1).
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Figure 22.

* Let's comment a bit the figure. In a p-graph, any node (except a pseudo-color) is a termed a p-chroma. As in a c-
graph, a distinction is made between a basic and an ephemere p-chroma. A basic p-chroma belongs to the space S
strictly defined by the N-dimensions ; an ephemere -p-chroma, to the complement of S in the space defined by the N-
dimensions plus the imaginary one.

A basic p-chroma is either a basic pigment (like 2, 4, 5, 6, 10, ]l and 12) or a basic blend (like 13 and 14). The first
category describes an atomic substate along one single dimension ; the second one, a composite substate along several
dimensions, possibly N —in which case the blend is also termed a color.



An ephemere p-chroma is either an ephemere pigment (like 3, 7, 8 and 9) or an ephemere blend (none is shown in the
figure, but long-lived could well be implemented using one20),

* Because it describes a substate, a p-chroma is usually not associated to a single instance state but to a set of instance
states (all those that match the associated substate). Conversely, a reachable instance state is usually not represented by a
single node (as it is the case in a c-graph) but by k p-chromas, the degrees of which sum to N.

e In a p-graph, three constructs may be instantiated, the selection (as in a c-gfaph), the decomposition and the
conjunction. As stated by the LOCAL INHERITANCE RULE FOR TRANSITIONS, regular (graph) transitions are
inherited along the reflex transitions of a p-graph (except when originating from a decomposition).

4.2.2 Inheritance of transitions in a p-graph

a) Relationship with inheritance in'a c-graph

Let's establish the relationship with the preceding analysis about inheritance in a c-graph.

1))

2)

the ancestor-tree of a pigment (in a p-graph) is exactly like the.c-ancestor-tree of a color (in a c-graph)
considering the restriction of the p-graph to the dimension in question. Such a restriction is termed a p-ancestor-tree.
A graph transition in the p-ancestor-tree of a pigment is thus inherited just like a graph transition in a c-graph : results
previously established apply. '

As an example, one can consider the age dimension of aPerson instance (figure 22) : the restriction in question
exactly coincides with figure 18, the c-graph of Age : this proves the result for each pigment of the age dimension of -
Person, in particular for pigment teenager (see figure 20) ;

the ancestor-tree of a blend of degree D is interpreted as the superposition of D p-ancestor-trees (one per
dimension involved in the blend). For example, the blend boy, being a (male child) inherits both from pigments 4
(male) and 3 (sex), and from pigments 10 (child), 8 and 7 (age) (see figure 21).

Let's add two remarks :

-> Two p-ancestor-trees of a same blend may share a reflex transition or a list of reflex transitions : this occurs when
the blend in question recursively results from a conjuction involving at least one source blend (this requires N2>3).
The definition of a p-ancestor-tree takes care of that. In this respect, the given example is particular since boy is
directly made from pigments : the age and sex p-ancestor-trecs are completely distinct.

-> If ephemere blends are used (which is not recommended because of the complexity generally induced), the
inheritance structure they constitute extends only over blends of same degree and thus does not interfere with the
inheritance structures that extend over pigments. All these structures are lists or trees, and not DAGs nor more
general graphs, an important point for keeping inheritance casy to deal with. In our example, no ephemere blend is
built on boy and and other blends. Yet. it could be : in particular, thelong-lived transition may be implemented that
way as already noted.

20 The long-lived transition, which is constrained both by node 3 (its clause) and node 7 (its source), could well be attached to an
ephemere blend, the unique role of which would be to factorize long-lived in one place. However, this would require the six blends in
question (colors) to be displayed -instead of two presently, which is uneconomical. (A cheaper solution consists in using a super-blend
as done in figure 13.)
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Given these two properties, the basic schema to deal with inheritance in a p-graph is the following :
- for each involved dimension, activate the inheritance scheme used for a c-graph ;
- then combine the obtained results, i.e. the destinations of the activated transitions. B

The determination of the effective destination state upon the reception of a message is thus a bit more complex than in a
c-graph, especially when a composite transition has been activated. It is better explained in terms of mini-tokens (see
companion paper n°1). Besides the move and propagation steps defined for a c-graph, a backtracking steps exists. Move
step : for each non i-circular triggered (micro-)transition, the involved mini-tokens are moved to the transition
destination. Backtracking step : moves may have depleted a number of blends ; the mini-tokens that remain in them are
moved back to their original pigments. Propagation step : reflex transitions are activated : a number of them (selections
anng_ogjung_[Lo_n_s) may fire, hence the new instance state. [This algorithm presupposes that the p- graph satisfies the

“unique destination"” principle vs. each dimension. As for a c-graph, masking may be used.]

b) New features to be taken care of.

b.1) transition validity

In a p-graph, the transitions inherited in a given p-chroma are not_systematically valid (as they are in a c-graph) : they
may be constrained by a clause the effect of which is to reduce the validity of the transition to a subset of the set of
instance states associated to this p-chroma.

For example, in Person, the transition long-lived, attached to the pigment 7 (age initialized), is constrained by clause [3]
(sex initialized) : instead of nine substates, only six are concerned by long-lived : the ones encircled by a dashed line in
figure 22.

Given a reachable instance state, we consider the k p-chromas materializing this state and the transitions that are inherited
in these p-chromas :

-> if unconstrained, an inherited transition is valid ;

-> if constrained, an inherited transition (be it simple or part of a composite transition) is valid if the instance state
satisfies its clause?! :

b.2) multiple transitions
« The algorithm given above presupposes a unique graph transition (at mosizz) is found per dimension.

-> Concerning pigments, the "unique destination principle” is normally enforced in their p-ancestor-trees as it is in a c-
graph. Thus, given remark a.1, no two similar transitions may be valid at the same time in a given pigment.

21 Note that the elements of a composite transition are all constrained in the same way, the compositions of their respective pairs.of
clauses and source p-chromas being all equal.

22 Those that are not found are circular (see companion paper n°l).
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-> Concerning blends, the principle cannot be systematically obeyed unless ephemere blends are taken advantage of.
Since these nodes generally add complexity to a color graph23, they happen to be rarely used. Equivalent modellings are
chosen in place :

— a general solution is offered by multiple composite transitions : yet, the visual simplicity of the p-graph is an
apparence ; it is counter-balanced by the complexity of clauses ;

— to offer, in certain circumstances, a cognitively simpler expression, transitions to "super-blends” (cf. §2.4.2.1.b) and
"negative” transitions have been invented. They are discussed in [Borron, 1996b].

* In case of multiple composite transitions, the above algorithm is upgraded as already done in case of multiple
transitions in a c-graph. The extension is based on the idea that creating an ephemere node would solve the probiem.
The algorithm thus proceeds as if we were going to build it (compute all the possible destinations states) and to use it
(test the conditions24). In fact, the next states need not be computed as such : only the involved dimensions are taken
into account for determining the necessary tests. Once a composite transition has been finally chosen, the three steps of
the above algorithm are gone thru. ‘

Next figure illustrates such a situation. It presents a case where a T transition changes the instance state from [o B] to
either (o f"), (@’ B) or (o’ B’). Using an ephemere blend leads to a relatively complex p-graph. The figure uses three
composite transitions in place.

Applying the upgraded algorithm, the transitions destinations are first collected : (ot "), (o’ B), (o B'); they are tested
and one is chosen ; then the two mini-tokens are moved accordingly.

Figure 24.

As noted above, a modelling with multiple composite transitions (equivalent to what can be found in a higraph) is not
fully satisfactory from a cognitive point of view. In [Borron, 1996b], a different modelling is thus proposed as an
alternative for this same example. :

23 They require all destination blends to appear (risk of combinatorial explosion) and the structure originating from them is not
flowing downwards as selections and conjunctions do (in figure 7, for ex.). )
24 IMPORTANT : this supposes the code to be run before the evaluation of conditions is the same in each case.
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5. CLASS INHERITANCE OF TRANSITIONS (IN A HIERARCHY OF
COLOR GRAPHS)

Next subsection explains the relationship between inheritance of transitions in a hierarchy of color graphs and inheritance
of transitions in a p-graph. The subsection afterwards introduces operators for putting class inheritance in practice.

5.1 RELATIONSHIP WITH INHERITANCE IN A P-GRAPH

The relationship is first shown informally using the Person example ; basic class inheritances rules are formulated ; main
consequences are apprehended ; then the Person example is formalized as an introduction to operators and naming
facilities.

5.1.1 Relationship

a) Motivation

Looking at the Person p-graph given in figure 7 or, equivalently, at its cartesian representation in figure 22, the quasi-

independence of the age and sex dimensions appears as an invitation to split this p-graph into several parts. Let's term

p-subgraph vs. a given scale (dimension) the restriction of a p-graph to pigments of one given scale : in the Person p-

graph, we can distinguish the age and sex p-subgraphs. Hence, three parts :

— the first and second parts are devised for separately holding the behaviour materialized by the age and sex p-
subgraphs. These parts are c-graphs (see figure 14) and each one naturally corresponds to a class (say, Age and Sex ) :
no new mechanism is necessary for describing them ;

— a third part is meant for capturing all what requires both dimensions (the long-lived transition, the boy and girl
blends). This imposes the description of an increment.

Given this splitting, the Person p-graph is obtained by the composition of the two extracted classes (now termed
superclasses) and by the addition of the increment.

b) Modelling

Next figure models the situation :

(1) the Person class is attached an incomplete p-graph (the full skeleton of Person together with the long-lived transition)
and knows Sex and Age as its superclasses ;

(2) the Sex class is attached the complete Sex c-graph (skeleton + transitions) ;

(3) the Age class is attached the complete Age c-graph (skeleton + transitions).

[In the figure, the Person skeleton is shown as a multi-level selection : this is to preserve its connexity (it lacks the age:
and sex: transitions) ; the Age and Sex c-graphs are represented in the same way, this to kéep the resemblance with the
Person skeleton ; finally, ephemere nodes having a t(rue condition are visually simplified (no bubble). An alternative
would be to represent the superclasses c-graphs normally and the Person increment like the Person p-graph yet without
any labels except for boy, girl and long-lived.)

The instance current state is supposed to be boy.
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Next figure models the situation using a cartesian represéntation. Note the clear distinction between, for example, the
age dimension and the Age color graph.
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Note that the inheritance link between a superclass and its subclass, unique in figure 25, is now duplicated times the
number of colors present in the considered superclass c-graph. For example, four colors exist in the Sex c-graph ; and
four inheritance links exist between this graph and the sex p-subgraph. Yet not all represented in the above figure for
simplicity purpose, these are —mentionning first the class pigment id and then the superclass pigment id : the (5 4), (4 3),
(3 2) and (2 1) links. In each case, the pigment and the color of a same couple share the same condition, for example,
male for the couple (4 3).

c) The composition operator

How to obtain the desired effect ? As a matter of fact, the decomposition construct does almost what is needed : instead
of specifying the complete age and sex p-subgraphs, what we have to do is to name the Age and Sex superclasses so as to
get and compose their respective color graphs ; concerning the increment, we have to correctly attach the long-lived
transition and to correctly compose the boy and girl blends (and accompanying conditions/transitions) : we thus need to
be able to unambiguously name a node in a superclass. Hence, we basically need : (1) an operator (let's term it the
_composition) ; (2) a naming mechanism.

Subsection 5.1.4 illustrates this more precisely. For the moment, let's show the visual representation we chose (next
figure) since it makes apparent the relationship between the composition operator and the underlying decomposition
construct : the horizontal bar, which usually denotes a decompeosition, is here surmounted with the name of each
superclass. The instance current state is supposed to be boy.
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Next figure abstracts a bit the preceding one : it essentially exhibits the increment and its relationship with the two
superclasses. Long-lived has been attached to the super-blend (3 7) to emphasize that this transition requires both

dimensions.

PERSON

Figure 28.

d) Inheritance

From the hierarchy specifier's point of view, Person inherits from Sex and Age. When a Person instance in a given state
is sent a message, the validity of this message and its effect are computed using the local increment as well as the Sex and

Age c-graphs.

The instance state is represented by two mini-tokens in the Person skeleton, by one token in the Sex c-graph and one
token in the Age c-graph (cf. figure 25). Moves of the mini-tokens are constrained by those of the tokens.
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Let's consider a Person instance and let's suppose its current state is boy.

When receiving a message like expected-lifespan, the search first starts locally (i.e. in the Person skeleton) according to
the LOCAL inheritance rules previously enumerated for p-graphs, then the search is extended to the ancestor graphs, here
the Sex c-graph and the Age c-graph —in this order. LOCAL inheritance rules are used inside each ancestor graph. The
search is made recursively : if the Sex and Age graphs were themselves obtained by composing ancestor graphs, then the
search would also be done in these ancestor graphs. Here, a single expected-lifespan transition is found in the Sex c-
graph. The instance state is unchanged : the Sex token is not moved (expected-lifespan is i-circular) ; the Age token, too
(it is not involved) ; the Person mini-tokens thus stay in place.

Suppose the next message is have-birthday. New searches are done in the same manner ; a have-birthday transition is
thus found in the Age color graph, possibly making the Age token move to teenager ; the age mini-token in Person is
moved accordingly ; the sex mini-token bactracks to male : hence, the new instance state : (male, teenager).

All happens as if the inherited transitions were locally attached : finding the have-birthday (resp. expected-lifespan )
transition in theAge (resp. Sex ) c-graph is like finding it in the age (resp. sex ) p-subgraph of the Person p-graph. The
inherited transitions can be conceptually attached to the p-graph : in this case, the two tokens in Sex and Age get useless.
Figure 25 is better in accordance with this point of view.

5.1.2 Basic class inheritance rules

As expressed above, the composed p-graph inherits transitions from its ancestors : rules are needed to predict the global
behaviour solely from the color graph pieces (superclasses + increment). This is obtained by extending the local
inheritance rules used in a p-graph.  Two slightly different problems are encountered : computing all possible
transitions in a given instance state (i.e. computing the transition dictionary for this state) ; getting the transition -if it
exists- that is similar to a message in a given state.

Given a instance state, the transitions that are valid in this state are searched dimension per dimension, first locally (see
the inheritance rules in a p-graph), then in the color graphs attached to the superclasses of the instance class (in the order
defined by the list of superclasses).

The algorithm is recursive. (Originally, it is broad first : a class is computed once all its superclasses have been
computed ; however, it can can be made depth first with some care : corresponding details will be elaborated
subsequently.) If masking is allowed. a successful search prevents recursion.

The obtained transitions can be thought as being locally attached to the considered p-graph : in this case, the transition
destinations are obtained exactly like in a regular p-graph. (Alternatively, one may prefer to consider the transitions to
be still attached to the ancestor color graphs : in this case, before the backtracking and the propagation steps, the moves
of the mini-tokens in the composed p-graph are driven by the moves of marks in the ancestor graphs. )

This algorithm is easily modified for getting but the transition -if it exists- that is similar to a message in a given state.

5.1.3 Important consequences

a)_Monolithic and hierarchical views

Two mechanisms now exist for a class to be given a color graph : one is simply to create this color graph from scratch
(defcolorgraph) ; one is to build it as a (recursive) composition of the color graphs of the ancestors of this class. In any
case, the resulting color graph (termed the "global color graph™) monolithically describes the interface of the class, i.e. a
specific behaviour (supposed to be stable). This global color graph is invariant vs. its specification in terms of a
hierarchy.

The monolithic and the hierarchical views have their own merits.

-> The user of a class is interested in the first one, i.e. in the global color graph as such and not in the way it is possibly
composed. For this user, inheritance is local (internal to one color graph).

-> On the opposite, the specifier of the global color graph is interested in the hierarchical view : he/she aims at providing
the corresponding behaviour by assembling scattered color graph pieces. For this specifier, class inheritance is
essential : his/her point of view is very similar to the one of a traditional OOP class implementor.

b)_Precision in inheritance

As already noted, a class is described in a N-dimensions space in COP and as a single point in traditional OOP. Hence,
one major difference clearly appears between these two forms of programming : inheritance is much more precise in
COP than in OOP. This is like having micro-surgery instruments compared to domestic ones : the result is thiner and
obtained more elegantly.
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.5.1.4 Detailed example

This paragraph completes the Person example. It illustrates the composition operator and the naming mechanism. Two
specifications are discussed : the first one supposes the definition of the Person color graph has already been made using
defcolorgraph and deftransition definitions ; the second one, does not. In both cases, the definitions of the Age and Sex

c-graphs are, of course, supposed to exist (see figure 14).

a) first specification

Here, we suppose the definition of the Person color graph already exists. In this case, the only thing to do is to specify
the Sex and Age superclasses (in this order), relying on the composition operator for identifying the first p-subgraph of
the Person p-graph with the first superclass c-graph (Sex), andthe second p-subgraph with the second superclass c-graph
(Age). Nothing else needs to be done since all remaining informations are part of the already known defcolorgraph or

deftransitions definitions (notably, the boy and gir! blend, as well as the long-lived transition).

color graph : known

!

Sex

e—

color graph : known

!

Ap

color graph : known

Person

(camposition Pexrson ( Sex Age))

Figure 29.

(In the implementation part, this quite simple declaration will also imply the automatic inheritance of methods and

memory representations attached to the color graphs of superclasses Sex and Age.)

b) second specification

Contrasting with the previous figure, next three ones do not suppose the existence of the Person defcolorgraph.

Supplementary informations (vs. the Age and Sex c-graphs) need to be specified.

and the declarations to be made.

color graph : known

!

Sex

skeleton

color graph : known

|

.

A

wraph : UNKV

Person

(colox
(color
(color
(¢colox

13
13
14
14

(composition Person ( Sex Age)
:conjunction 3 5)

:tast boy)

tconjunction 4 5)

itest girl))

user-defined regular transition

Next figure expresses the situation

(deftransition long-lived ( (p Person 3.(7 7)) ))

Figure 30.
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Let's now explain these declarations step by step.
b.1) specification of the Person skeleton

Next figure shows the intermediaté step. The analog of the defcolorgraph, a setcolorgraph operator is used : it lists the
superclasses Sex and Age (in this order), then critical Person chromas. Color 1 is specified thanks to a decomposition
construct, like in a defcolograph. Its pigments are in order : color 1 of the first superclass ¢-graph (Sex) and color 1 of
the second superclass c-graph (Age). Blends boy and girl need also to be specified : except for the naming of pigments
(here, replaced by the naming of colors in c-graphs of superclasses), this is done exactly like in the defcolorgraph of
Person.

skeleton

(setcolorgraph Person ( Sex Age)

{ color 1 :decomposition 1 1)
color 13 :conjunction 3 5)
color 13 :test boy)
color 14 :conjunction 4 5)
color 14 :test girl))

Figure 31.

The implicit naming conventions are the following : ids refered to by the decomposition and conjunction constructs are
ids in the c-graphs of superclasses, the order of ids in these constructs being the same than in the list of superclasses. For
example, the first (resp. second) 'l' in the decomposition construct is interpreted as color 1 in the Sex (resp. Age) p-
graph. In addition, pigments in the each p-subgraph of the composed p-graph are named (numbered) in the same order as
in the color graph of the associated superclass, each p-subgraph being taken in the order of the list of superclasses. In our
example, given the definitions of boy and girl blends (last four lines), this determines the same order of pigments and
colors than in figure 7.

The skeleton definition in figure 30 directly derives from the preceding definition : the composition operator
encapsulates the setcolograph and the definition of the initial color (color 1) using the decomposition construct.
Obviously enough, if a defcolorgraph already defines the Person skeleton, then the last four lines of this compeosition
are useless ; once simplified, we get the simple specification of figure 29.

b.2) specification of the long-lived transition

One problem now remains : the specification of the long-lived transition, i.e. the transition which cannot be inherited
from the Person superclasses. The simplest thing to do here is to specify it using the Person ids : this is what has been
done in figure 30 (same definition than in figure 9).

If we were willing to use the ids of the Age and Sex c-graphs, it will be necessary to conceptually specify a couple
(superclass name, color id) for each source and destination. Because superclasses are known, the notation proposed in
the next figure (*Person instead of Person) simply indicates that ids are to be searched in the color graphs of
superclasses instead of the composed p-graph. ‘

user-defined regular transition

(deftransition long-lived ( (p *Person 2.(2 2)) ))

Figure 32.

As shown in this subsection, two directions need to be developed for expressing the composition of classes : operators
for conveniently composing dimensions ; naming facilities. The first point is focused on in the next subsection ; the
second one will be the matter of another report. ’

25 If the defcolorgraph of Person exists, the underlying system will warn the user of a double definition (a single one is preferable)
and check the setcolorgraph definition vs. the defcolorgraph definition.
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5.2 OPERATORS FOR cOMPOSING OR ADDING DIMENSIONS

This subsection comprises two parts : the first one is dedicated to the composition operator (cartesian product of all

points present on each dimension) ; the second one, to the derivation operator29 (addition of dimensions on one specific
node of a color graph). Specific inheritances rules are listed when appropriate.

5.2.1 Composing dimensions

The first operator we consider is the composition opemtor introduced in the preceding subsection. It directly brings into

operation the very basic idea of class inheritance. [t composes the dimensions of two or more classes Ci, Ca,... (of
degree N1, N2,...) into a (N1+N2+...) dimensions space. In fact, a local increment possibly with its own dimensjons may
also be added. (Note the increment of the Person example did not introduce new dimensions.)

This operator takes advantage of the decomposition construct that exists at the LOCAL level and somehow promotes it
at the HIERARCHY level. The order in which these classes Ci, termed the superclasses of the composed class, are

listed is important if a masking effect is sought. Renaming of nodes and transitions is possnble if necessary.

To describe this operator, two steps are proposed : the first one uniquely considers the effect of composing (the
dimensions of) several superclasses ; the second one, uniquely the effect of composing (the dimensions of) an increment
with (those of) one superclass. Each step is introduced via an example.

a) Composing the dimensions of several superclasses

For the sake of the demonstration, the example we.consider is a bit more complex than the Person example already

discussed. The new one is meant to illustrate masking and renaming facilities?”. It deals with the composition of a
particular type of objects behaving both like a Stack instance and like a Queue instance. One can push an element on its
front or enqueue it at the rear ; however, elements are only obtained from the front using a pop. Let's name the class of
such objects STQ. Our goal is to compose this class using the Stack and Queue classes as seeds.

a.l) a cartesian representation

The next figure represents the STQ p-graph as well as the Stack and Queue c-graphs.

enqueue:
©enqueue: dequeue Queue
X ~empty empt:;f Z X+y
pop
@a @, d 4 >
empty queue
- - dimension

push:

push: b___':‘gQ &%
emply _

bt

stack
dimension

- STQ

Stack

Figure 33.

26 The design of the derivation operator is the subject of companion paper n® 2.

27 These facilities could have been introduced directly at the p-graph level. However, the problem is better posed when combining
_ superclasses : becausc these ones do pre-exist, tools are crucially nceded to carve the intended result out of them.
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The Stack (resp. Queue) colors and transitions exist along on the vertical (resp. horizontal) axis. (The Stack color graph
was already shown. The Queue color graph is topologically similar.) An ephemere color (like ¢ in Stack and z in Queue)
normally corresponds to a cloud of several basic colors (like a and b in Stack, or x and y in Queue) : in the figure, it is
represented as a point on the axis of the basic colors.

Composing these two c-graphs normally produces nine points. As a atter of fact, only those marked by a small bubble
corresponds to reachable states in STQ : this comes from the specification of STQ. Consider the situation where a strictly
positive number of elements have been pushed and a strictly positive number of elements have been enqueued, all in a
STQ instance. Suppose now a pop is sent to this instance : this pop should return a pushed element, not an enqueued one.
If pop messages continue, all pushed elements will be returned. ‘After that, pop messages will return enqueued elements
(supposing no push: occurs in between). In other words, a pop sent to a STQ instance is to be interpreted as a (Stack)
pop unless the instance does not hold a pushed element any longer. in which case the pop is mterpreted as a (Queue)
dequeue. Masking and renaming facilities are thus required.

Next figure represents the same STQ composed behaviour using an extra dimension for ephemere nodes.

2 (pop)
imaginary dequeue

dimension —~

enqueue:

< empty Queue

queue dimension

stack dimension

Stack

Figure 34.

Next two figures show the composition of the STQ color graph both in textual and visual forms. Stack preceedes Queue
in the superclasses list ; this order is taken adavantage of for masking.

a.2) textual specification

It is organized as follows : the subclass is first named, then comes the superclasses list (with optional renaming and
masking declarations), and finally the usual body of a color graph definition (here, it is void).

Consider the superclasses list :

— Stack is followed first by a list of ids (for naming each of its states unambiguously), then by two declarations stating
that any pop or top transition of Stack masks any similar transition in a superclass placed afterwards (here, Queue );

~ Queue is followed first by a list of ids for renaming its states, then by a declaration renaming its S7Q transition in pop.

(camposition STQ ( (STACK
{pop :masking)
(top :masking))
(QUEUE
(dequeue:now pop))))

Figure 35.

Any transition which is renamed or declared as masking in a given class should effectively exists in this class, be it
locally defined or inherited. ,
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a.3) visual specification

The figure below depicts the composition of the STQ color graph using the Stack and Queue color graphs. Renaming and
masking are respectively encoded by mentioning the initial name between parentheses and by surrounding the transition
name with a tiny rectangle. Note that the use of empty is not ambiguous : in the left (resp. right) subgraph, it corresponds
to empty in a Stack (resp. Queue).

STQ
\ Al Queue
empty
Y,
", _empty
enqueue:
enqueue:
pop
top p— (dequeue)
Figure 36.

The interested reader will find in appendix (figure A.1) the c-graph resulting from the expansion of this p-graph. Due to
the masking effect of pop and top in Stack, this c-graph is naturally unsymmetrical.

a.4) additional class inheritance rules
As far as inheritance is concerned, the basic rules for class inheritance simply needs to be adapted to renaming and
masking. Both are done dynamically. Let's suppose a message M is sent. Renaming is obtained by adopting the old
name in place of the new name as soon as the superclass in question is entered : the old name is considered inside the
whole hierarchy of this class (except if it is itself the result of an inner renaming inside this same hierarchy ) ; it is
abandoned on quitting it. Masking is obtained by abandoning the search once leaving the hierarchy of the first superclass

where M is declared as masking (by construction, a M transition exists in this superclass, either inherited or locally
defined).

Suppose, for example, Stack inherits from Bag and Bag from Object, with Bag providing get transitions and Stack
remaning get into pop. Further suppose a pop transition is searched in STQ : when entering Stack, get will be searched
in place of pop ; get will not be found in Stack, but in Bag. Since the pop transitions of Stack are declared as masking in
STQ, pop will not be searched in Queue. Thus, the pop transitions of STQ result from the get transitions of Bag.

b) Composing the dimensions of a superclass with those of an increment

b.1) Principle

Till now, a new class was built by composing the dimensions of its superclasses, without adding any increment
(preceding subsection) or with one that introduced no new dimensions, but only blends and a new transition (cf. the
composed Person p-graph). We now consider the effect of a different form of increment, a Jocal description with its own
dimensjons, and propose a syntax for handling it conveniently. Because the handling of multiple superclasses has
already been examined, a single superclass is considered here.

In a first step, the problem under consideration is formalized as a composition of two superclasses (an instance of the
problem previously discussed) : the increment is isolated into a new superclass (this corresponds to what can be —and
would be— done by a programmer given the present primitives) ; then. it is composed with the regular superclass. As a
result, the dimensions of both superclasses are composed. In a second step, the declaration of the increment as a
superclass is encapsulated into the composition itself. This requires the observation of a few additional conventions.



b.2) Example : the Bag class

First, let's consider the Object c-graph which is inherited by the Bag p-graph. This c-graph exhibits one and but one
dimension (say object) with a unique color (say a) the condition of which is £ (systematically true). The object
dimension is abstract (no memory representation). Next figure shows two definitions of o : the first one explicitly
mentioning the condition and the :abstract keyword ; the second one specifies o as a property, which is equivalent.
(Other examples of properties (LIFO, FIFO) will be given shortly.) Normally, the :property keyword is followed by a
list of all the transitions that satisfy the property : here this list is absent, meaning that all the Object methods satisfy the
property (default case). For our purpose, Object exhibits along its unique dimension (objecr) only one regular transition,
the print one. Because the Object class is inherited by all classes, the object dimension is present in every object, and so
the print transition is valid for any object. In our example, the print transition is inherited by the Bag class.

(defcolorgraph Object (defcolorgraph Object
(color o :test t :abstract)) (coloxr o :property))

(deftransition print ( (x Object (o o)))

Figure 37.

Concerning the Bag color graph, we want it to exhibit four regular transitions : print (to be inherited from Object) ;put:,
get and empty (to be locally defined). The Bag color graph has a topology similar to the Stack color graph.

Next figures show the two steps as defined above. First, to obtain the desired color graph, we combine in a two-
dimensions space the single dimension of Object with the single dimension of a virtual superclass representing the
increment. Next figure shows this in textual form. The figure afterwards displays the visual form and the combined
color graph. This one is like the virtual superclass graph and has in addition the print transition attached to its ephemere
color28. Note that the virtual superclass is first in the list of superclasses of the compeosition.

(defcoloxrgraph Bag-Virtual-Superclass
(color a :test empty) '
(color b :test-not empty)

(color ¢ :selection a b))

(deftransition put: ( (x Bag-Virtual-Superclass (a b) (b b)) e))
(deftransition get ( (x Bag-Virtual-Superclass (b c¢)) ))

(composition Bag ( Bag-Virtual-Superclass Object))

Figure 38.
Bag
Bag-Virtual-
Superclass 1 Object
¢
print
Figure 39.

28 The Object class, via the object dimension, factorizes for all classcs a number of common transitions. In our example, print
illustrates that. A way to understand print —and, by the way, all these transitions— consists in de-factorizing, i.e. in reintegrating the

object dimension into class Bag (the Object class disappears in the transformation). The print transition is attached to pigment ¢ and is
given a non void clause : [c]. Alternatively, the print transition can be attached to pigment ¢ and be given the non void clause [a] ;

or, it can be attached (without any clause) to the blend resulting from the conjunction of o and c¢. (This understanding can be enlarged
to the print method. See 7.2.2.b).
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Now comes the second step. The virtual superclass definition is put inside the composition : the increment appears in
the form of a collection of pigments (they denote a new dimension), whereas a collection of blends appeared in the
composed Person p-graph (they added no new dimension). A more complex example would exhibit both pigments and
" blends. Next figure shows the source code of Bag . The figure afterwards gives a possible representation that
symbolizes the two dimensions involved in Bag : the oblique line is reminiscent of the Bag-Virtual-Superclass.

(composgition Bag ( Object ) iject
(pigment a :test empty)
(pigment b :test-not empty)
(pigment ¢ :selection a b)))

AN

(deftransition put: ( (x Bag (a b) (b b)) e))
(deftransition get ( (x Bag (b ¢)) )) Bag
Figures 40 & 41.

Additional conventions implicitely apply in the above Bag definition : they enable the two deftransitions to -
unambiguously specify their source-destination pairs using the local pigment ids. More generally, the naming can be
done relatively to any ancestor c-graph (“internal naming")provided that this naming is unambiguous. A distinct report
will describe this convention and, more generally, how node names may be specified simply and unambiguously.

b.3) Taking into account special properties

Typically, a local increment —like the Bag oné— is composed of a few nodes with transitions between them. Yet, in
some cases, the increment properties cannot be formalized as simply : in this case, they are identified using property
nodes (see the Object class). This idea is adapted from the property identifiers introduced by P. America [America,
1990], p. 71. The LIFO organization of a Stack is such a kind of property. From an inheritance point of view, a property
identifier corresponds to a new dimension with a single node (pigment) the condition of which is ¢ (systematically true).
This dimension is abstract (no memory represcntation). The node appears in transition clauses as a reminder of the
required property : following the :property keyword, is a list of methods for which the property is automatically set to
true. ‘

(composition Stack ( (Bag Bag
(put: :now push:)
(get :now pop)))
( pigment LIFO :property LIFO
: (push: pop top) )) \
(deftransition top ( (8 Stack (b b)))) Stack

Figures 42 & 43.

In our examples, Stack has a bag dimension (it inherits from Bag) and a LIFO dimension ; similarly, Queue has a bag
dimension (it inherits from Bag too) and a FIFO dimension : this makes both the Stack and Queue color graphs
topologically similar to the Bag c-graph, yet distinct from it and distinct from each other. ‘

Figure 42 shows the Stack p-graph with the LIFO property declaration in textual form. In addition, transitions put: and
get are renamed ; the print transition is implicitely inherited ; the top circular transition is added. Like the declarations of
put: and get in Bag (see figure 40), the declaration of top illustrates the internal naming, yet at a deeper level (recursive
aspect) : conceptually, the local description of Bag is considered as a superclass of Bag, i.e. as a superclass of the
superclass of Stack. (The naming of the b pigment is obviously not ambiguous.) Figure 43 is the analog of figure 41 : it
represents Stack with its superclass Bag ; the LIFO property of Stack is also shown as a virtual superclass. '

Next figure shows the Stack p-graph in visual form. Note the push:, pop and top transitions are all constrained by .
pigment A, the one representing the LIFO property : all these transitions were named in the property declaration of LIFO
(see preceding figure). The figure afterwards shows the Srack p-graph once Bag has been expanded. Like superclasses,
dimensions are named above the decomposition bar ; but, being different from superclasses, their names are shown
between parentheses. :

29 The solution chosen here for renaming is general (renaming may also be done simply in case of name clashes). Yet, one may
consider that the renaming part could semantically be attributed to the L/FO property. This leads to devising a more appropriate
syntax : the renaming being specificd via the LIFO property, the subgraph inherited from Bag will appear directly as it is in Bag, i.e.
without changing the names of the transitions ger and put..
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Stack

Stack
(LIFO) (LIFO) (bag) 1 (object)
-® 20 c
print print
pop: I\] pop: A]
top: [A]

Figures 44 & 45.

b.4) Additional class inheritance rule

Considering the modelling of the local increment as a virtual superclass, the important point here is to consider this
virtual superclass before all other superclasses so as correctly take into account masking -if transitions defined in the
increment are (explicitely or implicitely) specified as such.

5.2.2 Adding dimensions in one point

The above defined composition operator basically combines all the dimensions of the superclasses (plus those of the
local description if it exists) : if N; points exist on each i dimension, we obtain Il N; points as a result. Some of these
points may be eliminated using the :masking facility as illustrated in the STQ example. However, it may occur that we
are not interested in systematically combining the dimensions of one superclass with those of the other superclasses.
Let's illustrate this with an example. :

a) The Bounded-Stack example

a.1) Problem description

A Bounded-Stack instance behaves almost like a Stack. It should thus be possible to get a description of the former by
changing a bit the behaviour of the latter. As shown above, the color graph of a Stack exhibits three colors30. Its
behaviour is altered only in one color : when a push: message occurs in color 2 (not empty), a test should occur that
possibly moves the instance state to ful/l. In full, the push: transition is marked as unwilling. (This means the usual
effect of a push: message is cancelled (redefined) ; however, the transition still exists to respect usual constraints on
transitions. For more details, see companion paper 2.) The Bounded-Stack instance behaviour is unchanged in color 1
and 3. Using the composition operator would thus be fairly inappropriate. Next figure explicits the expected behaviour
in a 2-dimensions space when the bound (maximum number of elements in the Stack instance) is strictly greater than 1.

30 For the purpose of simplicity, we use here the first Stack color graph . The second one (similar to the Bag one, with the print
transition attached to Object) can also be used : the figure is then to be (formally) drawn in a 3-dimensions space.
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Next figure shows the same assembly of the Stack and Bounded color graphs in a 3-dimensions space : an extra
dimension is used for ephemere nodes.

Figure 47.
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a.2) The derivation construct

To model such a situation, COP provides the derivation construct (see reference [Borron, 1995b] and, for a detailed
study, companion paper n° 2). Using figure 46. this construct can be interpreted by considering the Stack mini-token.
This one moves along the horizontal axis. When present in color 2, another mini-token is created : this one is the
Bounded mini-token ; it'moves along the vertical axis erected in color 2. This mini-token is created in y. yis the source
of a selection on & (not full) and B (full). The mini-token automatically moves to not full because not full is declared as
being the initial node of the selection. When the Bounded mini-token is in not full, a starred pop message makes the test
not empty to be checked. If the condition is not verified, the Bounded mini-token disappears ; given the result of the test,
the Srack mini-token moves to empty. If the condition is verified, the Bounded mini-token stays in not full. A push:
message makes it move to the selection root. From there it goes automatically either to full or to not full. In full, besides
the special behaviour in case of a push. message, a pop message will make the Bounded mini-token to move back to not

full..

The derivation construct manages these constraints while being simpler than a constrained p-graph and more modular
than a a c-graph. Companion paper n° 2 discusses in length the Bounded-Stack example.

b) Mixins classes
b.1) First specification .

The Bounded supplement of behaviour is useful not only for describing the behaviour of a Bounded-Stack instance, but
also that of a Bounded-Queue instance (and many others). Hence, it appears a good idea to extract it from the Bounded-
Stack color graph and give it a name to reuse it conveniently whenever appropriate. We thus capture this Bounded
behaviour in what we call a mixin (since the term has alrcady got such a meaning). Still because the purpose of a mixin
is to be reused, transition and/or condition names are given abstract names (i.e. push: is replaced by put: ; and pop, by
get). The color graph depicted in the next figure corresponds exactly to the above cartesian representation. A mixin
color graph cannot be instantiated by itself : no creation transition exists ; in addition, it is not included in the list of
color graphs having predefined instances (such like /nzeger). The double bar indicates that its destiny is to be used in a
derivation. The stroke above the circular put: transition means in practise that no put: message is acceptable in the full
state (unwilling transition). The MAC table, which stores the attachment constraints, belongs to the mixin specification.

MAC
get IMP
put:  CIR
top CIR
condHV ~ Pv>0

Bounded

*get E = pwt:
@ —Cr>
full get full
Figure 48.

b.2) Parameterized mixin

The Bounded behaviour described so far is valid only when K>1, where K is the bound (i.e. the maximum number of
elements that can be stored in a given Bounded-Stack instance). To make the mixin as general as possible, an additional
mixin is provided for K=1. The parameter K is added to the MAC and each provided mixins is attached its own
condition depending on the K parameter. The underlying system builds automatically a parameterized mixin on top of
that and knows how to use it efficiently (the adequate mixin is choscn at creation time). Next figure shows the
corresponding specification of the Bounded mixin. ‘
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MAC

ge[ IMP
K=1- put:  CIR  |IK>1"  Bounded
e top  CIR _—
i condHv Pv>0
Bounded
—_— parameter K0 s

Figure 49.

The first mixin simply makes the put: transition be unwilling. The second mixin is strictly equivalent to the one shown
in figure 48 ; yet, it is reduced to an extreme simplicity due to default rules established in companion paper n° 2.

b.3) Textual specification

Next figure shows the textual syntax for N>1 (attachment constraints are not depicted). The mixin skeleton is a (possibly
multi-level) selection : the root node (numbered 1 by defaul!t) as well as the upper level selection are 1mp11cxtely declared.
This constrains (and simplifies) the specification : the user is only asked to describe the other nodes.

(defmixingraph Bounded
( (pigment 0 :test-not full)

(pigment f itest full) ))

(deftransition put: ( (8 Bounded (f P)) e) :unwilling)
(deftransition get ( (8 Bounded (f o))) )

Figure 50.

b.4) Derived color graph

Next figure shows theBounded-Stack color graph in visual form (K>1). Note that it can be made extremely concise
(middle part of the figure): between the double-bar separating the base and mixin color graphs, not empty (or 2)
corresponds to the hook node. The right part of the figure is taken from companion paper n°2. It shows the equivalent
c-graph obtained by expanding the left part according to our rules for mixin elaboration : the interested reader may easily
check no useless testings need to be done at run-time (in spite the graph is obtained from a parameterized mixin);

Bounded-Stack ‘

Bounded-Stack
Stack
empty
Bounded
"" ,m' 'u.‘.." lsh
an n, (pO)
(D)—
0
full ?get) full
Figure 51.
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Next figure shows the Bounded-Stack color graph in textual form. The derivation, like the composition operator, has a
list of superclasses. Note that the mixin class is named before the base one. (This is preferable, but not mandatory.)

(derivation Bounded-Stack ( (Bounded (put: :now push:)
. (get :tnow pop))
(Stack 2)))

Figure 52.
b.5) Additional class inheritance rules

Obviously enough, the algorithm which extends local inheritance to class inheritance works accordingly well in this
Bounded-Stack example. We simply want the definitions made in the mixin graph (Bounded) may refine similar
definitions at the hook node of the base graph (Stack) : (1) the mixin graph is visited before the base one ; (2) the
transitions defined in the mixin graph are implicitely declared as masking ; (3) the validity of the mixin graph is limited
(the base mark should be in the hook node). First two rules makes inheritance in this case not especially particular. Last
rule is implemented by making the mixin graph a constrained subtree (see companion paper n° 2). The declaration of the
mixin class before the base class in the list of superclasses is easy to check and to correct : the underlying system knows
which is a mixin and which is a base).

As an example, let's consider an instance of Bounded-Stack again. In colors 1 and 3, Bounded is not active, thus the
instance behaves exactly like a pure Stack instance. In any state (*, 2) (where * is any pigment of the Bounded mixin),
Bounded masks Stack : we thus obtain the desired behaviour.

cht figure abstracts the relationship between the three classes as a small hierarchy, like in OOP : note this manner is
quite abrupt since it omits to mention the hook node, an important detail in fact (compare with ﬁgure 51).

r

I Bounded-Stack —I

Figure 53.
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PART B : INHERITANCE OF IMPLEMENTATIONS

This part explains first how an implementation can be attached to one color graph (local implementation), then how an
implementation can be distributed into a hierarchy of color graphs (hierarchical implementation). Hence, respectively the
local inheritance rules for implementations and the class inheritance rules for implementations. This work is done -
considering first a Smalltalk-style implementation (no combination, systematic masking) and then a CLOS-style
implementation (systematic combination except in case of explicit masking). The solution finally proposed
encompasses in fact both styles.

6. IMPLEMENTATION OF A COLOR GRAPH

This section relates to the second question of the introduction (cf. subsection 1.1). First of all, it states how an
implementation is attached to a color graph. Then, it shows how the LOCAL INHERITANCE rules for TRANSITIONS
can be exended to IMPLEMENTATIONS. .

6.1 CONCRETE IMPLEMENTATION

A color graph represents the complete interface of a class, including its ancestor classes. It may well be implemented in
but one class. We term concrete implementation the attachment of methods and memory representations to a color
graph. The result is termed an augmented color graph.

Two novelties distinguish COP from OOP at this level : the possible attachment of several memory representations to a
class ; the attachement of two methods (termed "micro-methods") to a transition.

6.1.1 Memory representation

a) Principle

A memory representation may be attached to each color or pigment if not abstract (i.e. if not belonging to an abstract
dimension). A memory representation is made of a number of cells (slots in CLOS wording ; instance variables in
Smalltalk wording). Changes of representations (ex. : between two colors, two pigments or two palettes) and
combinations of representations (ex.: to get the representation of a blend made of two pigments) are done automatically.
Note a change of representations (change-rep) between two chromas is similar to a change-class in CLOS.

b) Example

As an example of different memory representations in a same color graph, one may well consider the following choice
for a Stack instance :

(a) no cells at all in the empty color ;

(b) an elements list in the other two colors.

STACK

empty

(defclass STACK ()
{ (colors 1 NIL )
(colors 2 3 (elements :accessor elements
sinitform ()))))
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In the previous figure, a specific pattern is used for each different memory representation ; a small bar represents an
automatic change-rep. '

6.1.2 Micro-methods
a) Principle

Two methods may in principle be attached to one transition : a pre-method at the transition source ; a post-method at
the transition destination31,

Next figure illustrates this using two small circles : a white one at the source ; a black one at the destination.

T

oT
(pre-mdhod)

T e
{post-mettpd)

Figure 55.

We use the term micro-method (or, more loosely, method) when we do not want to make a distinction between the pre-
and post-method ; or when this is not necessary, the context being unambiguous.

b) Examples

Frequently enough, a pre-method alone convenes : this matches the OOP case. Sometimes, a post-method alone is a

better choice ; other times, a couple of pre- and post-methods offers a-better modelling32. Let's illustrate the last two
cases.

b1) a single post-method

The second case is examplified with the Stack class again. Using the Stack representations described above, a pre-

method appears absolutely useless to implement the push: transition in the empty color (a cell is needed to hold the
pushed element, but this cell does not exist in the empty color) : a lonesome push: post-method is thus used.

STACK user defined:

; color 2
(defpostmethod push: ( (s STACK 2) e)
(push e (elements s)))

(defmethod pop ( (s STACK 2))
(pop (elements s)))

(defmethod top ( (s STACK 2))
O empty (car (elements s)))

; color 3
(defmethod empty ( (s STACK 3))
(null (elements s)))

Constants methods for empty in colors I and 2 (inside grey bordered
rectangles) are auwtomatically generated.

Figure 56.

31 Method qualifiers (cf. for example, the :before. :after. :around and primary methods of the standard method combination of
CLOS) constitute a different, orthogonal issue.

32 The distinction between the pre- and post-methods gets blurred when the same representation is used by the source and destination
nodes of the transition, i.e. when no representation conversion exists (this is notably the case of a circular transition). Yet, in a
number of circumstances, it may be conceptually clcarer to still distinguish a pre-method and a post-method.
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In the preceding figure, a unique post-method happens-to be used by both push. transitions : no push. pre-method exists.
The reason is simple : (1) this is the natural implementation of the first push: ; (2) this push: post-method alone also
convenes for the circular push: transition (attached to the not empty color), the unique constraint being to implement this
transition using a pre-method and/or a post-method.

b.2) a pre-method + a post-method

The third case is demonstrated with a Window class having a color iconified and a color opened33. The open transition
from this first color to the second one is obtained with a pre-method for erasing the icon and a post-method for displaying
the window itself (the iconify transition does the opposite using also a couple of pre- and post-methods). Such a neat
modelling cannot be rivalled by traditional OOP.

WNDOW

initialized

initialize
. : (defmethod open ( (self WINDOW 3))
initialized

move:

display position (premethod (erase self)) _
erase position: (postmethod (display self)))
I "..
e open (L
iconified expanied
. L iconify o

Figure 57.

For more details about the syntax of micro-methods (notably, concerning arguments), refer to [Borron, 1995b).

6.2 LOCAL INHERITANCE RULES FOR CONCRETE IMPLEMENTATIONS

This subsection extends the LOCAL inheritance rules : given the ones for TRANSITIONS, it devises new ones for
IMPLEMENTATIONS.

More precisely, given class C, its augmented color graph, and a C instance in a certain state, we are interested in finding

what memory representation is to be considered for this state, and what pre- and post-methods are to be activated upon

the reception of a valid message m. We term item, the memory representation, pre-method or post-method we are

looking for. These items are to be searched in the ancestor-graph of the instance in question. Under these circumstances,
we say that a dimension is to be inspected when the item is to be searched in the restriction of the considered ancestor-

graph to this dimension.

In the following, we first intuitively examplifies the relationship between LOCAL inheritance rules for TRANSITIONS
and LOCAL inheritance rules for IMPLEMENTATIONS. Then, we specify the latter rules.

6.2.1 Introduction
a) Motivation

We already know the LOCAL inheritance rules for (regular) TRANSITIONS :

— regular transitions are inherited along the reflex transitions (except along those flowing from a decomposition) ;
— in case of a composite transition, the destination is obtained by composing the elementary destinations ;

— an inherited i-circular transition is circular ; otherwise, the destination is to be computed dynamically ;

Knowing that TRANSITIONS are inherited, it is very temptating to devise rules for inheriting IMPLEMENTATION
items (memory reprsentations, pre- or post methods) along the same reflex transitions.

33 This example is also drawn from [Chambers, 1993], subscction 3.5, page 219.
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b) Example

Consider, for example, a memory representation defined in color 3 of the Stack c- graph : it appears natural to inherit this
one in colors 1 and 2. Masking may also be demonstrated in this example : it occurs if a decision is made to choose a
specific representation for color 1 (notably, one that offers no cells in this color). (See next figure.)

N

STACK

empty

(defclass STACK ()
( (colors 1 NIL )
(coloxs 3 (elements :accessor elements
sinitform ()))))

push:

Figure 58.

¢) Tackling strategy

Somehow, we are facing —at a different level- a problem encountered in OO languages with class inheritance. The
ancestor tree plays here the role of the class hierarchy. Being interested in automatic combination of items, we first
consider a Smalltalk-style implementation delaying a CLOS-style one to the end of PART C. In other words, we first
focus on a style of implementation that, given some order, a priori systematically selects the first item satisfying some
criteria and systematically ignores the next ones (implicit masking). Once this style of implementation will be fully
described (i.e. when described in a hierarchy of classes), we will turn to the case of the a priori systematic selection and

combination of items that satisfy the criteria. 34

d)_Proposal

The solution we propose is directly modelled from the handling of transitions (see subsections 4.1.2 and 4.2.2) :

— as for transitions, it consists in inspecting each dimension in turn and selecting each time one and only one valid item
if it exists. (In fact, all dimensions need not be inspected systematically : for example, when searching a method m,
are only involved the dimensions for which exists the transition m in question.) The rule is that each involved
dimension should be satisfied once and only once ;

— as for transitions, items are searched along the reflex transitions when not found locally (local inheritance) ;

— as for transition destinations, a combination is to be donewhen the selection by dimensions has yielded several items.
In a c-graph, no combination is ever necessary (one dimension). In a p-graph (N dimensions), a combination is often
required. (Note that the combination of dimensions has nothing to do with the CLOS-style combination since the
concept of dimensions is proper to COP.)

Next subsections progressively describe the solution, first in a c-graph (one involved dimension at most), then in a p-
graph (N involved dimensions at most). Finally, possible pre-treatments are described. (The rules we propose are
termed "search” rules instead of “inheritance” rules to avoid as much as possible a confusion with class inheritance.)

6.2.2 C-graph proposal

Here, the considered class C is defined along a single dimension (the state.space has one axis). If not abstract, this
dimension is systematically involved when looking for a memory representation ; for a pre- or post-method, it is
involved only when the corresponding transition exists (if it does not : the implementation is erroneous vs. the
specification).

34 justification : the Smalltalk-style is easicr to tackle first than the CLOS one. An augmented color graph may be complex in term of
items since it a priori concentrates in one place the combination of a number of incremental color graphs (one per class in the
considered hierarchy). An implicit systematic masking thus brings a uscful simplification when facing the implemetation problem for
the first time.
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a) The c-ancestor-tree local search rule

Here is the rule, also termed the "c-graph local search rule”. In a c-graph, a single item is to be selected going up in the
c-ancestor-tree of the considered chroma. Along each possible path, an item is chosen if one exists : this item is the first
one encountered (the most specialized one) if several exist (masking effect). When the same item is found on different
paths, it is retained but once. If this process results in the selection of one and only one item, this item is returned. If no

item is selected, nil is returned (this may leads to signal error n°1). Otherwise (more than one item), an error is signalled
(error n® 2).

nil result :
— when searching a representation, error n° 1 is systematically signailed ;
~— when searching a micro-method, error n° 1 is signalled only when both the pre-method and the post-method searches

have produced a nil result. (Note that two a priori different ancestor graphs are to be considered : one rooted at the
transition origin for the pre-method ; one rooted at the transition destination for the post-method.)

b) Erroneous cases

b.1) two kinds of errors

— Error n° 1 : no valid item (memory representation, pair of pre- and post method) has been found in the c-ancestor-
tree. This may be because no such item effectively exists in the c-graph or because the intended one was wrongly
placed.

— Error n°2 : several paths converge to the considered chroma and two or more different valid items have been found.
One item at least is wrongly placed or should be suppressed.

b.2) examples

Next figure shows the Age color graph with one age: method (correctly implemented), one have-birthday method and
two bedtime test methods. The last two methods are incorrectly implemented. Both kinds of errors are examplified :

— have-birthday : the placement of the method convenes for child and teenager ; but does not provide a method for
adult (error n° 1). The method should be moved to node 2 (age). '

— bedtime : suppose the idea of the user is to specify a method for any possible substate (child, teenager or adult) of an
initialized Age instance : this default method will be installed in color 2 (age). This choice is perfectly correct. Suppose
now the user decides to refine the model and specifies a different bedtime method in node 3, the idea being to specify the
same method for child and teenager. Then, this augmented c-graph is incorrect : in child and teenager, two different
bedtime methods are in fact inherited and none masks the other one (error n° 2). The bedtime method attached to node 2
should be moved to node 7 (adulr). Less elegantly, the same effect is obtained by moving the bedtime from node 3 to
nodes S (child) and 6 (teenager) : in this case, when a search is done in node 5 or 6, the method found locally masks the
method attached to node 2 (being attached to a substate of node 2, the former is a priori more specialized than the latter).

Age

bt = bedtime

bt hb = have-birthday

Cyerercrrrrrraeres

* hb
% %
child teenager adult
Figure 59.
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c) Abstracting the correct results

Next figure abstracts the correct results for an instance of a class C in a certain state. The unique dimension d is
represented by a single line since one and only one item (of a given type : representation, pre- or post-method) is selected
even if several paths converge to the considered chroma. An item is depicted by a small bubble : a grey squared one for a
memory representation (mandatory if d is not abstract) ; a labelled white rounded one for a pre-method, a labelled black
rounded one for a post-method (at least one of the latters is required : hence three cases). The class C is represented by a
large circle encompassing its items. These figures are termed dimension diagrams.

C Cc C

Figure 60.

When class inheritance will be considered, a line in a dimension diagram will generally traverse several classes, each one
possibly adding its own items (those of a subclass masking those of a superclass in our Smalltalk-style hypothesis) : a
line represents thus a refinement path vs. a given dimension. (Loosely speaking, we say —as above— that a line
represents a dimension). In a state diagram like the one shown in figure 33, the line associated to a given dimension can
be interpreted graphically as orthogonally traversing the various color graph contributions along the corresponding axis
-(from the least specialized to the most specialized) : in the cited figure, the queue line traverses the Queue c-graph and
the STQ contribution (i.e. p-graph projection onto the queue dimension) for the gueue dimension (similar remark for the
stack line).

6.2.3 P-graph proposal

The p-graph | search and combination rule

a.l) basic idea

A p-graph exhibits N dimensions (in other words, the state space has N axes) whereas a c-graph holds but one. The idea
is thus to consider each dimension in turn if it plays a role vs. the item to be searched (involved dimension) and to apply
it a generalization of the "c-ancestor-tree local search rule” used in a c-graph. This generalization is termed the "p-
ancestor-tree local search rule”. Each time it is applied to a p-ancestor-tree, it normally produces an item. When all
involved dimensions have been considered, the obtained items are then combined.

a.2) involved dimensions/p-ancestor-trees

The involved dimensions/p-ancestor-trees (be I their number) are those that play a role vs. the item to be searched.

-> all dimensions/p-ancestor-trees are involved when scarching a representation (I = N)

-> when searching a micro-method, are only involved the dimensions/p-ancestor-trees from which the corresponding
transition is (actually or virtually) inherited : only one in case of a simple unconstrained transition attached to a pigment
(I=1) ; several ones otherwise (composite transition, constrained simple transition, or simplc unconstrained transition
attached to a blend (or a super-blend : see subsection 6.2.4 on pre-treatments) ).

a.3) the p-ancestor-tree local search rule
In a p-graph, the "p-ancestor-tree local search rule" generalizes the "c-ancestor-tree local search rule” used in a c-graph.
Basically, each involved p-ancestor-tree (restriction of the ancestor tree to one dimension) is considered in turn as a c-

ancestor-tree (one dimension). The difference is that nodes in a p-ancestor-tree may be attached items that are valid not
only for the considered dimension, but also for a number of other dimensions.
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Each involved p-ancestor-tree should a priori provide one item and only gne. This item should be the most
specialized one (same rule as in a c-ancestor-tree). The degree of specialization of an item is due both to its attachment
chroma and its clause. Here are two common subcases :

— if several items attached to a given node satisfy the search, the most constrained (and thus, specialized) one is
selected. (If this item had been attached to a blend as well as the other candidate items found at the same place, this
item would have been selected since its blend would have been visited before the other considered nodes : in other
words, the considered item masks the other candidate items whatever the way it is attached).

— If two valid items having the same clause are attached to two nodes along a same path, then the lowest item is to be
selected (this generalizes the c-graph case).

Note that an involved p-ancestor-tree may well not provide a given item by itself but may be declared to do so
(possibly a posteriori) by an inspection in another p-ancestor-tree. Such a situation occurs for a constrained item : this
one is physically attached to a node in one (or several) p-ancestor-tree(s) and virtually attached —by its clause— to one
or several other nodes of other p-ancestor-trees.

Given all this, the algorithm should return the most specialized item in the p-ancestor-tree. If not unique, an error is
signalled (error n°® 2). If no item is found, ni! is returned (this may leads to signal error n°1 : concerning methods, an
error is signalled —as above— only when both the pre-method and the post-method searches have failed.)

a.4) duplicate elimination

At this point, each involved dimension has been examined (application of the "p-ancestor-tree local search rule”) and
—supposing that no errors have been detected— each one has provided a single item, the most specialized one. All these
I selected items are listed in the order of the dimensions that provided them. Each p-ancestor-tree inspection being
independent, a same item may have been selected as a result of n inspections (1<n<I). Duplicated items (n22), if
existing, are eliminated : only one occurrence, the first one in the order of dimensions, is retained per duplicated item.

a.5) combination of items

Each involved dimension is now satisfied once and only once. Retained items are then combined when more than one
exist. The default combination method and the detfault combination order can be modified thru meta-object protocols

possibly encapsulated under user-friendly options or pnmmves35 (as CLOS does [Kiczales et alii, 1992]). The result of
the combination is returned.

The default order to combine items is the order of dimensions in the decomposition construct. The default method for
cells is the concatenation ; it is a AND for the micro-methods implementing a testing transition and a PROGN for the
other micro-methods3®. In case pre- and post-methods exist, pre-methods are executed first, then the post-methods (in
reverse order) : in between, the instance state changes.

b) Abstracting correct results

Using dimension diagrams, next figure abstracts a few correct results for an instance of a class C in a certain state. Each
diagram is drawn in case of three dimensions. Memory representations are not shown. In the first case, a specific pre-
method exists for each dimension ; in the second case, a single couple of pre- and post-methods exists for the first two
dimensions, and a pre-method for the third dimension ; in the third case, a pre-method exists for all three dimensions.

C C

Figure 61.

35 The default micro-method-combination can notably be changed using a dedicated option in the deftransition. For example :
(deftransition m (...) (:micro-method-combination +)). (This is analogous to the :method-combination option in a CLOS
defgeneric definition.)

36 1In less technical terms, they are exccuted in sequence ; the result of the last one is returned (it is the result of the combination).
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¢) Erroneous cases

As above, we can distinguish two kinds of errors, the same as above. yet generalized since we now consider several
dimensions instead of a single one.

— Error n° 1 : no valid item (memory representation, pair of pre- and post method) has been found for (at least) one
dimension of the p-ancestor-tree.

— Error n°2 : two or more valid items can be selected for one dimension of the p-ancestor-tree. These items satisfy the
same number of dimensions but they differ by one or more dimensions.

Next figure illustrates both errors using dimension diagrams. In the first case, dimension d2 is not satisfied ; in the
second one, dimension d2 is a priori satisfied twice with a first pre-method satisfying dimensions d/ and d2 , and a

second one satisfying dimensions d/ and d3 : in the third case. the pre- and post-methods are separately acceptable, but
they differ on the aggregation of dimensions (pre- and post-methods may not exist at the same time, but when they exist

their dimensions should agree).
| .

Figure 62.
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d) More about duplicate elimination
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Figure 63.

The above figure illustrates duplicate elimination. Here, Nisequal to 4 ; and ], to 3. In the considered instance state,
when a m message occurs, “the p-graph local search and combination rule" is run. Dimension o/p is considered first,
then dimension A/p and finally dimension 8/p. Selected methods (pre-methods) are, in order, my, my and once again my,
(mx denotes the m method found in node x). . (The same result would have been observed if the my item had been
attached to either B or p ~in place of x— and thus respectively constrained by either p or B : the m and mp methods
would have been masked). :

Item my is thus duplicated. The above algorithm keeps but its first occurrence : the selected items after duplicate
elimination are thus m, and my (in this order). How is this justified ?

(1) The duplicated item does require (informations stored for) both dimensions at once : unless uncorrectly modelled, this
item cannot be split into two independent parts (ex. : considering a Circle instance, a draw method reqmres both the
radius and center informations). This justifies that only one occurrence is to be kept.
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(2) A choice is thus to be made among all its occurrences. In practice, the choice is restricted to the first or last one.
Selecting the first one is coherent with the order of dimensions, an important point for enabling masking and
refinement.37 In the same vein, it will also be coherent with the CLOS-style implementation (see section 8
afterwards). (Note by the way that methods mf and mp are masked in our example (selected items are encircled,

masked items are not).
o

6.2.4 Pre-treatments

Pre-treatments enable the use of super-blends and embedded selections. They should not be confused with local
inheritance. The logical relationships involved with super-blends and embedded selections normally escape to the
topological mechanism of local inheritance : the pre-treatments defined below allow these relationships to be taken into
account and to be uniformly treated at run-time by local inheritance.

a) Embedded selections

A chroma (in a c-graph or in a p-graph) may belong to several selections. (An example will be given afterwards for the
Person color graph.) By construction, one of these selections encompasses the other ones. Hence a distinction between
the outer selection and the inner one(s). When such a topology is encountered, the user is not required to specify testing
methods at the ephemere nodes of the inner selections. Let's consider the outer selection : because the testing methods
attached to its ephemere node are valid in all its basic nodes, these methods are also valid for the inner selections (at their
ephemere nodes). These attachments can be done automatically in a pre-treatment phase.

b) Super-blends

Super-blends exist only in p-graphs. Designed for cognitive reasons, a super-blend is a facility meant to symmetricaly
express composite transitions and items valid for all states that can be formally materialized by the conjunctions of the
basic nodes of selections made along different dimensions (a regular p-chroma may also be part of each conjunction
too) : the involved constraints need not to be artificially separated into a clause and an attachment p-chroma. (An
example in figure 13 is the super-blend 15 to symmetricaly express the. long-lived transition -and possibly method- in the
Person c-graph.) Super-blends are optional : depending on his/her sense of symmetry or any other reason, a programmer
may use them or not. Transitions and items defined in a super-blend may be transformed into equivalent constrained
transitions and items attached to a p-chroma : the result of ANDing the p-chroma and the clause should be equal to the
super-blend. As for embedded selections, this can be done automatically in a pre-treatment phase. This pre-treatment
provides uniformity in the rest of the article ; yet, an actual implementation may well manage super-blends in a different
way.

6.2.5 Examples

Let's mention a few examples, the first ones being taken from the Person color graph.

a) Person example

Next figure shows how methods can be attached to the Person color graph.

The three have-birthday transitions may be implemented by one micro-method (by default, a pre-method) in the age
pigment : the micro-method is common to each possible alternatives (child, teenager, adult) and is retrieved by
inheritance in each case. A boy or a girl (or any fully initialized instance) inherits the have-birthday transition and uses
the same method for its implementation.

Conversely, the unique expected-lifespan transition is implemented by two micro-methods (by default, pre-methods): one
in the male pigment. one in the female pigment.

Bedtime is basically like expected-lifespan : the transition is factorized, but the methods are specific. Yet, instead of
specifying one method for each case, one was attached —for demonstration purpose— to the ephemere node age : it thus
acts as a default. It is masked in child and teenaager, and is inherited in adult.

37 Note, however. that a systematic masking in the order of dimensions cannot be guaranteed in all cases : in our example, it is
satisfied if my does not exist : mg then masks my; ; and my; masks np. If m exists, then -due to the interleaving of my, betwen the two

occurrences of my, only m, can mask my (the first dimension masks the second one), but my, cannot, at the same time, masks my (the
second dimension cannot mask the third one).

48



The long-lived [3] transition may be implemented by one micro-method (by default, a pre-method) attached either to the
pigment age or to the pigment sex. In any case, the method is constrained by the other pigment. When finding it in the
age p-ancestor-tree or in the sex one, it is thus declared as being found in both p-ancestor-trees. The success condition is
hence satisfied. Being duplicated, the method is retained once after duplicate elimination : the selected occurrence is
-formally the sex one (leftmost dimension). Note this solution works for all initialized instances, not simply for the boy
and girl cases. Note also the same result should be obtained if the long-lived transition and method are formally attached
to the super-blend 15 (cf. figure 13) : among other approaches, this is obviously the case if a pre-treatment is applied (cf.
§6.2.4.b).

The micro-methods for testing testing male and female are placed in the ephemere node 3. Note that one of them.is not
strictly necessary. It may be deduced from the other (because basic nodes should form a partition of the ephemere node).

Similarly, the micro-methods for testing child, teenager and adult are placed in the ephemere node 7 (only two of them
are strictly necessary). Note that the user may omit the specification of methods for the inner selections, i.e. for
respectively testing child (and/or teenager) in ephemere node 8. and reenager (and/or adult) in ephemere node 9 (cf.
§6.2.4.a). These methods are obtained from ephemere node 7 (outer selection). Consider, for example, node 8 : because
the child testing method of node 7 is inherited both in nodes 10 and 11, it is valid in node 8.

The micro-methods for testing child, teenager and adult are placed in the ephemere node 7. Note that one of them is not
strictly necessary. It may be deduced from the other two (basic nodes should form a partition of the ephemere node).

Other methods may be deduced by the system. These are constant methods sex (in nodes 2 and 3) ; age (in nodes 6 and
7) ; child, teenager, adult, boy and girl (in nodes 10 to 14). These are also boy and girl AND methods for any fully
initialized instance.

PERSON
SGX ——g—‘
O age:
O sex:
o bt O child
lI [3] /Ohb O teenager
fe? ll l3]
O male
‘«" "¢"/
el o male % Qel
female Q
™~
~
~
~
el = expected-lifespan Il = long-lived
bt = bedtime hb = have-birthday

Figure 64.

Using a dimension diagram, next figure abstracts —in terms of dimensions— the search of methods for a fully initialized
Person instance. The two dimensions exhibited by Person are represented by two lines. Methods are depicted by
labelled bubbles. They are shown along one or both of these lines depending on the p-chroma to which they are attached
in the Person p-graph, i.e. depending on the dimension(s) being involved. Let's suppose a have-birthday message is sent
to the considered instance. Because the have-birthday transition is attached to a pigment of the age dimension, the search
for a have-birthday method is done only along the rightmost line (age dimension). On the opposite, an expected-lifespan
message implies a search uniquely along the leftmost line (first dimension). For answering a long-lived message, an
adequate method is searched along both lines (i.e. both dimensions) from left to right : the same method being found
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twice, duplicate elimination yields one occurrence of the long-lived methbd. Note that a slightly different figure would
be displayed for a non initialized or a artially initialized instance, a number of methods being different.

child
teenager
long-lived
bedtime
have-birthday

expected-lifespan

boy
girl
long-lived

Person

~ Figure 65.

b) Other examples

An example of micro-method combination is given by an Homothety operation acting on a given figure. In a Circle class,
an homothety micro-method will be attached to the radius pigment, and one to the center pigment. According to the
above proposal, these two micro-methods will be automatically combined using PROGN. This yields the correct result.

~An example of AND combination for evaluating conditions appears in subsection 7.1.3.
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7. HIERARCHICAL IMPLEMENTATION

In this section, we expand LOCAL inheritance rules for IMPLEMENTATIONS to CLASS inheritance rules for
IMPLEMENTATIONS. This is done progressively : first, we consider superclasses only ; then, we add a local
description ; finally, we extend our proposal to a whole hicrarchy of classes.

7.1 _CONSIDERING SUPERCLASSES ONLY

In this subsection, we consider a class which is a pure combination of its superclasses (no increment attached to it : no
extra dimension ; no masking items).

7.1.1 Rules

Given a combined class p-graph, CLASS inheritance for TRANSITIONS was obtained by generalizing the LOCAL
inheritance rules for TRANSITIONS : it was based on clearing all its p-subgraphs from their transitions and searching
these transitions in superclasses (i.e. direct ancestor classes) dimnension by dimension. Considered superclasses were the
involved ones. The same approach is considered here for implementation items.

Ignoring erroneous cases, our LOCAL inheritance rules for IMPLEMENTATIONS state that

- (a) dimensions are ordered according to the order stated in the decomposition construct (given by their first pigment) ;
. (b) items are searched dimension per dimension. the considered dimensions being the involved ones ;

(c) concerning methods, the involved dimensions are defined by the the transitions they implement ;

(d) concerning memory representations, all dimensions are involved if not abstract ;

(e) a single item is selected by dimension, the most specialized one (masking effect) ;

(f) if a same item is selected for several dimensions (duplicated item), only its first occurrence is retained ;

(g) all retained items are combined in the order of dimensions (default) ;

(h) the concatenation is used for combining the retained memory representations (default) ;

(i) the AND combination is used for combining the micro-methods retained for the testing transitions (default) ;
(j) the PROGN combination is used for combining the other retained micro-methods (default) ;

If one dimension is exhibited per superclass, then the above rules translate into :

(1) superclasses are ordered according to the list of superclasses ;

(2) items are searched class by class, the considered classes being the involved ones ;

(3) concerning methods, the involved classes are defined by the the transitions they implement ;

(4) concerning memory representations, all classes are involved if not abstract ;

(5) a single item is selected by class, the most specialized one (masking effect) ;

(6) if a same item is selected for several superclasses (duplicated item), only its first occurrence is retained ;

(7) all retained items are combined in the order of superclasses (default) ;

(8) the superclasses memory representations are combined using a concatenation (by default) ;

(9) the superclasses micro-methods for testing transitions are combined using a AND combination (by default) ;
(10) the other superclasses micro-methods are combined using a PROGN (by default) unless a masking eftect is sought.

Next two figures illustrate this with a class CO having four superclasses (C1, C2, C3 and C4 in this order), each
'superclass exhibiting a different dimension. C0 is pure combination of its superclasses. An instance of this combined
class is considered. In a given state of this instance, a m transition is found in each superclass except C3 : involved
superclasses are thus C/, C2 and C4. A method (pre-method) m is found in each of these classes. These three methods
are noted mj in CI, m2 in C2, myg in C4. The (default) combined method is thus (progn mj m2 mg4). (Arguments are
omitted.) The first figure shows the class hierarchy and the methods attached to each class. The second figure expresses
how methods are specified vs. the dimensions (dimension diagram).
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Figures 66 & 67.

A class may in fact exhibit several dimensions. If this occurs, the dimensions are primarily sorted by the order of
superclasses in the list of superclasses, and secondarily by the order of dimensions in superclasses exhibiting several
dimensions. The above rules are modified accordingly, the main principle still being to proceed dimension by
dimension. Note that one item may now correspond to several dimensions.

Next two figures illustrate that with a class C0 having three superclasses : C/.2 which provides two dimensions, C3.4.5
which provides three, and C6 which provides only one. CO is pure combination of its superclasses. As above, let's
consider an instance of C0O in a certain state. To answer a given message m, CI.2 is supposed to provide one
(pre)method for each of its two dimensions (be m} and m2 these two micro-methods) ; C3.4.5, one that combines its first
and third dimensions (be m3 § this method) and one for the second dimension (be my4 this method); C6 provides one
(mg). The (default) combined method is thus (progn m; mp m3ms mg mg). (Arguments are omitted.) In this
example, all dimensions (and classes) are involved. The first figure shows the class hierarchy and the methods attached
to each class ; the second figure brings precision in showing how methods are specified vs. the dimensions (dimension
diagram).

mi m2 m3.5 m4 mé6

(progn mymp m35 my mg)

Figures 68 & 69.

7.1.2 Modelling the combined method

Let's suppose, as initially done above, that one dimension is stored per superclass. For any given reachable state, say (X
Y ...), and any given acceptable messagem in this state, at most one pair of micro-methods is sel er superclass by
the above algorithm. The next figure models that. Superclasses are listed in the order of their declaration : each one
determines a level in the figure. X, X'.... (resp. Y, Y',...) are instance states of the first (resp. second,...) superclass.
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The class inheritance rules for transitions determine in these conditions what transitions will a priori be triggered. This
determines in turn the next state (X' Y'...) or, more exactly, the group (X' Y'...) in which the next state will be found.
Classes for which no transition exists are not involved (their [evel may well be removed from the figure).

The inheritance rules exposed above determine what pair of micro-methods implements each transition.

A ehange rep N
, CAXYL)-s(X YL T
S

list of direct superclasses

Figure 70.

In these conditions, the general form of a combined method is thus (progn mp] mp2 Mpn  Mgp.. . Mg2 mql).

(Arguments are omitted.) Here, mp; . and mgj are respectively the pre- method and the post-method in the ith superclass.
Some mp; and/or mgj may be absent.
pi qi may

If some superclasses hold more than one dimension, the form of the result is basically the same. Unless not involved,
each superclass is associated to a group of one or several levels. Each level may correspond to one or several (involved)
dimensions. Next figure models that for an example inspired from the one described by figures 68 & 69 (post-methods

have beeen added).
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Figure 71.
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7.1.3 Example

Let's consider again the STQ class with superclasses Stack and Queue in this order (see figures 33, 34 or 36). Be (b y) the
considered state, i.e. the one that combines not empty in superclass Stack and not empty in superclass Queue.

If the message under exam is push:, then a single transition is a priori involved, the one that outcomes from node b in
Stack. Consequently, a single superclass is involved, the Stack one. The considered transition being circular, the next
state is (b y). Let's suppose the implementation of superclass Stack is the one described in §6.1.2.b.1 (no push: pre-
method). Then the search algorithm discovers but the push: post-method attached to node . No combmauon is to be
done : the transition and the method to be run coincide with those of Stack.

If the message under exam is pop, then two transitions are a priori involved, the (b ¢) one in superclass Stack and the (y
z) one in superclass Queue. Yet, given the definition of STQ, the pop transition is a masking one : the Queue
contribution is thus rejected. Hence, a single superclass is in fact involved, still the Stack one. The next state is a
substate of (¢ y). If the Stack class is implemented as done in §6.1.2.b.1, then a pop pre-method is found in node b of
Stack. The remark done for push: is valid in this case too.

If the message to consider is top, a similar analysis can be made. The difference is about the next state : it is (by).

If the message to consider is empty, then two transitions are a priori involved : the first one is (b b) in Stack ; the second
one is (y y) in Queue . Hence, (a priori) both superclasses are involved. The next state is (b y). Here, methods are
constant methods : the Stack one delivers a false answer ; the Queue one, too. The result -which ANDs both- is thus a
constant : it is false.

Etc.

These results are shown below for push., pop and empty.
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Figure 72.

7.2 TAKING INTO ACCOUNT A LOCAL DESCRIPTION

We now consider that the root class C0O provides a local description. As for the inheritance of TRANSITIONS, we

distinguish a local description that does not add extra dimensions (noted VSubCO) and one that does (noted VSuperCO) :

a) in the former case, the root class may well propose refined items : each one will mask one or several items in
superclasses

b) in the latter case, the increment can be taken into account as a virtual superclass, the first one in the list of
superclasses. As for transitions (cf. §5.2.1.b.4), CLASS inheritance rules for IMPLEMENTATIONS can thus be
extended simply to take into account an increment.

Of course, both cases may be mingled in a same class CO0.

In the next subsections, we first develop the virtual superclass modelling before illustrating it with the Bag example. An

example with a mixin (Bounded-Stack) will also be shown The Person example is used for illustrating a class
exhibiting refined items only.
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7.2.1 Rule

As for transitions, the increment (possibly along several dimensions) is considered before all superclasses. We keep

considering it as a virtual superclass (noted VsuperC0). Let's consider the various cases in order of increasing
complexity.

a) One dimension per superclass & No refined items.

In the simplest case, only one dimension is supported per superclass (virtual one included) and no refined items are
provided by CO. Let's c;onsider an instance of CO in a given state. If mp; and mg; are respectively the pre-method and
post-method available in a superclassCi for handling a message m in a certain state (with / =0 for the virtual superclass),
the general form of the combined method is (progn mpg mp; mp2 ... mpn mgp... mg2 mg| mgp) . Note that methods
mpi and mg; may be used in other states than the one under consideration. :

Next two figures illustrates this for a class CO that inherits from three actual superclasses. Considering only pre-methods,
the (default) combined method is (progn m0 mj m> m3). (Arguments are omitted.) The first figure shows the class
hierarchy and the methods attached to each class (the virtual superclass is represented as an oblique line) ; the second
figure shows how methods are specified vs. the dimensions (dimension diagram). VSubC0 represents the refined items
(none in this case). i

Cc2
d2
C1
/ do 3
m1i (o) (@] m2 o m3 m d3

| mo

VSuperCo |

‘ ‘ VSubCo0
Cco co
(progn MmO m1 m2 m3)

Figures 73 & 74.
Note that classes CI, C2 and C3 should themselves be dccomposed into a virtual superclass and a virtual subclass. The

figure was simplified for these classes since they propose no refined itemns. For each one, the virtual subclas is not
represented ; and the virtual superclass contour is confounded with the class contour itself.

b) Possibly several dimensions per superclass & No refined items.

If some superclasses (virtual one included) exhibit more than one dimension, the form of the result is not very different
from above. In a superclass exhibiting several dimensions, a method may now be defined along two or more of its
dimensions.

The example shown in the next two figures is derived from the one depicted in figures 68 and 69. CO inherits from
Cl1.2,C34.5 and C6. C1.2 (resp. C3.4.5 and Cg) is a class that exhibits two (resp. 3 and 1) dimensions ; the virtual
superclass itself is supposed to exhibit three dimensions, noted d0, d0' and d0”. Pre-methods m3 5 and mg ¢ illustrate
the case of (pre-)methods defined along several dimensions in a superclass, possibly the virtual one.
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Figures 75 & 76.

This modelling may seem satisfactory. Combined items, i.e. items defined along several dimensions (like m3 5 and
myg, o) are not considered as being refined items. However, suppose a method m0 was existing, then m0.0’ would get the
status of refined item and would thus be part of VSubC0O (m0 would itself be part of VSubC0). A similar remark can be

made about m3.5 vs. VSub(3.4.5 considering a method m3 in C3.4.5. Next subdivision takes care of that and proposes a
better modelling38,

c) Possibly several dimensions per superclass & Refined items.

Items defined in superclasses may be refined in CO : they may be defined along one or several dimensions inherited from
one or several superclasses (including the virtual one). These items may thus mask items defined in actual superclasses.
In the next two figures, such (pre-)methods are noted m'... Considering an instance in the same state as in above figure,
m's masks mg in C6 ;m’'gr ;] masks mgin the virtual superclass and mj in C1.2 ; m'0.0' (formely m0.0") masks m0.
This illustrates that a line represents a refinement path vs. the associated dimension. (Since masked methods were not
shown in our previous dimension diagrams, m0, m0", m; and mg should normally not appear in figure 78.) Although

not shown in the figure, items defined in C3.4.5 should also be separated into VSuperC3.4.5 (m4) and VSubC3.4.5
(m3.5). '

o

[ciz2 | [c3as | [[cs ]

VSuperC — ,.\\
VSubCo ( mo.0’ \

Figures 77 & 78.

(progn m'g o mM'gry Mg M35 My M)

38 Distinguishing a combined virtual leve!l doesn't help : m3.5 would be associated to it ; if m3 is added in C3.4.5, m3.5 nothing
changes for m3.5 ; but, if m3 is now move to a superclass of C3.4.5. m3.5 would clcarly become a refined item. This internal change
of status for an external reason is not satisfactory.
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Because each involved dimension should be satisfied once and only once, it is not possible to add methods in an anarchic
way : a method like m'2.5 or m'4.5 in CO (VSubC0 ) would cause an error since m3.5 would also be selected to satisfy
d3 : as aresult, d5 would be satisfied twice. '

Adding a refined method m5 in CO (VSubCo) normally produces an error (dimension d5 is satisfied twice due to the
selection of m3.5 by d3) unless we relax class inheritance with a supplementary rule': if an item (here, m3.5) satisfies
several dimensions in a superclass of C0, then CO inherits this item it it is not masked by an item of CO satisfying at least
the same dimensions (here, the concurrent itcm is m5). Strictly speaking, this rule means m3.5 is also inherited in case
both m3 and mS5 are defined in CO. (One can imagine that m3.5 possibly calls m3 and m5 when sent to a CO instance, and
similar methods in C3.4.5 when sent to an instance of this superclass.) In the rest of the paper, this rule is termed
"prevalence of combined items". It can be understood as a generalization of a basic idea underlying the "p-graph local
- search and combination" rule (which itself is a generalization of the "c-graph local search” rule) : get the most specialized
items first. This basic idea is to be retained, but its initial implementation —which basically keeps but the first
encountered item— is too narrow ; designed in case of a single p-graph, it needs to be adapted to a hierarchy of color
graphs.

VSuperCo

VSubCo0

(Progn m'gq m'gry Mamz5 my mg)

Figures 79.

In case of conflicts between two prevalent combined item, two simple rules apply :
(1) the most specialized one is selected vs. their common dimension(s) ;
(2) the order of dimensions is taken into account if the previous criteria does not suffice.

7.2.2 Examples

a) The Person example

a.1) Modelling

This first example does not add extra dimensions (no virtual superclass to consider), yet refined items are defined (the
virtual subclass exists). To display the virtual superclass, the alternative representation proposed for figure 25 is used
here : the superclasses c-graphs are normally shown ; the Person virtual subclass (the increment) is drawn like the Person
p-graph, but without any transition/condition names except for boy, girl and long-lived. This kind of presentation is
termed an augmented delta p-graph, or simply a delta p-graph.
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Figure 80.

Suppose the instance current state is boy (see next tigure). When receiving a have-birthday message, the search is first
made locally (age dimension) : no micro-method is found that way. The search continues in the involved superclass, the
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Age one : a have-birthday method is found in node 2. (This method is in fact valid for any Person instance the age of
which is initialized (be it child, teenager or adult].) If the long-lived message is sent to the instance, the local search
provides a method (attached to pigment 7 of Person)...

a.2) Dimension diagram
Next figure expresses, in terms of dimensions, how the search proceeds when searching a method for a totally initialized

Person instance : the sex (resp. age) dimension is represented by a line traversing the Sex (resp. Age) and Person
classes. A method is first searched in Person, then in one of its superclasses depending on the involved dimension(s).

_child
teenager
bedtime
have-birthday

male ()
expected-lifespan O

boy
girl
long-lived

Figure 81.

b) The Bag example

b.1) Description

Our second example is about the Bag class, a subclass of Object. The Bag color graph was shown in figure 39
(85.2.1.b.2). It results from the composition of a local increment with the Object color graph.

Next figure shows the augmented Object color graph (it exhibits one print method) and the augmented Bag p-graph (the
implementation defined for the local increment is, for instance, similar to the one of Stack in section 6 : it is characterized
by no elements cell in empty and a post-method put: in not empty). A specific print method has been attached to a and
another one to b, both with clause o.

b.2) Modelling

Given the above definitions, Bag can be understood as comprising :

— a virtual superclass (termed Bag-Virtual-Superclass or BVS for short) since the increment depicted above adds a new
dimension. BVS defines transitions, memory representations and methods (put:, get, empty) ;

— a virtual subclass (say Bag-Virtual-Subclass or Bvs for short) since Bag refines the print method of Object.

Figures 83 and 84 show apart the BVS c-graph and the Bag-Virtual-Subclass (in delta form) as they result from the above
definition. The latter inherits the print transition from Object. The two print methods are associated to blends a.o and
b.a to emphasize they do belong to the subclass of BVS and Object, and not to BVS (no print transition is defined in
BVS).
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Figure 82.

Bag-Virtual-Subclass
Bag-Virtual-Superclass g '

Figures 83 & 84.

b.3) Dimension diagram

Suppose we consider a Bag instance in a given state. When an items is searched for this state, the delta p- graph is first
examined. Then, due to class inheritance, inspection is done in the color graphs of its superclasses which are -in order-
the superclassBVS (i.e. the local increment) and then the superclass Object .
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In terms of dimensions, the Bag class adds an extra dimension (say bag) to the dimension inherited from Object (say
object ). The bag dimension is described by BVS. When searching is done, an item associated with both dimensions is
privileged ; if not found, the bag and object dimensions are inspected in that order : the search is done first in Bag , then
-if unsuccessful- in the adequate superclass (BVS or Object). An opportunity is thus given to mask an.item defined in
Object, here the print method, either by attaching an item to Bag for both the bag and object dimensions, or uniquely for
the object dimension. Next figure shows the associated dimension diagram : the object (resp. bag) dimension is
represented by a line traversing the Object and Bvs classes (resp. BVS and Bvs classes). The figure is drawn for a Bag
instance in a not empty state ; in case of an empty state, the get method would not be present in BVS.

Figure §5.

b.4) Searching methods

Let's consider a Bag instance in a given state and suppose we are looking for methods.

— Because the put:, get and empty transitions are defined for the bag dimension, the corresponding methods are
searched along this same dimension. They are found in BVS (i.e. in the local increment).

— The print transition being defined for the object dimension, a print method should satisfy this dimension : in Bag, it
can thus be attached to both the object and bag dimensions and/or to the the object dimension ; if not found in Bag, the
print method of Object is inherited (default method). Considering a Bag instance, two methods are found inBvs : one
corresponds to an empty instance ; one, to a not empty instance. Both mask the default print method of Object. 1In the
dimension diagram (just above), the method found for a not empty instance is represented by the bubble inside Bvs. It
satisfies both dimensions. This method is selected since it satisfies the involved dimension (here, object) once and only
once. It also satisfies the bag dimension which is not involved. This is not an error : a non involved dimension may be
employed, i.c. satisfied by a selected.item : the unique constraint is to satisfy this extra dimension once and only once
(as if it was involved39).

Note that these two print methods constrained by pigment o, and attached to the pigments a and b of the local description
(see figure 82) are equivalent to two methods constrained by pigment a and b (these cover all possible cases), and both
attached to pigment o. In the dimension diagram (just above), this does not make any difference. In the example, no
print method is attached in Bag to the sole o pigment. This could be the case if the memory representation in pigments a
and b were the same (attaching the method to both pigments ¢ and & is equivalent).

39 one way to understand that consists in developing an equivalent modelling. As done in §5.2.1.b.2/footnote 28, the abstract
dimension object is re-integrated into the Bag class. Similarly to the print transition, the default print method, initially stored in

Object, is also reintegrated into Bag. For example; it is attached to pigment & and is given the non void clause : [c]. Alternatively, it
can be attached to pigment ¢ and be given the non void clause [ ] ; or, it can be attached —without any clause— to a blend resulting
from the conjunction of & and c. In any case, there arc two involved dimensions : object and bag. Thus each one should be satisfied
once and only once, in particular the bag dimension.

i
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¢) _The Bounded-Stack example

The addition of a mixin can be considered as the addition of an increment. This is coherent with the inheritance point of
view : we saw that the mixin superclass should be placed before the base superclass (cf. §5.2.2.b.5). This increment is
added but in one state : compared to the behaviour of a Stack instance, the behaviour of a Bounded-Stack instance is
altered in color 2 only (nor empty). This state has substates full (pigment B) and not full (pigment o). When searching a

" method in (a 2) or (b 2), the search starts locally, then in the mixin, then in the base color graph. Due to the implicit
masking, items found in the mixin color graph are not searched in the base color graph. In this case, the full method is
found locally ; the other methods are inherited from the Stack superclass.

Bounded

Bounded-Stack

get -> pop
put: -> push:

Figure 86.

The above results may be presented in terms of dimensions. Next figure is drawn for a not empty instance: In this state,
the Bounded-Stack instance is described along its two dimensions, the stack and bounded one : the former (resp. later) is
depicted by a line traversing the Stack (resp. Bounded) and Bounded-Stack classes. When empty , a Bounded-Stack
instance is described along the stack dimension only. '
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bounded
(2

Bounded

" Bounded-Stack

Figure 87.

7.3 CONSIDERING ALL ANCESTORS

Having considered the inheritance relationship of one class with its superclasses, we now come to its generalization : the
inheritance relationship of this class with all its ancestors, direct or indirect. Whereas a class and its superclasses form a
tree, a class and all its ancestors do not generally constitute a tree but a DAG (Direct Acyclic Graph, or lattice): common
ancestor classes exist in the hierarchy as they are devised for sharing common properties (an example is the Object class).
As first step, we consider a tree structure (next subsection). Then, the DAG structure is considered (subsections
afterwards) : first, we sumarize our analysis ; then, we give examples ; finally, we propose a linearization .algorithm“0
after having discussed its role.

7.3.1 Tree Structure

Even if it does not correspond to the more general case, the tree structure is important in practice since parts of a given
hierarchy may well be trees (if not the whole hierarchy). A tree structure corresponds to single inheritance:

a) Inheritance rule

The whole process of searching an item (for example, a micro-method) in a given instance generalizes by recursion what
was done previously when considering a class having but direct ancestors (i.c. superclasses) :

- apply the local inheritance rules (more precisely, the "p-graph local search and combination” rule) in the corresponding
color graph ;

- if an item bas not been found locally for a given dimension, take the one in the corresponding superclass (same
dimension), by applying the same local search rule in the superclass color graph ; repeat this same process recursively
using the ancestors of this superclass in case of still unsuccessful search. If a dimension remains finally unsatisfied, an
error is signalled.

b) Example

As an example, we consider the following figures. They are derived from figures 77 & 78. First one shows a class
hierarchy. :

2

40" Given root class €0, a linearization algorithm produces a list Lcg of all the classes that belongs to the hierarchy H g of the root

class. In CLOS, this list is termed the class preccdence list (cpl, for short). Implicit but important : a list is ordered and any of its
elements appears but once it it. Besides the term linearization, we also use ordering in the same sense.
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Figure 88.

Next figure shows a dimension diagram for a given state. For simplicity, the parts VSuper and VSub of classes C0 and
$3.5 are not isolated.

(progn m'g o Mguy My Mg g My M'g)

Figure 89.

In our example, inheritance yields the same result than for figures 77 & 78.

64



c) More examples

If we interpret the above figure as the superposition of a number of situations, i.e. if previously selected methods may
well be absent, new methods will be selected (unless an error is detected). If these methods are in turn absent, other
- methods will be used (unless an error is detected). And so on, until no method is avalable.

c.1) running the "p-graph local search and combination" rule

The figure below lists the various possibilities depending on the situation. A situation is a set of cases. One case is to be
considered for each set of dimensions as listed below. The above result is obtained in situation (1 1 1 1.1 1). In situation
(12352 2), all conditions cumulate and the resultis (m'0.0' m0"” m! m2+ m3 m5+ m4- m6). In a given situation, all or
part of the methods above the selected ones may not exist in ancestor classes : the result is unchanged for a CO instance.

The table is established without taking into account the "prevalence of combined items" rule (§7.2.1.c). For dimensions
d3 and d5, if m3.5 and m3.5- do not exist, m5 gets selected : since m3.5+ gets also selected for satisfying d3, d5 gets
satisfied twice ; as a consequence, an error is detected. This is why, for these dimensions, line 3 also requires mJ to not
exist. For each dimension or group of dimensions, the last line (labelled "-") mentions the supplementary conditions for
having no selected items : usually, this is but the items that were previously selected (i.e. those mentionned in the line
just above). For the group d0 and d0', we have an extra condition : if m’0.0" is supposed to not exist, then an error occurs
since the dimension d0’ is not be satisfied ; thus, m0 should not exist too (or a m0' method should exist too). For
simplicity purpose, these last lines would not be mentionned in similar tables.

Dimensions Case Conditions to cumulate Methods to combine
do, do' 1 m'o,0°
- | meb o
do*, d1 1 o
2 e mg" m
| »f
1 ' mo
d2 2 2z ma.
3 |y Mo,
- Pad
1 m3.5
2 mas” m3 5.
d3, d5 3 e m3 54
4 ety m3 ms.
5 P‘S/ m3 ms,
_ P~ z
d4 1 mg4
2 bl my.
_ A
1 m'g
a6 2 }7('6 Mg
- %
Figure 90.
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Next figure represents the same results using an invocation sequence diagram instead of a table. This diagram lists the
successive possibilities (selected items) obtained for each dimension or group of dimensions : the conditions to cumulate
are now partly explicit (ex. : absence of m5 on the branch m3.5- / m3.5+), partly implicit (a possibility is selected if
previous ones do not exist). Given our example, the structure we get is a forest (i.e. a list of trees). An invocation
diagram does not mention classes. As such, it is a bit more abstract than the dimension diagram it derives from.

d5
d3 m5+
m3 m5'
S d2
a1 Et d6
m2+ | m3.5+ d4
do’ ”/
do .
o) )
m2- m3.5- m4- mé
moo m2 @ mas ma | ms
T ] I i
Figure 91.

¢.2) taking into account the ""prevalence of combined items' rule

The above table was established without taking into account the "prevalence of combined items" rule (§7.2.1.c). Let's
now take it. The table is not modified except for the group of dimensions d3 and d5. The presence of m5 is no longer a
source of error. Next figure shows the part of the table that gets modified.

Dimensions Case Conditions to cumulate Methods to combine
1 m3.5
2 et m3.5-
d3, ds 3 met m3 5.
4 masy m3 mg
5 95/ msg mg.
6 96-/ m3 Mg,

Figure 92.

Next figure shows the new invocation sequence diagram. No explicit condition is mentionned now for dimensions d3
and d5 (absence of m5) ; the branch d5 is modified (presence of m5 before m5- and m5+).



dt
“ do® m2+
do
,9[ mo" m2-
m'0.0' )
m'o”.1 m2
Figure 93.
7.3.2 DAG Structure

Let's now consider the general case : a DAG structure. This subsection abstracts our analysis. The subsections
afterwards expands it notably with a detailed example and an especially elegant linearization algorithm.

a) Unicity or multiplicity of inherited dimensions

In our analysis, we distinguish two cases, depending on whether a dimension inherited along two or more paths of classes
is duplicated two or more times or is considered as unique (default case). To take an example, it is clear that the identity
of a person (say, its social security number) is unique and cannot be cloned as it could be for a card number.

These two opposite ways of handling inherited dimensions may a priori seem irreconcilable. At this point, we have to
remember that the concept of dimension relates to the space in which the states of a given class of objects are described :
a dimension corresponds to an axis. Hence, the correct way to interpret the unicity or multiplicity of an inherited

dimension is the state space : in case of unicity, the dimension in question corresponds to one axis and only one ; in
contrast, in case of multiplicity, the axis is duplicated as many times as required.

Note that the choice between unicity and multiplicity is not to be made when specifying a composition (the specification
is the same). As shown by the STQ example, the choice can be further delayed and be isolated in a subclass.

b) Inheritance rule

b.1) Muitiplicity case

Suppose all dimensions inherited along two or more paths of classes are duplicated two or more times : the inheritance
structure, initially a DAG, is transformed into a tree. The above rule for a tree structure thus applies.
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b.2) Unicity case

For each dimension (axis), a sub-hierarchy of classes is a priori involved. What we do is to linearize each sub-
hierarchy. These independent linearizations may not agree on the order of common classes. Hence, the possibility of
conflicts for items. In this case, we say that the dimensions are conflicting. :

b.2.1) no conflict

o) organization to consider
When no conflict exists, the organization we get is a list of classes for each dimension. This is generally not a tree since
- any two dimensions may have several class sublists in common. However, all classes are listed in the same order. The
recursive application of the "p-graph local search and combination" rule, as for a tree, yields the correct result. No other

computation (ex. : sorting) needs to be done.

Let's take an example. We consider an instance of C0 in a given state. Three dimensions are supposed to éxist : dx, dy
and dz. Next figure shows an hypothetic dimension diagram obtained in such a case.

Figure 94.

B) running the. "p-graph local search and combination” rule

Recursively running the "p-graph local search and combination” rule on the same dimension diagram first selects mOxyz.
If mOxyz does not exist, we get two methods to combine : m/xy and m5z. If both mOxyz and mIxy do not exist, three
methods are to combine : m/x, m2y and m5z.. If one of these methods does not exist (in addition of mOxyz and mlxy), an
error occurs since one of the other dimensions will be satisfied twice (due to the selection of either m4xy or m3yz). We
thus have to suppose that both m2y and m5z do not exist (in addition of mOxyz and milxy). Given this, we have to
combine mlx and m3yz. Now, if we add a further condition (m3yz does not exist), the methods to combine are mlx, m3y
and m5z. Etc. The next figure lists all possible sclections with the conditions to cumulate.

Conditions to cumulate Methods to combine

1 mOxyz

mixy m5z

npe?
by mix m2y msz
mafz

l‘g}f 3)8{ mix  m3yz

mix m3y m3z

ptd 3] mdxy m3z
yxf m4x mdy  m3z

Figure 95.

N A W

v) taking into account the "prevalence of combined items” rule

Let's now recursively run the "p-graph local search and combination” and the "prevalence of combined items" rules on
the same dimension diagram. First, mOxyz is selected as before. If mOxyz does not exist, we get two methods to
combine : mIxy and m5z. If both mOxyz and mlxy do not exist, m3yz prevails on m2y and m5z, hence two methods to
combine : mix and m3yz. (Note that m3yz prevails on-m4xy : this one is placed after it for dimension dy.) The next
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figure lists all possible selections with the conditions to cumulate. (Once in step 5, the three dimensions get
independent : results are to be combined according to dx, dy or dz.) The figure afterwards shows the methods to combine
in a graphical way using an invocation sequence diagram : note the structure we get is not a tree as obtained in the
preceding example.

Conditions to cumulate Methods to combine

dx 4y
mOxyz dz
mixy m5z max y
m3yz
mix y m1 2y €§ m3z
m5z

dy
m
m3
X m
méxy
. . . m4xyﬁ # m5z
mix - - mix mayz
m4x - -

M A WO =
mawmamaigg\i

dx
pact
, m2y - mixy m5z
) dy p{y - m3y -
87 - ™y -
_ ) m5z mOxyz
dz
g)a{ - - m3z | | |
Figures 96 & 97.

) supposing in addition a "regular” hierarchy

A well chosen example is meant to explore the limits of what can theoretically happen given the adopted hypotheses. In
this spirit, the above dimension diagram illustrates the possible coexistence of methods with interleaving dimensions :
the diagram shows the coexistence of both mixy (mixy or m4xy) and m3y;. Such a coexistence effectively happens in the
real world : for instance, in the STQ example, the print method of Stack (LIFO, bag and object dimensions) and the prinz
method of Queue (FIFO, bag and object dimensions) do induce interleaving once the linearizations are done (see figure
129). In a subsequent subsection, we show that, given our choices, the problem never occurs for memory representations
(see 8.3.1). Let's now consider the case where the problem does not exist for methods too. We say that a hierarchy is
regular vs, its methods named m, if all m methods of degree> K that exist along a same dimension do satisfy the same K
dimensions#!. The corresponding property is termed regularity : it is most important when considering a systematic
combination style. (For more details about regularity, see subsection 8.3.)

In our example, this property means m3yz does not exist. The figure below shows the new hierarchy.

Figure 98.

The effect of this modification on the sequence of combinations that would be chosen depending on the presence or
absence of methods is two faceted :

— direct : because m3yz disappears, line 4 in the previous table (figure 95) no longer exists in the new table ;

— indirect: because m3yz was blocking m4xy, other changes occur due to the "prevalence of combined items" rule.

41 2 method of degree K satisfies K dimensions (K21).
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Next figure lists all possible selections with the conditions to cumulate. The figure afterwards shows the same results
using an invocation sequence diagram : note the structure we get is now a tree as obtained in the preceding example (cf.

fig 93).

Conditions to cumulate Methods to combine
1 mOxyz
2 W ' m1xy .
1 - mb5z
* 2 m#z . m3z
3 rp:r{y m4axy "
1 - m5z
© 2 mA2 - m3z

dx 1 m1x . -

2 L max - -

1 ' - . m2y -
dy | 2 9& - m3y -

3| & - mdy -

1 - - m5z
(074

2 p?é - - m3z

Figures 99 & 100.

b.2.2) One or more conflicts
a) organization to consider

The conflict of two or more dimensions is a potential source of ambiguity. Consider, for example, two conflicting
dimensions, say dx and dy. These dimensions order at least two classes differently : for example, C! is before C2 for
dimension dx while C2 precedes C/ for dy. Suppose now the existence of methods that are valid for both dimensions and
are precisely defined, one in C/ (say m/) and the other in C2 (say m2). Suppose these methods mask all other possible
ones. Then, depending on the order of the dimensions dx and dy, the method to be selected will be different.

Figure 101.
Since dimensions are ordered, a choice is automatically made (for example, m! if dx is ranked before dy). Nevertheless,
this conflict solving mechanism is not fully satisfying : it requires from the programmer too much attention to details.
Hence, a few questions : is a more regular linearization algorithm possible ? Will its use be a panacea ? If not, what is
the best to do ?

Well, we would be interested in a linearization algorithm that systematically orders in the same way all classes common
to different dimensions of a same hierarchy. However, it appears to us that a linearization algorithm cannot
systematically satisfy both this property (we termed it congruency) and monotonicity/incrementality42. Choosing an
algorithm (ex. : the LOOPS one#3) that respects this property will solve a relatively rare problem while compromising
monotonicity/incrementality in may be a larger number of cases. Because monotonicity/incrementality is a highly
desirable property, we prefer to have some conflicts and to solve them using the ordering of the dimensions. (Note this

42 Monotonicity and incrementality are used in an equivalent wzay in [Ducournau et alii, 1992] [Ducournau et alii, 1994].

43 The linearization algorithm of LOOPS, which is stable but not always monotonic satisfics the property in question. Demonstration
will be given in §7.3.5.c.
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solution is similar to what is done in CLOS for sorting the applicable methods having several specializers.) When a
conflict exists, the user may be warned on demand by the programming environment.

To summarize, the solution we chose consists in recursively running the "p-graph local search and combination” rule
according to the ordering of classes obtained by linearizing the sub-hierarchies of classes associated to each dimension.
The default algorithm of linearization is preferably chosen monotonic/incremental : conflicts are then solved by
privileging the item ranked first according to the relative order of dimensions (see below). The user is given the
opportunity to change the linearization algorithm by MOP (ineta-object protocols).

Next figure shows an éxamp]e. Compared to the previous one, the order of C4 and CI has been inversed for dx. The
dimensions dx, dy and dz are ranked in this order.

Figure 102.

B) algorithm replacing duplicate elimination
Let's now precisely indicate how conflicts are solved using the relative order of dimensions.

The duplicate elimination phase during the execution of the "p-graph local search and combination” rule usually
compares the name of the items a priori retained for each dimension : this rule implements in fact a more general rule
saying that each dimension should be satisfied once and only once. In the present situation, we cannot use the usual

impiementation of this rule.

" Here is the more general algorithm : a list of satisfied dimensions is incrementally built up by traversing the list of pre-
selected items. When a new candidate item is examined, we throw it away if the dimensions it satisfies are already all
. satisfied ; when part of the dimensions its satisfies are already satisfied and part of them aren't, an error is detected ; when
none of the dimensions it satisfies are already satisfied, this item is kept and the list of satisfied dimensions is updated.
When the list of candidate items is exhausted, all dimensions should be satisfied ; otherwise, an error is detected.

) running the "p-graph local search and combination” rule (and the new algorithm as Wcl])

When mOxyz does not exist, a conflict a priori exists between m4xy (found first for (Zx) and mlxy (found first for dy).
Because dx is ranked before dy, m4xy takes precedence over m/xy.

Let's be more precise. The list of pre-selected items is (m4xy mixy m5z). To satisfy each dimension once and only once,
this list is traversed using the above algorithm. Initially, the list of satisfied dimensions is empty. After having examined
m4xy, this list is (dx dy). The next item is m/xy : it satisfies dx and dy . Thus, it is thrown away. The next candidate
item is then mSz which satisfies dz : it is kept. The list of candidate items is now exhausted. Since all dimensions are
satisfied, we get the correct result.

Next figure lists all possible selections with the conditions to cumulate. It is established in case the "prevalence of
combined items" rule is pot applied. At each step, we suppose that the selected items do not exist. Note that m4x poses a
problem when m0Oxyz and m4xy are supposed not not exist : m4x should not exist too (otherwise, dy is satisfied twice due
to the selection of m4x and mlxy). Similarly, when m2y does not exist, m5z should not exist too.
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Conditions to cumulate Methods to combine

1 mOxyz

2 W maxy m5z
3 Déxy pag mixy = m5z

4 M mix m2y m5z
5 wey mes mix ~ m3yz

6 rpzfz mix m3y m3z
7 jﬂ( mix mdy m3z

Figure 103.

¥) taking into account the "prevalence of combined items"” rule

Next figure shows the same kind of table in case the "prevalence of combined items" rule is applied. Methods to be
combined are listed depending on the situation (i.e. on the absence of some-other methods). Once in step 5, the three
dimensions get independent : results are to be combined according to dx, dy or dz: The figure afterwards shows the same
results using an invocation sequence diagram .

Conditions to cumulate Methods to combine dz
1 moxy? dx m3y m3z
W mdxy m5z

2
3 sl mixy M52 \K $ﬂ2y ;/msz
4 m-?{y mdx m3yz
5 M3z max m2y ~ mSz max Rq m3yz
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2 mg{ mix m1xy )
1 m2y m5z
ay | 2 plf m3y maxy %>
3 95{ m4y moxyz
& 1 m5z
2 ,pgz/ m3z Tl

Figures 104 & 105.

) supposing in addition a "regular” hierarchy

Let's now suppose that the hierarchies to be considered satisfy the property of regularity. Next figure obeys this
constraint (compared to figure 102, m3yz has vanished).



Figure 106.

Next figure lists all possible selections with the conditions to cumulate. Line 4 in the previous table (figure 104) no
longer exists in the new table. The figure afterwards shows the methods to combine using an invocation sequence
diagram : note the structure we get is a treg. Compared to figures 99 and 100, methods mIxy and m4xy are found-in the
opposite order ; idem for methods mlx and m4x : this is due to the different ordering of dimension dx vs.dimension dy.

Conditions to cumulate Methods to combine 4
1 mOxyz
2 [ oot my

-
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mdz

2 rp& - m3z
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Figures 107 & 108.

b.3) Conclusion

In this subsection, the selection of valid items in a non-degenerated hierarchy (DAG) was studied (ex. : selection of

methods valid vs. a given message sent to an instance in a certain state). These items are basically obtained by

recursively running the "p-ancestor-tree local search” rule until found.

Supposing that the selected items do not exist yields a new set of items to be combined. We studied the succession of

results obtained doing so. The structure we get may be complex. However, it systematically simplifies into a tree when

the following conditions hold :

— the hierarchy is regular ; _

— the "prevalence of combined items" rule is observed ; _

— the "unique satisfaction of each dimension™ rule is observed (in place of the more specialized "duplicate elimination™
rule).
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7.3.3 Examples

This subsection illustrates the double analysis we just made. A same hierarchy is considered. Be CO0 its root class ; and
d, a dimension which is multiply inherited in C0. Our two examples differ only by the way they handle this dimension.
In the first example, all occurrences of d are considered to be different (duplication) : all happens as if CO was inheriting
different dimensions from distinct superclasses. In the second example, the occurrences of d are considered to be the
same (unification) : this dimension exists only once at the CO level.

a) STQ : common stuff

Our two examples consider a same hierarchy, the STQ hierarchy (the STQ example was introduced in subsection 5.2.1.).

a.1) The STQ hierarchy

Next figure shows the inheritance graph of STQ. STQ inherits from Stack and Queue ; and these two inherit from Bag ;
Bag inherits from Object.

Object

Bag

Stack Queue

STQ

Figure 109.

Object features one dimension (noted object) ; Bag has two dimensions : one inherited from Object and one local (noted
bag) ; Stack and Queue have three dimensions : two inherited (from Object and Bag) and one local (respectively LIFO
and FIFO); STQ inherits all these dimensions and does not introduce a new one. - The figure shows the hierarchy of
STQ in the natural ordering of specialization (placing Queue on the left and Stack on the right would appear unnatural
since Stack is before Queue in the superclass list of STQ). Given a class, each local description that introduces a new
dimension is materialized as a virtual superclass (ranked before all regular superclasses).” Except for Object, the oblique
line represents both the dimension and the virtual superclass ; concerning Object, it represents but the object dimension
(Object introduces this dimension by itself : no virtual superclass is needed.)

N

Object

Figure 110.
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a.2) The print methods : notation

STQ inherits from Object the print transition. Let's focus on. how this transition can be implemented in the STQ
hierarchy. Next figure shows, for a given state, various print methods that may be defined. (We may assume that the
user desires prettier and prettier results when informations on the instance get more and more precise, and thus chooses to
specify many methods.) A notation is used to name these methods conveniently.

| Object IO print

(print opject)

O print
(print Bag)

print O Queue |O Print
(print QB(E)

print O  print
(print ¢ s1Q) (print. 451Q))
O print
(print wSTQ)

Figure 111.

In each class, the method name is print. This name is the first one indicated in the figure. The second one, under
parentheses, specifies how each method can be identified in a unique manner in the text below. In Bag, Stack and Queue,
the method name is indexed by the class name since the method is unique.

In STQ, an other index is used since three methods exist : this index specifies what dimension(s) of an instance are
concerned. The s index denotes the first three dimensions of a STQ instance : object, bag and LIFO ones (globally
termed the stack "dimension”). The g index is used for the three other dimensions, i.e. the object, bag and FIFO ones
(globally termed the queue "dimension™). :

As a matter of fact, this same index will also be used when a method is not normally applied. This would be, for example,
the case for printSack when restricted to the stack "dimension” of a STQ instance instead of the stack and queue
"dimensions” (whole instance). In bag (resp. object), the dimensions under consideration being object and bag (resp.
object), this means the print method is further restricted to these sole dimensions : for example, printg Bgg is to be
applied only to the second (bag) and third (object) dimensions of the STQ instance.

b) Hypothesis 1 : duplication

b.1) duplication of the Bag and Object dimensions

In STQ, the object and bag dimensions are inherited along two different paths (say s and g). In this subdivision, by
hypothesis, each occurrence of the bag or object dimensions is considered to be distinct from the other occurrences. Next
figure illustrates that. The s and g paths are made distinct on their whole length : the subpath Bag/Object is duplicated.
A net effect of this is thus to face a tree instead of a DAG. In this respect, this example is in direct line with the previous
section. (This motivates its study before the default case which effectively examplifies a DAG structure.)
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b.2) interpretation in the state space

In this example, the state space has 6 dimensions (axes) : LIFO, FIFO, two bag dimensions (say bagl for bag [Stack]

and bag?2 for bag [Queue]) and two object dimensions (say object! for object [Stack] and object2 for object [Queue]).
" Next figure tends to illustrate this : a given state of an STQ instance (say stqy,) is projected onto the six axes (each axis is
"normally orthogonal to the other ones).

Object2

Bag2
Objectt "FIFO

Fi gure 113,
b.3) impact on the p-graph

Representing a cartesian space having 6 dimensions on a plane is kind of awkward (cf. preceding figure). Fortunately,
our formalism is better at that. Next figure shows the corresponding STQ p-graph.

STQ
s path

(LIFO) (bag)

q path

{object)

1 (FIFO)  (bag) (object)
XSG O=NomEo
0

push: [A] . ’

print @

enqueue: (@] -
print

enqueue: [®]

Figure 114.
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b.4) Implementing the print transition

Let's suppose we want to print a STQ instance in a given state. Under the duplication hypothesis, we consider the
following dimension diagram. The object dimension, the only one involved, is represented by a plain line ; the other
dimensions, required but not involved, are shown as dashed lines.

print gpack Stack

print opiect

Object

0O object

Figure 115.

The figure gets simplified if we use the stack and queue (resp. noted s and q) "dimensions" : as explained above, the
meaning of stack and queue is dynamically restricted to the actual dimensions supported by each class .

print g sTQ print gtack

Figure 116.

a) The search starts locally in STQ. The "p-graph local search and combination” rule is applied.

a.1) First, STQ is looked for a method that will take into account both the stack and queue dimensions of the instance.
If the method printsq STQ exists, then it is used. The form of the print method is thus printsq STQ. (Arguments are
not shown here).

a.2) If printsq STQ is not found, a method is then looked in STQ for each of its two dimensions. If prints §T7Q and
printg STQ exist, they get combined. The form of the print method in STQ is then (progn printsSTQ printgsSTQ )-

b) Let's suppose now that both previous steps have failed : the printsg 57 method is absent as well as at least one of the
prints STQ and printg STQ . What is the form of the combined result if the adequate method(s) is (are) inherited from the
Stack and/or Queue superclasses ? '

b.1) Let's suppose that printg STQ (resp. printg STQ ) is absent. The scarch along the stack (resp. queue) dimension
continues in the involved superclasses of STQ, here Stack (resp. Queue). If print§ygck (resp. printQueye) is found in
this class, it is used in place of the absent STQ method for producing the combined method. This inherited method is
applied only to the stack (resp. queue) dimension of the instance, hence the form of the combined method : (progn

prints Stack printq STQ ) (resp. (progn prints STQ printg. Queue))-

b.2) If both methods of STQ are absent and if both print§iack and printQyeye are found, then the form of the
combined method becomes (progn printsSiack pPrintgQueue)-
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¢) Let's suppose that all previous steps have failed in providing a combined method : the printsgsTQ method is absent ; in
addition, a method has not been found for the stack dimension (both prints §T(Q-and printSiack are absent) and/or a for
the queue dimension (both printg §TQ and printQueye are absent). What is the form of the combined result in these
cases if an adequate method can be inherited from the Bag ancestor class ? ’

c.1) Let's first suppose that only the search along the stack dimension has failed. This search continues in the Bag
class. If printpgg is found in this class, it is used in place of prints STQ in (progn prints STQ printg) where printg
means either printg STQ or printg Queye- Hence the combined method (progn prints Bag printg). Conversely, if only
the search along the queue dimension has failed, the existence of an adequate method in Bag yields the following
form for a combined method (progn printg printg B.g) where prints is either printgSTQ or printsStack-

c.2) Let's suppose now that searches along the stack and queue dimensions have both failed. If an adequate printpgg
method is found in Bag , then the form of the print method becomes (progn printg Bag Printg Bag)-

d) Let's finally suppose that all previous steps have failed. If an adequate printQpjecr method is found in Object , then
the form of the print method is (progn prints Opject Printg.Object)-

To summarize, the form of the print method in STQ is (progn prints printg) where prints (resp. printg) is the first
method found in the s (resp. g) list (see above figure). The prints (resp. printg) method is applied to the stack (resp.
queue) "dimension” of the considered instance. In some cases, printg and printg correspond in fact to a same method
print* : this is not to say that the STQ instancc is printed twice : the form says that print* is used twice, once for the
stack dimension and once for the queue dimension. '

b.5) Computing the memory representation

Concerning memory representations, Object is not supposed to provide one (Object is an abstract class) ; Bag provides
one, say a list of items termed elements. For the sake of the example, we suppose that this implementation is not refined
in subclasses.

Under the duplication hypothesis, we thus consider the following dimension diagram. Abstract dimensions are shown as
dashed lines.

Stack

Figure 117.

Since abstract dimensions are non involved when considering memory representations, the "p-graph local search and
combination” extended to class inheritance thus concatenates the two elements cells.

¢) _Hvypothesis 2 : unification (default)

Let's now consider that a dimension inherited along two or more paths is not duplicated two or more times, but exists
only once. Under this hypothesis, only one occurrence of the bag or object dimensions is now to be considered in STQ.
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c.1) interpretation in thé state space
c.1.1) impact on the number of axes

The unicity of a dimension like bag or object is easy to interpret in the state space : it simply means the corresponding
axis exists but once. Now, the state space has four dimensions (axes) : LIFO, FIFO, Bag, Object. Next figure is the
analog of figure113 : a given state of an STQ instance (say stgy) is projected onto the four axes of the state space. The
order of the axes is important in case masking is used. Hence, the question : what is the order of the dimensions ?

LIFO
stqn
FIFO
Object
Bag
Figure 118.

¢.1.2) impact on the bag and object dimension paths

A subsidiary question is : what classes impact the four dimensions ? As far as the LIFO and FIFO dimension paths are
concerned, there is no difference compared to the previous hypothesis : they both traverse STQ, and each one
respectively traverses either Stack or Queue. The bag dimension path certainly traverses Bag, Stack, Queue and STQ as
before. The object path traverses the same classes plus the Object class. Hence the question : what is the relative order
of Stack and Queue in these two paths ? Next figure shows the four dimensions (axes) together with the classes that
impact them (virtual superclasses are included for completeness ; virtual subclasses are named like actual classes).

LIFO FIFO bag . object
> > —> >
LIFO FIFO BVS Objiact
| | I .
Stack ) Queue Bag Bag
1 | /7 \
sTQ sTQ Stack  Queue /7 \
| | \ / Stack Queue
. sTQ \ /
STQ
Figure'119.

c.2) determining the orders

We have to determine two orders : (1) the order of dimensions ; (2) the order of classes in the bag and object dimensions.
Shortly , we will see these orders may be obtained in a simple and systematic way once computed the linearization of the
hierarchy of STQ. For the moment, we start from scratch using but the knowledge accumulated so far.

c.2.1) preliminary

Next figure shows the tree of inheritance paths (termed TIP, for short) obtained in a bottom-up, left to right traversal.
This traversal has two merits : (1) starting from the root class (here, STQ), it quickly collects all ancestor classes out of
the complete collection of classes a system may support or an application may need ; (2) the tree organization of all
these classes respect (1) the relative ordering of a subclass vs. its superclass, and (2) the ordering of classes stated by the
superclass lists. The first type of relation, be it SUB, is represented by a subclass beneath its superclass ; the second type
of relation, be it SUPER, is represented by an horizontal arrow (labelled o, B or yin the figure).

79



LIFO bag/1t object /1 FIFO bags2 object /2

dimensions
BVS Object BVS Object
\5" \5’|
8 LIFO
a Bag FIFO Bag
2
g Stack Queue
: O
\ /
STQ
Figure 120.

Note, by the way, that this TIP is the same tree than the one used under the duplication hypothesis (figure 112). Next two
tables show in a different manner these same paths of classes (in the order obtained from the TIP). Hence, these two
tables express the ordering of dimensions and the ordering of classes per dimension that exist under the duplication
hypothesis.

LIFO bag object | dimensions FIFO bag object | dimensions
BVS  Object BVS  Obiject
LIFO Bag Bag : FIFO Bag Bag :
‘ ! classes | ' ! classes
Stack Stack Stack Queue Queue Queue
sTQ STQ sTQ STQ sTQ sTQ

BVS = Bag-Virtual-Superclass

Figure 121.

¢.2.2) order of dimensions

Figure 120 lists the dimensions in order : LIFO is before bag and object (due to B) ; FIFO too (due to v) ; LIFO is before

FIFO (due to o) and bag is before object (due to J) :

— ot expresses that the class Stack is before the Queue class since both are listed that way in the superclass list of STQ;

— B (resp. A) expresses that the virtual superclass LIFO (FIFO) is before the Bag class ; in other terms, in Stack (resp.
Queue), LIFO (resp. FIFO) is a local dimension whereas bag and queue are inherited dimensions ; '

— & expresses that the virtual superclass BVS 'is before the Object class ; in other terms, in Bag , bag is a local dimension
whereas object is an inherited one. '

Next figure shows the corresponding precedence graph. Recursively taking the node to which no arrow points
determines the order of dimensions : LIFO, FIFO, bag; object.
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Figure 122.

Here is a systematic way to obtain the same result considering columns obtain by sucessive top down, left to right
descents. If a dimension (column) is initially placed before (resp. after) the last occurrence of a dimension to be merged,
this dimension should also be placed before (resp. after) the aggregated dimension in the new ordering. In addition,
dimensions to be placed before (resp. after) a same aggregated dimension should be in the same relative order as initially.
When several dimensions are to be merged, this process is to be done recursively.

Next figure shows this for the STQ example. (Note that "dim. to be merged” is to be understood as "occurrences of a
same dimension that are to be merged”). Two occurrences of the bag dimension exist (fig. 120 or 121). These two
occurrences are to be regrouped. (Same remark for the object dimension.) The LIFO dimension is placed before the first
occurrence of bag (resp. object) : in the new ordering, it should be placed before the aggregated bag (resp. object)
dimension (this preserves the P relation). Similarly, in the new ordering, the FIFO dimension shoud be placed before the
aggregated bag (resp. object) dimension (this preserves the y relation). The relative ordering of FIFO and LIFO is kept
(this preserves the o relation). Two occurrences of the object dimension are counted among the dimensions that were
placed after the bag occurrences : the merging process is repeated at their level, although in a very simplified manner (the
"before” dimensions have already all been taken into account ; and no "after” dimensions exist).

dim. that were placed AFTER
the dim. to be merged

object /1 object /2 \\

dim. that were placed AFTER
the dim. to be merged

dim. to be merged

dim. that were placed BEFORE

the dim. to be merged dim. to be merged

LIFO FIFO bag1  bag?z object /1 object /2

Figure 123.

¢.2.3) order of classes for the bag and object dimensions

To determine the relative order between the Stack and Queue classes in the Bag and Object paths, we consider the order
of these two classes in the list of superclasses of STQ : Stack is first and Queue is second (relation o). This order is
taken advantage of for masking : thus, to not alter this possibility, Stack should be listed before Queue when going up in
the bag and object dimension paths.

Let's put this in a more algorithmic manner. First, we extract —in order— all the columns corresponding to a same
dimension. Next figure shows this for the object diménsion. (We could have considered the bag one instead).

dimensions object /1 object /2
@ Object Object
&
3 Bag Bag
[o]
2 Stack Queue
g
STQ STQ
Figure 124.
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In this table, Bag is encircled as a reminiscence that it is a diverging node : it cannot be listed before it superclass. The
goal is here to list each class once and only once, while fulfulling the masking capabilities : these are due to the SUB and
SUPER relations. As explained above, the tables from which this figure is extracted already obey these ordering ; since
the two extracted columns are listed in the same order as in the original tables, the correct relationships hold. What we
have to do is to take a superclass after all its subclasses. In addition, when a.class has been listed, its other occurrences
are eliminated. (This simple algorithm is termed LIN for future references.)

dimensions object /1 object /2

Object M linearization for the ~ Object dimension
rgq Bag :> STQ Stack Queue Bag Object

Stack Queue

STQ \

paths of classes

Figure 125.

The algorithm considers the classes bottom up, from left to right. First, STQ is selected : its right occurrence is
eliminated. Then, going up one level, Stack is taken. Going up one more level is not possible since Bag requires all its
subclasses to be listed before. The sole possibility is to move to the next column (on the right) : Queue is taken. Then,
Bag is taken (one occurrence) and Object (same remark). Hence, the result : STQ, Stack, Queue, Bag, Object.

¢.2.4) summary of the results

Next figure summarizes the results concerning the order of the four dimensions and the order of the classes for the bag
and object dimension (the virtual superclasses have been omitted). Shortly, both results will be obtained at once, in a
systematic manner.

4-object

A\

\Ob ect.

_ agl\T

1-LIFO \\2 -FIFO
N

Stack Queue /

\\

// st /
/ |

Figure 126.
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¢.3) impact on the p-graph
Next figure shows the resulting STQ p-graph. Dimensions are listed in order. The subgraph for the bag dimension
directly results from collecting the renamed transitions along the bag path. Note that pop{¢] and top[¢] are systematically
masked by pop[A] and rop[A] : they can be removed.

STQ

(LIFO) (FIFO) 1 (bag) (object)

JONIO

empty t

push: [A]

enqueue: [D] .
print

push: [A]
enqueue: [@]

pop: (@] ———— top: [@]

empty - N
pop: [A] top: [A]
Figure 127.

This p-graph can be augmented with methods and memory representations.

c.4) Computing the memory representation

For the sake of simplicity, we still suppose that the implementation provided by Bag (elements cell) is not refined in
subclasses (the LIFO and FIFO properties are also abstract). Given the unification hypothesis, this implementation is the
only one inherited in STQ when following the bag path.

Stack

FIFO __
bag
object -

Queue

Figure 128.

¢.5) Implementing the print transition
The inheritance algorithm retains the first method (most specialized one) found going up along the object path.

Supposing the existence of the same methods as above, the next figure shows how they are ordered for a STQ instance in
a given state. As mentionned before, the STQ hierarchy is not regular vs. the print method (cf. §7.3.2.b.2.1.9).
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print aqueue

Figure 129.

7.3.4 Inferring the necessary orderings from the linearization of the class hierarchy

In the above two examples, we had to order :
(1) the dimensions, i.e. the axes of the state space ;
(2) the classes impacting each dimension.

Under the duplication hypothesis, the structure we get is a tree and a bottom-up, left to right traversal provides both
results.’ :

Consequently, we only consider here the other hypothesis (unification), i.e. the case where a dimension is considered to.
be unique be it inherited along several class paths. In this case, as already mentioned, a linearization algorithm is runned.
Be CO the given root class. HCg is the complete class hierarchy rooted in C0, and LCO the linearization of Hcg . Unless
specified otherwise, the expression ‘the linearization" refers to L.

Solving the first problem (ie. ordering the dimensions) once LCO is known is easy. Solving the second one (inferring
from LCO the order of all classes that impact a given dimension) requires a strong hypothesis on the linearization
algorithm.

a.1) Rule 1 : virtual subclasses may be added a posteriori

Considering the previous unification example, onc may notice that the virtual superclass corresponding to the addition of
a new dimension d at the level of a class D can easily be taken into account in a second step. Such a virtual class (ex. :
LIFO, FIFO, BVS) should appear immediately after its subclass (resp. Stack, Queue, Bag), and before the actual
superclasses (resp. Bag, Bag, Object).

a.2) Rule 2 : the order of dimensions may be inferred from the linearization

Dimensions (ex. : LIFO, FIFO, bag,...) are ordered according to their respective virtual superclass (ex. : LIFO, FIFO,
BVS, ...). Given the preceding rule, the order of these virtual superclasses is directly obtained from their respective
immediate subclass (ex. : Stack, Queue, Bag. ...). Each virtual superclass (ex. : LIFQ) precedes the actual superclasses
(ex. : Bag) : thus, each dimension (ex. : LIFO). precedes the other dimensions (ex. : bag, object) that are inherited in the
subclass in question (ex. : Stack).

If we consider the previous STQ example, LCO is the list (STQ Stack Queue Bag Object). Thus, the order of
dimensions is (LIFO FIFO bag object). (There was no dimension introduced by STQ.)

We implicitely considered so far that a class was introducing at most one dimension. As a matter of fact, a class may
- well introduce more dimensions : as already said (subsection 7.1.1). the dimensions are primarily sorted by the order of
superclasses in the list of superclasses, and secondarily by the order of dimensions in superclasses exhibiting several
dimensions. There is thus no difficulty to handle any number of dimensions.
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a.3) Rule 3 : the order of classes for any dimension may be inferred from a linearization if
congruent :

a.3.1) sub-hierarchy

Let's note Lcg(d) the linearization of the classes corresponding to the d dimension. Given rule 1, we can omit the virtual
superclass itself in a first step and re-introduce it afterwards. Doing this makes any hierarchy considered for a given
dimension d a sub-hierarchy k(D) of the whole hierarchy. This one contains but the classes found on all paths
leading downwards from D to CO. Once obtained LCO(hcgf D)) —noted LCO(D) for short, - Lco(d) is immediate.

a.3.2) congruency

For any D class (introducing a dimension d), we want the restriction of LCg to the classes belonging to hcg(D) to be
equal to LCO(hc(D)). We term this property congruency. In general, a linearization algorithm (ex. : the CLOS one)
does not respect this property for any hierarchy it is able to process.

Let's supposc the linearization algorithm for COP satisfies this property.
VD e Hcyp, proj ( Ly, classes (hco(D)) = LCO(hc(D)).

The process is then the following : (1) given a dimension, find all classes of its sub-hierarchy : (2) then take the
linearization L and remove all classes that do not belong to the considered sub-hierarchy ; (3) append the virtual
superclass —if one exists— at the end of the remaining classes (note that no virtual superclass is associated to the object
dimension).

Note that if an algorithm is congruent, then the following property also holds : for any two classes of the hierarchy Hcp
having a common part below a given class, the algorithm delivers the same order for the common part (for the
linearization of the two associated sub-hierarchies). We term this property harmony.

a.3.3) example

| Object | LsTq(O) = (STQ SQ BO)

LsTq(B) =(STQ SQ B)

LsTQ(S) = (STQ S)

M LsTq(B) = (STQ Q)

LgTq(STQ) = (STQ)

LsTq= (STQ SQ BO)

Figure 130.

If we consider the previous STQ example, CO is STQ ; Hcp is HST(Q, i-e. the list (STQ Stack Queue Bag Object).
Previous figure indicates the (direct) linearization of each sub-hierarchy having STQ as root node. For example, the sub-
hierarchy hsTQ(Stack) is made of classes Stack and STQ (computed downwards) ; its linearization is (STQ Stack). . Now,
let's compute the corresponding restrictions of Lg7Q. For the LIFO dimension, the classes to be considered are LIFO
(virtual superclass), Stack and STQ. The restriction of L§TQ to the classes of hgTQ(Stack) is the ordered list (STQ
Stack). We get the correct result since it is equal to LgTQ (Stack). To obtain L(stack), we simply add the v1rtual
superclass : (STQ Stack LIFO). It is easy to yield and check all other cases (i.e. dimensions). See next figure.
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dimensions
LIFO FIFO bag object Lco
]
+ Object
BVS
o Bag
FIFO ;
o ] Queue i classes
LIFO

o Stack
® (] ® STQ

BVS = Bag-Virtual-Superclass
QO =virtual superclass
@ =actualclass

Figure 131.

Note. In the STQ example, congruency is obtained whatever the linearization algorithm. (We implicitely consider here
that any linearization algorithm does respect the SUB and SUPER relations.) The SUB relations (between a subclass and
a class) and the SUPER relations (between the superclasses of a class) sufficiently constrain the hierarchy (hence, LsTQ)
and each sub-hierarchy hsTQ(X) (hence, LSTQ(hSTQ(X)) where X is any class of the STQ hierarchy.” Suppressing from
HgTQ the nodes that do not intervene in a given sub-hierarchy does not perturb these relations. Hence, these two types
of relation make, in this example, the order of the classes in the sub-hierarchy linearization the same than the relative
order of the classes in the whole hierarchy linearization.

7.3.5 On the choice of a linearization algorithm

a) Criteria
When deciding which properties our linearization algorithm should have, we face the following list :
— uniformity : the algorithm does not depend on the semantics of the items (memory representation, micro-method) ;

— stability : adding an intermediate class between a class and its (direct) superclass should not perturb the order of
classes (the restriction of the new ordering to the previous classes should yield the previous ordering) ;

— monotonicity / incrementality : once a programmer understands the global behaviours of the superclasses of a class,
this programmer can infer the global behaviour of this class simply by composing its incremental behaviour with the
global behaviour of its superclasses. In particular, when defining a new class, the programmer is solely required to
check the global behaviour of the direct ancestors (superclasses) of this class without having to browse its whole
hierarchy. More precisely, if a class inherits an item from an ancestor class different from one of its superclasses, one
of these should inherit this item too (otherwise, the result appears relatively surprising). As a consequence, the
ordering obtained for any superclass of C0 should be a.sublist of LCO . For more details, see [Ducournau et alii,
1994]. . '

— congruency : see above ;

b) Counter-examples

A linearization usually does not fulfil the last three properties for any hierarchy it can process. For exemple, the CLOS
one does not.
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b.1) stability

4 5 4 5
|
6
|
2 3 2 3
N/ N/
Llcros = (123 45) L'lcros = (12 6(5)3 4)

Figure 132.

The ordering of nodes 1 to 5 is perturbated by the insertion of node 6 between nodes 2 and 4. The restriction of L'l to
nodes 1 to 5 does not yield the same order as L1.

Next figure shows the values of L1 and L'] for other linearization algorithms : LOOPS, the one proposed by [Ducournau
et alii, 1994], and finally the one we propose. All are stable.

Llroops = (1 253 4) L'lioops = (L2 653 4)
LlBOR = (1 2 3 4 5) LllBOR = (l 2 6 _3_ g i)
Figure 133.
b.2) monotonicity
6
o7 | ~ o
L2cros= (2 6 4 5) 2\ /3 L3crog= (3 4)
| o &
, Llcijog = (1L 2 6 5 3 4)
Figure 134,

We consider the same inheritance graph as above. We consider methods : method m/ is attached to node (class) 4 and
m2 to node (class) 5. No other method exists. Method mi/ is inherited in nodes (classes) 2 and 3. Yet, node (class) 1
inherits method m2. This is because the ordering in 1 is perturbated when compared to the orderings in 2 and 3.

Next ﬁgure shows the values of L1, L2 and L3 for the other three linearization algorithms. The LOOPS algorlthm is not
monotonic in this case ; the others two are.

Liggops = (1 2 6(3) 3 4  L2gops = (2 6 4 5 L3jgopg = (3 4)

Lipggy = (1 2 6 3 4 5) L2pgpM = (2 6 4 5)  L3pgmm = (3 4)

Llgpr = (1 2 6 3 4 S) L2gopr = (2 6 4 5) L3gor = (3 4)
Figure 135.



b.3) congruency

: 5
2/ 3
1/ 1
Llcios = (1 2 3 4 5 6 7) Llcrog(7) = (1253 7)

Figure 136.

In this example, the ordering for H1(7) (sub-hierarchy of HI with summit 7) cannot be obtained by restricting LH1 to the
nodes belonging to H1(7) : this restriction gives (1 2 3 57) where the correct value is (1253 7).

-Next figure shows the values of L1 and L1(8) for the other three linearization algorithms. The LOOPS algorithm is
congruent in this case*4 (it is congruent in general : see next subdivision) ; the others two are not.

Lljoops = (1 2 5 3 4 6 7) Llioops(7) = (1253 7)

Llpgyy = (1 2 3 5 7) Llpgpm (7) = (12 5 3 7)

Llgpr = (1 2 3 4 5 6 7) Llgor (7) = (1253 7)
Figure 137.

¢) The LOOPS linearization algorithm is congruent

" ae
aen
. na
Figure 138.

Let's consider a node N on the leftmost path of the sub-hierarchy HCO(X) and suppose we are computing LCO, the
linearization of the entire hierarchy HCO rooted in C0. When N is listed, all its descendants have already been listed too.

Be N’ the first superclass of N in HCO(X). All superclasses of N may not be part of HCO(X). Thus, branches may exist
on the left and on the right of NN'.. ) ) i

c.1) Visiting the left branches.

44 14 this case, the LOOPS result is not monotonic : L2 (24 5 6 7) is not a sublist of L1.; the CLOS result is monotonic.
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Two case depending on whether they exist or not.

— HI1 : Let's suppose that no branch exists on the left of NN¥'. Then N'is to be visited just after N has been listed. The
same event would happen if we were computing HCO(X).

— H2 : Let's now suppose branches exist on the left of NN'. Having just listed N, the LOOPS linearization algorithm
visits (attempts to list) the leftmost branch rooted in N. None ot the visited nodes can perturbate HCO(X) :

1) the order of the classes listed so far in LCO or LCO(X) is teft unchanged : once listed, a class is kept ;

2) no visited class on this branch (be it listed or not listed in LCO) is to be added to LCO(X) : visited classes do not belong
to HCO(X) (if it were the case, then the branch in question would be part of HC0(X) which is contrary to our hypothesis) ;
3) the order of the classes not listed so far in LCO(X) is left unchanged too. Visited classes are not subclasses of any node
of HCO(X), otherwise they would be part of it. Thus, no unlisted class of HCO(X) had its status changed (it has still the
same number of subclasses to be listed before itself).

Once this branch has been visited, the linearization algorithm is back to N (bactracking).

Thus, from the point of view of HCO(X), all happens as if this leftmost branch was not existing.

By recurrence, all bran on the left of NN’ are considered to not exist.

Once all these branches have been visited, the algorithm is again back to N (bactracking) and since N'exist, it has to be
visited.

From the point of view of HC0O(X), hypothesis H2 makes no difference with hypothesis H1.

¢.2) Branch NN’

N is the first subclass of N’ (no other subclass of N’ has already been visited otherwise a path ....NN"...would be more on
the left than path ...NN'.. which is the leftmost one by hypothesis). The branch NN'is visited under the same conditions
than for HCO(X) :

— H3 : if N' has other subclasses, N’ cannot be listed in LCO until all its other subclasses have been visited : the
algorithm bactracks to N. If we were computing LCO(X). the same thing will happen ;

— H4 : if N’ is the unique superclass of N, then N' is listed immediately in LCO. If we were computing LCO(X), N’ will
also be listed immediately. Thus the order of LCO and LCO(X) will continue to agree if they were agreeing so far.

Once N’ has been listed, the algorithm recursively continues (our proof is now to be applied to N’ and so on). Finally,
the linearization algorithm bactracks to V.

c.3) Right Branches

Other branches may exist on the right of NN'. If any, these branches are visited by the LOOPS linearization algorithm
when back in N.

— HS5 : Let's suppose no right branch exists. All superclasses of N have been visited (and possibly listed). If N is the
root node CO, we are done. Otherwise, the linearization algorithm backtracks. Our proof too.

— H6 : Let's suppose the next branch to visit is NN"... where N" belongs to HCO(X). Then N"is to be visited now.
The same event would happen if we were computing HCO(X).

— H7 : Let's suppose the next branch to visit is NN"... where N" does not belong to HCO(X). As for branches on the left
of NN', this branch does not perturb the order of LCO(X). The reasons are the same (see above hypothesis H2). Once this
branch has been visited, the linearization algorithm is back to N (bactracking). Thus, from the point of view of HCO(X),
all happens as if this right branch was not existing.

By recurrence, gll branches on the right of NN’ that do not belong to HCO(X) are considered to not exist, Once all these
branches have been visited, the algorithm is again back to N (bactracking). If no next branch exists, hypothesis H5
applies as if no right branches were found. If another branch exists, say NN*,ithen N* belongs to HCO(X). From the
point of view of HCO(X), hypothesis H6 applies as if no right branches were found.

c.4) Recursively running the proof on HC(

Instead of running the linearization algorithm of LOOPS, we modify it so as to (1) remove, on the way, the left and right
branches (vs. the last node belonging to HC0(X)) ; and (2) list but the nodes belonging to HCO(X)). Here is how works
this modified algorithm. First, it lists CO. Starting from CO, it removes the branches on the left of the leftmost branch
rooted in CO and belonging to HCO(X). When done, it goes up to the first superclass of CO and does the same things.
And this recursively, up to the first diverging node in HCO(X). Then, it bactracks like the linearization algorithm of
LOOPS. The branches of HCO that are on the left of the next leftmost branch of HCO(X) are eliminated in turn. ...
Progressing and bactracking like the linearization algorithm of LOOPS (in an accelerated way for the eliminated
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branches), the modified algorithm finally lists the summit X. Given the points above, the classes listed so far are known
to be ordered exactly like they would be in LC0. At this point, the pruned hierarchy is HCO(X) plus a number of right
branches : these are eliminated when bactracking to C0O. This bactrack does not modify the obtained list of classes.

To summarize, running the linearization algorithm of LOOPS after having eliminated all the left and right branches vs.
the nodes of HCO(X) yields the same result than the restriction of LCO to the nodes of HCO(X). This algorithm is thus
congruent.

d) Congruency and monotonicity are antagonistic properties

Let's be more specific : a linearization algorithm which is monotonic and respects the extended precedence order and/or
bactracks as less as possible (as done in practical algorithms) is not congruent. For this, we consider the hierarchy shown
in figure 136. In addition to the SUB and SUPER relations between nodes, we add the constraint of monotonicity : the
ordering obtained at a superclass should be a sublist of the ordering obtained at its subclass(es).

7
57) 5 H1(7)
H1 /
2 6 2 (257 3@7
24 567) \ 3 (34 \7) \
. 1/
L1=(1234 567) . Li7)=(12 7
s <o
Figure 139.

The figure shows all possible orderings obtained in descending the hierarchy HI and its sub-hierarchy HI(7) as well.
For H1, the orderings are total (whatever the monotonic linearization algorithm) in all nodes except node 3. In this node,
there are two possibilities (3 4 6) and (3 4 7). Considering HI(7), the orderings are total in all nodes except node 1. In
this node, two possibilities exist : (1 23 5 7) and (1 2 53 7). Instead of listing all the orderings that are valid in each
node, the figure shows the precedence diagram these possibilities originate from (these diagrams are constructed top-
down and simplified when possible).

L1 and L1(7) do nor conflict if the linearization of H1(7) is (123 57). All the common linearization algorithms do not

satisfy this condition, be they monotonic (DHHM) or not (LOOPS, CLOS). The algorithm we propose below has the

same behaviour. As a matter of fact, the required ordering is not natural. All common algorithms produce the "natural™
ordering (1 2 5 3 7), adopting one of the two following points of view :

— software design point of view : "bactrack as less as possible” so as to list strongly related nodes together, notably
when these nodes form a path of ancestors. In our example, the algorithm would thus prefers —once in node 2— to
pick up node 5 just above node 2... instead of bactracking to get node 3. This appears quite natural : if the branch 2-5
was the beginning of a tree, it would certainly be listed : yet, the knowledge that this branch is not part of a tree is
beyond node 5 (in node 7 which is diverging). For this reson, we qualify linearization algorithms exhibiting such a
behaviour as blind algonthms (corresponding property is termed blindness) ;

— mathematical point of view : "respect the extended precedence order"” : this order is con51dcrcd as an additional guide
for building a sound linearization [Ducournau et alii, 1994]. In our example, nodes 5 and 3 are not directly
comparable, but looking at their maximal common subclass -here, node 1- an order can be decided : node 5 is to be
listed before node 3. This order appears more natural than the opposite.

Hence, what appedrs in any case as a rather natural decision actually prevents the ordering of H1(7) to be obtained by
restricting the ordering H/ to the nodes of H/(7). The example is valid for any monotonic linearization algorithm. We
thus have exhibited a counter-example that invalidates any hope to build a blind monotonic linearization algorithm which
can be at the same time systematically congruent (for all hierarchies). (Note that the blindness constraint may be
superfluous. If this was demonstrated, the result would be more general : a monotonic algorithm would not be congruent,

be it blind or not blind.)
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7.3.6 Proposing a linearization algorithm

The algorithm we propose satisfies stability and monotonicity. It is efficient (linear in time en space vs. the number of
nodes). It is different from the monotonic algorithin proposed by [Ducournau et alii, 1994] for OOP but provides the
same result?>. Because such a linearization algorithm may be of interest not only for COP but also for OOP, it is
described in a separate report [Borron, 1996x]. Its properties are demonstrated in this report. Here, we simply present it
briefly. .

a) Algorithm

Our algorithm is designed to enable the tracing of the origin of a given node for understandability purpose. (A cognitive
difficulty of linearization algorithms like the CLOS one is that their results are difficult to predict.)

The algorithm is simple (two passes) and is based on a same elementary algorithm. It considers paths of classes. Each
path has a direction, the direction of the graph traversal when getting paths (top-down or bottom-up) ; each one is
examined in reverse direction (resp. bottom-up or top-down) for listing classes in order (listed classes are always on the
left when progressing along the path).

a.l) Elementary algorithm

Derived from the LIN algorithm, it taC!«as a list of class paths and successively climbs up each one until a diverging node
or the end of the path is found. When a diverging node is found, the algorithm starts climbing up the next path from the
bottom. When progressing along a path, the algorithm examines the elements found on his left and lists them if not
already listed (it is a pre-order progression).

a.2) Determining paths

Once the diverging nodes are known and their degree as well, the paths are determined by successive bottom up (or top
down), left to right climbings (resp. descents ) (Progressing that way and noting at each diverging node how subclasses
appear to be ordered enables the detection of conflicting hierarchies (ex. : X <Y on one hand, and Y < X on the other
hand): in this case, the user is warned and the computation cancelled.)

a.3) Two-pass algorithm

Let's give first a few definitions. If the subgraph flowing out of a given node is connex, it can be linearized : we term it
an independent branch. If this branch is found on the left of the leftmost branch leading to a diverging node, it is
termed a left independent branch. If this branch is found in between two branches both leading to a same diverging
node, then it is termed an in-between independent branch. The remaining independent branches are but right
independent ones : they systematically are on the right of the rightmost branch leading to a diverging node.

In a preliminary step, the hierarchy is traversed bottom-up, left to right to determine -out of a global hierarchy- what
nodes participate to this hierarchy, what are the diverging ones and their degrees and how they are disposed.

a.3.1} pass 1 : left and in-between independent branches
First, the paths are determined by successive top-down, left to right descents. Then, the elementary algorithm is runned
the reverse way (i.e. bottom-up), left to right. (Left and in-between independent branches are recursively visited during
this path.)

a.3.2) pass 2 : right independent branches
If nodes remained to be listed, they correspond to right independent branches. Firsi, the paths are determined by

successive bottom-up, left to right climbings. Then, the elementary algorithm is runned the reverse way (i.e. top-down),
left to right. (Right independent branches are recursively visited during this path.) '

45 [Ducournau et alii, 1995], p.331) states two results about the "extended precedence order” : (1) this order yields a sufficient
condition for making any linearization algorithm respecting it monotonic ; (2) this order implies all linearization algorithms respecting
it to produce the same result.
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- a.3.3) linearization result

Be LIN1 and LIN2 the results of the two passes. The linearization of the whole hierarchy is simply LIN1 with LIN2
appended behind.

b) Example

Next figure shows the skeleton of the hierarchy of a Professional Player class. This class inherits from Employee and
Player. Employee (resp. Player) results from the combination of Active Individual (noted Active) and Job (tesp. Game).
Active inherits from Individual. (Individual, Job and Game have no superclass.)

Individual

Active
Game

mployee Player

Professnonal Player

Figure 140.

b.1) First pass

We determine the number of diverging nodes and their respective degree by a top-down, left to right traversal. Hence,
the hierarchy disposed in natural ordering. (The natural ordering is the one obtained when topologically positioning
nodes as they are found for the first time in a bottom-up, left to right traversal (subclass below its superclass(es) ;
superclasses of a same subclass disposed from left to right according to the superclass list.)

Here, Active is the sole diverging node ; it has a degree 2. Individual is the single summit of the hierarchy.
Given this, we determine two paths by a successive top-down, left to right descents. (See next figure.)
The figure afterwards shows how classes are listed. Pathl is climbed up till the‘diverging node (Active). Hence, are

listed : Professional Player and Employee. Then path 2 is climbed up till the summit. Are listed durmg this progressxon
Player, Active and Individual.

_ _ . 2
@ |
y 2 Individual path1  path2
lndlividlal | ' = (PE PR
Actlve Game
M Actlve Game 4
v o Employee Player
Employee player

Professuonal Player

_Professmnal Player *

*1 A ~ 12

12 - @

Figures 141 & 142.
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b.2) Second pass

Since a few nodes have not been listed, the second pass is executed*0. The diverging nodes are now the classes that have
several superclasses excluding those that correspond to RIGHT branches. Here, a single one exists : Professional Player.

Two paths are obtained by a successive bottom-up, left to right climbings. (See next figure.)

The first figure shows how classes are listed. Pathl is descended from [ndividual till the diverging node (Professional
Player). Hence, is listed : Job. Then path 2 is climbed up till the summit. Game is listed during this progression.

1 2 (2)

1 2
Individual pathl  path2

T G)

-

Individual

; Job "
Active Game 1
A \ / . y Active ob Q
m Employee //

N\ S

Professional Player

\\l/ Professional Player
N’
12 /
— 2 2

Figures 143 & 144.

b.3) Final result

The result of our linearization algorithm is thus (using the first initial of each word) : Lpp=(PP E P A1 J G).

46 Because our algorithm lists all nodes in their final order, it can be stopped-(in any phase) as soon as all the nodes (minus one) have
been found. '

93



PART C : GENERALIZATION

This part explains first how an implementation can be attached to one color graph (local implementation), then how an
implementation can be distributed into a hierarchy of color graphs (hierarchical implementation). Hence, respectively,
the local inheritance rules for implementations and the class inheritance rules for implementations. This work is done
considering first a Smalltalk-style implementation (no combination, systematic masking) and then a CLOS-style one
(systematic combination except in case of explicit maskingj. The solution finally proposed encompasses both styles.

8. SYSTEMATIC CLASS-LEVEL COMBINATION STYLE

So far, masking was systematic ("Smalltalk-style”). We presently come to a different approach ("CLOS-style") where all
valid items (ex. : methods) along a same dimension are systematically selected —even when apparently masked— and
combined.. The nature of this combination is different from our usual combination meant for satisfying several
dimensions : in the following examples, the new one is noted with square brackets ({...]) while our usual combination is
noted with curly braces ({...}). Obviously enough. there are default combination methods for the new combination (ex. :
the standard combination method of CLOS) and ways to prefer other combination methods in place (thanks to MOPs).

To avoid any misinterpretation about "combined™ or "combination” or "combination method" in the rest of the text , these
terms are used between square brackets in the first case (hence. "[combined]” or “[combination]" or "[combination
method]"), and between curly braces in the second one (hence, "{combined} or "{combination}" or "{combination
method}") . ‘

8.1 PRINCIPLE

8.1.1 Description
Here is how the [combination] is done.

Let's first consider the case of an isolated dimension (none of its items satisfies also an other dimension). Instead of
keeping but one item for this dimension, the whole list of items is first computed : when obtained, all these items are
combined in the same order using the [combination method]. The list itself is recursively made by taking the item that
would normally be selected in case of systematic masking were the previously selected items not existing.

Let's now consider the case of a group of K cooperative dimensions (for any two of these dimensions, exist at least one
item that satisfy them both). Such dimensions are processed group by group. The result, for one group, is a
[combination] of ’

— all the items that satisfy all the dimensions. if any ;

— possibly followed by the {combination} of items satisfyving the K-1 first dimensions (these are [combined] of course)
with items satisfying only the Kt (these are also [combined]), possibly followed by the K-1 analog combinations (each
one {combines} items satisfying the K-i first dimensions [aiready combined] with items satisfying only the jth (already
combined too] :

— possibly followed by the {combinationj of items satisfving the first dimension (these are [combined]) with items
satisfying only the 2nd (these are also [combined]). .... with items satisfying only the Kth (these are also [combined]);

[A (dj dp...dy

{ [A(dyd2..dk-1)] AP} { [A(dydo...dk2d ] [A(dk-D ]}
{ [A(d] d2 dk_z)] [ A ((ik_l dy) 1} :

{ TAWd)d2..dk.3)] [ Adg2dk-r G2}

{ Ad), Audy) .. Ald))

A td;di .. 2= all items sauisfying dimensions d; and dj and ...

Figure 145
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This double-level combination generalizes our most recent algorithm recursively implementing the "p-graph local search
and combination” and the "prevalence of combined items” rules. The principles exposed so far are kept : each dimension
is satisfied once (vs. a combined method between square brackets now) ; most specnallzcd items are privileged vs. less
specialized ones ; the order of dimensions is taken into account.

The proposed computation satisfies two extreme cases :
— the result we get in case of a single dimension is the one that would be obtained in CLOS ;
— the result we get in case of a single item per dimension is the one that would be obtained if masking was systematic.

8.1.2 Impact of regularity

The form of the above formula was established for any hierarchy. If we were to consider but regular hierarchies, then the
formula gets simplified since the invocation scquencc diagram for a group of cooperative dimensions is a tree (cf.
§7.3.2.b : figures 93, 100 and 108). All the A(d; d;...) are organized as a tree vs the dimensions they satisfy. Compared
to the previous formula, we note in particular that (1) a given A(d; dj ...) may not appear several times in the formula ;
(2) two given A(d; dj ...) of same degree may not share (cannot satlsfy) a same dimension.

~a) Algorithm

The algorithm recursively combines items found along the alleys of the invocation sequence diagram. An alley (or
section) is a set of parallel segments between two diverging points, each segment belonging to the line associated with a
dimension. All the items found along a same alley are [combined]. When an alley is splitted into two or more suballeys
after point P, the results obtained along the suballeys beyond P are to be {combined} ; the corresponding result is to be
{combined] with items preceding P along the alley in question. If an item along an alley is alone, brackets can be
omitted.

In the next figure, we can distinguish alleys Pxyz (between points D and Dxyz), Pxy (between points Dxyz and Dxy), Px
(between points Dxy and Dx), Py (between points Dxy and Dy), and Pz (between points Dxyz and Dz). Alley Pxyz is
composed of three segments, one for each dimension dx, dy and dz ; alley Pxy is composed of two (for dx and dy) ; alleys
Px, Py and Pz, of one.

d

dx

Dx

m&x

alley Px max
Dz
méz
( m3xy alley Pz
alley Pxy
m2xy
(muyz
alley Pxyz
mOxyz .
L

Figure 146.

b) Examples

Next figures show a few cases. (Remark : A(dx dy ... du) is noted Ayy, 5]
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[Ayy (A 1Ay ]1}]
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Figures 147 & 148.

mét

[Axyzt {[A Xy {[A x][A y]}][A 2t {[Az][At]}]}]

Fizure 149,



The three combinations obtained for the specific figures are showr below.

[(Ayy ([A 41(A ,11}]

= ( e
(m1 xy n'\2).(y maxy ({md4 , m5 i im4 v msy m6y]}]_

[Ayyz (A o (A JIA JNIIA L1}]

=[mo xyz m1 {[m2 ,, m3 {Im4  m5,] [m4

Y Xy
[m2 ,m3, m4z]}]

xyz y M5y m6y1}]

(Awynr (LA L (A LJIA (BITA 5 (A ,1[A {11 1]

=[m0 7t Mlyyn |
[mz Xy m3xy {imd , m5 ] {maym’sy msy}}]
[m2 2t M3, (M4 , m5,} [md m5, m6,]}]
1

Figure 150

8.1.3 Possible simplification

Were the form in case of regularity considered as too complex for practical programming or were the regularity not
obtained, areduced form may be chosen. This form consists in keeping —for each group of dimensions— but the first
A (di dj ... dn), the elements of which are valid for all dimensions (in other words, the sole elements that belong to the
trunk4’ of the invocation sequence diagram for the dimensions in question). Of course, this choice requires more work
from the user since less automatic combination is done.

8.2 EXAMPLES

In the examples below, the full form is considered. The result is given be the hierarchy regular or not. If not regular, we
“consider the regular hierarchy that can be derived from it and give also the result for comparison.

8.2.1 Example 1 : tree structure
The table shown in the next figure is established from figure 89 once m0 has been removed. Dimensions or groups of
dimensions are listed in order. For each one. the [combined] item is shown between brackets if it is built out of a list ;
and without brackets if single. To obtain the final result. this list of combined items are to be {combined}. (Post-

methods, if any, would be listed in reverse order.)

Note that each line in this table is easily obtained from figure 93.

47 je. the first alley starting from the root class



order of classes / prevalence of combined items

do do' m'0.0’

do" di | [ mo~1 { mo® m1} ]

dimensions

2 | m m2 ma

* d3 d5 | [ m35 m35- m35+ | {m3 [m5 ms- m5+ ]|} ]

d4 [ mae ma4- ]
dé ) [ m6 mé ]
Figure 151.

The result for each set of dimensions may be obtained in an incremental way. In this purpose, S (di dj... dn) is used to
pick up in the superclasses the part corresponding to the dimensions di and dj and ...dn. Figure 153 shows the process for
the pair of dimensions d3-d5 (see corresponding inheritance subgraph in the next figure).

Figure [52.

formula

value

S35

Cas

[ms )
[ m3.5+ S(d}of){[ m3 SE) [ ms- S(ds)])]

[m3.5- S(d3d5){S(d3) [ m& S(ds5)}]

[ m3.5 S(d3d5) { S(d3) S(d5)} ]

m5+
[m3.5+ {m3 [m5-m5+ )]
[ m3.5- m3.5+ {m3 [m5 m5-m5+ }]

[ m3.5 m3.5-m3.5+ {m3 [m5§ ms- ]}]

Figure 153.
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8.2.2 Example 2 : dag structure, no conflict after linearizations

Here. we take the same examples than in §7.3.2.b.2.1. -

a) Non regular hierarchy

Let's consider figure 94. Systematic selection and combiration of methods according to the above rules produce the
following result. This result is easy to obtain simply by looking at the cited figure. Itis a [combination] of the method
valid for all three dimensions with : first, the result of the [combination] of the methods specified for both first two
dimensions {combined} with the {combination] of methods valid for the sole third dimension ; second. the result of the
{combination] of the methods valid for the sole first dimension icombined} with the unique method specified for both
last two dimensions ; third, the {combination: of the three ‘combinations! that can be obtained for each dimension
separately.

({ mOxyz
{{mlyy mdyy ] [m5, m3,]"
{ {mlxmdyx myg
timlymdy ] [m2ym3;mdy] [m3, m3,]} ]

(]

Figure 1

The table shown in the next figure is the analog of fizure 153, It shows a possible way to incrementally compute the
result by asking the superclasses the S (di dj ...) values. Note that a class is able to answer only demands for its
dimensions (single or combined) : if unable. it asks its own superclasses. Note also that one —and only one— class is
responsible for answering a S (di dj ...) demand. For example. the demand Srdy dz) from CO cannot be answered by its
direct superclasses : they transfer the demand to their superciasses : finallv, C2 is able to answer it.

formula vaiue
{

1

[moxyz S(dxdy dz) { S(dx dy) Stdz;} {Stdx g, S(dv) } { Stdx) S(dy dz} } { S(dx) Stdy) S(dz)}]1 | -

[ml,‘y S(dx dy) { [ mly S(dx)} S(dy) }] [_mlﬂ m_4ﬂ { {mly m4,] [m2y m3y m‘ty IR}

[m2y S(dy)] [m2, m3y mdy ]

S O L

[ m3y, 59/(2) { [m3y S(dy) ) [m}z)éz)} } (m3,, | [m3-v mdy]m3z ]

Cy | [mayy 59%n ([mdy @1 (mdy SGAI1) | (may, (mdy mdy) )

[mS, S(dz)] {m$, m3,]

&

(=) see preceding figure
Figure 155.

Note that, for each class satisfying a number of dimensions (ex. : dx and dv) . the “prevalence of combined items" rule
consists in placing just after the item of the class satisfying a number of dimensions (ex. : m/yy) a S expression
satisfying the same dimensions (ex. : Sfdx sv)), the value of this § expression being asked to the superclasses. If this
item does not exist, the S expression should nevertheless be present (ex. : Stdv)). If the item exists and is to {combined}
with other ones, this itern and the S expression should be [combined} (ex. : [m ¢ S(dx)] ).

b) Regular hierarchy

In this case, we consider figure 98 instead of figure 94. The result is easily obtained from the invocation sequence
diagram of figure 100. It corresponds to the case shown in figure 148. In the above formulas. regularity enables
simplifications : in CO, only one of the expression Stdx dv. S/dx dz). S(dv d-) may be not empty.
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[ moxyz ,
{ [mlxymdyy {[mlxmdy][m2y m3ymdy]}]
[(mSzm3z]} ]

Figure 156.

c) Simplified form

Were the simplified form to be used, the combined method will be reduced to m0y,; in any case.

8.2.3 Example 3 : dag structure, conflicts after linearizations

In this subsection, we draw our examples from subdivision §7.3.2.b.2.2.

a) Non regular hierarchy

Next figure is computed from figure 102 still in case of systematic selection and combination. Compared to the previous
example, the difference lies in the order of methods valid at ]east for dx : now, m4x precedes mlx and m4xy precedes
mlxy.

[ mOy
{ [m“xy‘mlxy ] [mS; m3,]}
{ [mdymlyx]m3y; }
{[mdxmlx] [m2y m3ymdy] [mS5;m3;]} ]

Figure 157.

Next figure shows how the above result can be computed. Note that the paths followed by the S (dx) and S (dx.dy)
demands is not the same than for the S (dy) demand. The demands S (dx) and § (dx dy) are answered by C4 when sent by
CO ; and by CI when sent by C4. The demands'S (dy) is answered by C/ when sent by CO ; by C2 when sent by C/ ; by
C3 when sent by C2 ; and by C4 when sent by C3.

formula | ' ;/alue
G | [mOyy, S(d}A(y dz) { Sdxdy) S(dz)} {Si.d%ﬁ{s(ldy) } {S(dx) Stdy dz) } { S(dx) S(dy) S(d2)} | *
Cy | Imly Sy ((ml, S40) Sl | Imly (miy [&.zy m3, mdy 11]
G | [m2y Sy | [ m2y m3y mdy ]
Cy | [m3y, Sdyfe) {(m3y Sy))[m3, 5@2)) )] | [m3y, {[m3, mdyIm3, })
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(*) see preceding figure

Figure 158.
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b) Regular hierarchy

In this case, we consider figure 106 instead of figure 102. The result is easily obtained from the invocation sequence
diagram of figure 108. It also corresponds to the case shown in figure 148.

[m0,\{yz :
{ [mdyymly, {[mdymly][m2y m3y mdy ]} |
[m§5;,m3,]} ]

Figure 159,

¢) Simplified form

Were the simplified form be used, the combined method will be reduced to mOyy; in any case (no difference with the
previous example).

8.3 REGULARITY : ITS CONDITIONS

The regularity of a hierarchy vs. its methods is an important property. It has been defined previously : a hierarchy is
regular vs. its methods named m, if all m methods of degree> K that exist along a same dimension satisfy the same K
dimensions (cf. §7.3.2.b.2.1.8). When a hierarchy is regular, its invocation diagram is a (list of) tree(s). It was also said
that regularity was obtained for memory representations given our choices. So let's first prove this point.

8.3.1 Memory representations

A memory representation is a list of cells that can be specified for each color in a c-graph or for each pigment in a p-
graph. No memory representation can be specified for a blend : memory representations for blends are computed
automatically from memory representations defined for pigments. No memory representation can be specified for
abstract dimensions (i.e. in case the sole pigment of the dimension is specified as “:abstract” or ":property”, or in case of
a mixin).

Because no memory representation can be defined for a blend, the degree of any memory representation defined along a
same dimension is one. No interleaving is thus possible. Hence, the expected result.

a) Systematic combination (of definitions)

Let's now suppose class C specifies a memory representation for a given pigment (or color). In a subclass of C, the
memory representation for that pigment (same dimension) cannot be replaced. It can only be upgraded :

— if an already existing cell is named, the new specification is combined with the previous specifications of the same
cell (as done in CLQOS) ;

— if a new cell is defined, this new cell is added to the memory representation of the dimension in question.

Next three figures show, from the point of view of C0, what happens when a cell with the same name (be it s) is inherited
via different paths :

— in the first two figures, the cell in question implements the same dimension : in one case, a first definition of the cell
in C3 is refined independently in C/ and C2 ; in the second case, the cell is initially defined independently in C/ and C2.
A single cell named s exists in CO, Cl, C2 and C3. 1In any case, the definition in CO combines the inherited definitions -
in the order defined by the linearization of the hierarchy, i.e. (CO C! C2 C3);

— in the third figure, two dimensions exist that define a cell named s. In this case, two cells with the same name s are
defined. A warning is issued : when updating or consulting a cell named s, the user should specify which one is to be
used (naming mechanism). An alternative solution is to rename one cell s.
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Figures 160 & 161.

C3

2 dimensions

=> Warning : 2 slots

Figure 162.

b) Systematic masking

In case of systematic masking, no combination of definitions is done for a given cell : only the first definition (vs. the
order of the linearization) is kept. Cells pertaining to different dimensions should have a different name, otherwise their
use should specify which one is to be updated or consulted (naming mechanism).

8.3.2 Methods

Figure 94 shows an example of interleaving dimensions. Regularity does not exist for this hierarchy. As explained in the
corresponding text (§7.3.2.b.2.1.8), this topological case corresponds a priori to the reality. Such a coexistence is
however gquestionable in practical situations.

First of all, let's insist on the meaning of the notation. A method mxy is a method that effectively requires both dx and dy
dimensions. For example, to display a Circle instance, the draw method requires both the radius and the center : it is
strictly impossible to draw such an instance by combining two elementary methods, one that would use radius and one
that would use center.
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Second important point : it is difficult to imagine that two dimensions that are employed?8 to implement a method m of
class C may be considered apart in a subclass of € for implementing the m method. Continuing with the same example,
if we were to draw a Cylinder instance, the radius and center dimensions will remain associated : the result will not be
obtained, for example, thanks to a first method requiring both the center and the height, and a second method requiring
only the radius.

Absence of regularity thus normally appears as a consequence of the linearization. However, it seems that all potential

problems disappear in fact due to explicit_masking (this one being set up by the user for semantic reasons). The STQ
hierarchy provides two examples that exactly follow this pattern :

— as already noted, the STQ hierarchy is not regular vs. the print methods (see figure 129). Two print methods, one
inherited from Stack (LIFO, bag and object dimensions), one from Queue (FIFO, bag and object dimensions), do

induce interleaving dimensions after linearization. Yet. the problem is paturally eliminated by the user : since the
STQ instance is not to be printed twice —once as a Stack and once as a Queue— but only once. explicit masking is
specified ;

— another potential problem is also eliminated naturally. almost silently, concerning STQ. This class inherits from two
pop methods : one from Stack (LIFO and bag dimensions) and one from Queue (FIFO and bag dimensions).
Potentially, the STQ hierarchy is thus not regular vs. pop. Yet, when a pop message is issued, a single element is to
be removed from the STQ instance and not two.-Masking is thus used when necessary. In the invocation sequence
diagram for state (b x) or (b y), the method pop (dequeune) of Queue does not appear (it is masked). In the invocation
sequence diagram for state (a y), the method pop of Stack is not available : only the pop method of Queue does exist.
Hence, no problem actually exists {cf. figure 33 in §5.2.1.a).

Our expectation is thus that a hierarchy is normally regular vs. its methods once methods explicitely masked have been
removed. -

A hierarchy may also appear non regular in case two methods having no semantic relationship happen to be given the
same name (name collision). This is an abnormal condition. The user is warned and invited to rename one or both

methods.

Were a hierarchy non regular, method combination is still possible (cf. subsection 8.1.3).

8.4 CONCLUSION

Regularity will thus be supposed for the rest of the paper :
— this is a priori not a big constraint since a hierarchy appears to be semantically unnatural if not regular ;

— this is advantageous : the systematic combination of items is much easier to deal with when hierarchies are regular.

48 Note the difference betwen "involved" and "employed” : in the STQ example, the object dimension is the only one involved ; the
bag dimension is employed, yet not involved. :
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9. MULTIPLE DISPATCH

Historically, one generalization of OOP was the passage from-the concept of "message” sent to a “receiver”
(discrimination done according to a single argument, the first one) to the concept of "generic function" call
(discrimination done according to several arguments). In the first case (single dispatch), methods are attached to a
single class and apply solely to objects that inherit from that class. In the second case (multiple dispatch), a method is a
priori non longer attached to one class, but is associated to several ones, termed "specializers”, according to its list of
required parameters49 ; this method applies when the (required) arguments of a (generic function) call respectively match
their "specializers".

Until now, the paper was focusing on single dispatch. Yet, as OOP, COP can be generalized to multiple dispatch too.
Instead of transitions strictly defined inside one color graph, multi-transitions are considered (cf. subsection 2.1 in
companion paper 1) : these involved several color graphs. Thus, color graphs may now be coupled instead of being
systematically standing alone as in the case of single dispatch.

Computing the effective method to be run when a {generic function) call is issued comprises four parts : (a) satisfying a
multi-transition ; (b) selecting methods ; (c) checking that these methods are valid ; (4) producing the combined method.
As a matter of fact, these steps usually corresponds to a systematic combination style (cf. CLOS). Since our text also
envisages a systematic masking style, we first consider this context. '

9.1 SYSTEMATIC MASKING STYLE

Suppose a (generic function) call m is made with a number of (required) arguments : the first argument, an instance of
class Cxg, is in'a given state xo (possibly expressed using a set of pigments piy0) ; the second argument, an instance of
class Cyp, is in state yo (possibly expressed using a set of pigments pjy(0) ; etc. Be x, y, ... these objects. The search for
an effective m method generalizes the search done for one argument.

9.1.1 Satisfying a multi-transition

First, the (generic function) call must be acceptable : a multi-transition must be found that satisfies all (required)
arguments. Each (required) argument should meet (vs. the specification of the corresponding parameter) the two
conditions to be met by the first argument in case of a message (vs. the specification of the first parameter) : (1) each
argument x (resp. y, ...) must be an instance of the first (resp. second,...) specializer of the multi-transition or the
argument class must be a subclass of this specializer (same condition than in CLOS) ; (2) the state of the argument should
match (one of) the state(s) specified with the specializer.

In other words, given the positions of the (mini-)tokens in each color graph of classes Cxg, Cy0, ..., a multi-transition m
is searched going up in the ancestor-trees of x0, y0, ... : if not found in Cxg, Cyg., ..., the search recursively continues in
the ancestors of Cxg, Cyg, -.. until found. If no multi-transition is found, an error is signalled.

[Since this subsection especially addresses the case where several color graphs are coupled via the m transition, we
restrict the following discussion to the case where more than one color graph are involved ; otherwise, all happens as in
the case of a message.]

9.1.2 Selecting methods

The obtained m multi-transition determines which dimensions dx/, dx2, ... (resp. dyl, dy2,...) of the x (resp.y instance)
are involved. If the algorithm for searching a method in case of a message approach (recursive "p-graph local search and
combination” rule along the involved dimensions) is used on the first argument x. this determines a set of micro-methods
satisfying the involved dimensions (dx/, dx2,...) as well as a number of employed -yet not involved- dimensions of CX0.
However, the methods that are found may well not satisfy the other arguments.

Next figure shows an example : concerning the instance x, the involved dimensions for m are supposed to be dx/ and
dx2 ; concerning y, they are supposed to be dy/ and dy2. Running the algorithm for the sole x argument yields methods
mxyl and mx2 : mxyl satisfies dxI (involved dimension) as well as ex/ (employed dimension) and dy! (involved

49 Here, "parameter” means "formal argument”. And "argument” means “actual argument”. The expression "(required) parameter”
refers to the CLOS specification featuring other sorts of parameters (optional. keywords,...). Only required parameters may be
specialized.
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dimension) ; mx2 satisfies only dx2. This set of micro-methods does not satisfy the x and y arguments smce dy2 is not
-satisfied.

dx2

dx1 ) . dy2
CXx2

ext mx2
©

&

\\
CXo —->

dyt

mxy1
i CYo

D

\/

—

Figure 163.

Hence, the following adaptation. The "p-ancestor-tree local search” rule is run for dx/ (the first involved dimension of
the first argument). If a method mx is found, this one satisfies dx/ and —possibly— a number of other dimensions of the
first, second, etc. arguments (involved or only employed). If mx does not satisfy one or more involved dimensions for
each other argument, the mx method is not retained. The "p-ancestor-tree local search” rule is run again for dxl, starting
the search above mx. The same process is run until a method mxy.../ is found that satisfies at least one dimension of each
other argument (y, z,...). The search may also stop because no more method can be found along the dx] dimension : in
this case, an error is signalled.

So, let's suppose a mxy...] method has been found. It satisfies dx/ and —possibly— a number of other dimensions of the
first argument (involved or only emploved dimensions). The above adapted algorithm is then run on the next unsatisfied
involved dimension of this first argument, be it dxk. Hence, either an error or the finding of a method mxy...k. This
method muxy...k satisfies dxk and —possibly— a number of other dimensions of the first argument (involved or only
employed dimensions) If all the involved dxi dimensions are satisfied, then we are done. Otherwise, the above adapted
algorithm is run again, on the (new) next unsatisfied involved dlmen51on This process is repeated until an error is
signalled or all the involved dxi dimensions are satisfied.

The set of methods that is found satisfies by construction all the involved dxi dimensions (dx/, dx2, ...) once and only
once.

9.1.3 Checking the selected methods

The set of methods that is found are multi-methods in the sense that they require several parameters. They should not
only satisfy (once and only once) the involved dimensions for the first argument, but also those of the second, third, etc.
arguments. They should also satisfy once and only once all the employed -yet not involved- dimensions for the first,

second, third, etc.-arguments.

Next figure shows a counter-example. Concerning the x argument, the solution is to be rejected since the employed
dimension ex3 is satisfied twice, once by mxy3 and once by mxy5. Concerning the y argument, the solution is also to be
rejected. Three reasons : (a) the involved dimension dyJS is not satisfied ; (b) the (involved or only employed) dimension
dy3 is satisfied twice (once by mxy3, once by mxy4) ; (c) the involved dimension dy/ is satisfied twice (once by mxyl,
once by mxy4). Note this last-configuration cannot appcar in a message approach, i.e. when but one argument is
considered for dispatching.
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Figure 164.
All checkings isolated here for explanation purpose can be done incrementaly each time a new method is selected.

9.1.4 Producing the combined method

The order of the selected methods for the dimensions dyi, dzi,... (of the second, third,... arguments) is determined by the
order chosen for the dimensions dxi (of the first argument). Thus all happens as if we were combining micro-methods in
case of single dispatch (i.e. in case of a message with argument x). The usual rule thus applies : rephrased, it says that
the micro-methods are to be combined in the order they satisfy their leftmost involved dimension.

Next figure shows an example : mxy! is chosen first since it satisfies the first dimension dx/ ; mxy2 is then chosen since
it satisfies the second dimension dx2 ; dx3 is already satisfied by mxyl, so no method selection is done for it ; mxy4 is
then chosen before mxy5 (due to dx4 and finally dx5). -Hence the result below. If the default {combination} method is
chosen, this yields : (progn mxyl mxy2 mxy4 mxy5).

dy3

dx2
= :5// /”“@
. __mxy5 —
dx3
dy2

dxt dx4
: Cx4 cv4
cx1 ™~ mxy4 e

/ dy1

~————mxyl __ .

>CYO

T

>CX0 CYt

F

combined method => { mxy1 mxy2 mxy4 mxy5 }

Figure 165.
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9.2 SYSTEMATIC COMBINATION STYLE

In case of message (single dispatch), systematic combination of methods was proposed under the hypothesis of regularity
(cf. §7.3.2.b.2.1.8). For muliiple dispatch, we consider an extension of this hypothesis which we call global regularity.

In the following, we first characterize this property before expressing the .combination algorithm. (Note that the
"prevalence of combined items” rule is systematically applied.)

9.2.1 Global regularity

a) Definition

Regularity was previously defined for one given hierarchy vs. its m methods : “all m methods of degree2 K that exist
along a same dimension should satisfy the same K dimensions”. Instead of a single hierarchy rooted in CO (receiver's
class), we now have to take into account one hierarchy per required argument. The criteria we propose simply extends
the rule to all dxi, dyi, ... (involved and employed) dimensions of the hierarchies rooted inCxp, Cyp,... (the classes of the
arguments). Global regularity means the checking takes into account all dxi. dyi, ... dimensions not separately but at the
same time.

" Next figure shows a counter-example : each hierarchy is obviously regular when considered alone ; yet, global regularity
is not obtained : along the dx/ dimensions, the dimensions that are satisfied by mxyl are dx! and dy! (degree 2), whereas
the dimensions satisfied by mxy2 are dx/. and dy2 (degree 2). Thus, the criteria for global regularity is not verified (two
methods of degree 2 do not satisfy the two same dimensions).

dx1
dy2
dy1

~mxy2
=l
i

CXO0 CYo

4

arA
VY

Figure 166.

b) Properties
Due to global regularity, a number of topological properties can be stated :

— the dimensions dxi, dyj,...are aggregated in stable waysA : for example, dx1 is always associated with dy2, dx2 and dx3
with dy3 and dy5, dx4 with dy4 and dy6. Any tree made by a group dxi is associated to a tree, always the same, made by
a group dyj, ... ;

— the trees formed by a group dxi, a group dyj.... in a same aggregate are isomorphic : if dx!/ is associated to dy/ and
dx2 to dy2, then if dx/ gets grouped with dx2, dyl gets grouped with dy2. Since the number of dimensions in each group
may be different, the alleys (i.e. trunk and branches) of one tree may be larger than the corresponding alleys of another
tree in the same aggregate. However, the form of the two trees are identical ; ’

— the number of nodes on an alley dxi... and on an alley dyj... that are in correspondance (in two trees of a same
agrregate) is identical ;

— if methods are represented by lines joining the nodes they associate, crossing may only exist between nodes on alleys
that are in correspondance ;

Next figure illustrates these properties. It shows a single aggregate (there may be several ones in parallel with this one).,
Here, two groups of dimensions (dx/ and dx2 on one side : dy/. dy2, and dy3 on the other side) are always associated.
The dimensions dx/ and dx2-form a tree ; the dimensions dylJ. dy2, and dy3 also form a tree. These two trees are
1somorphic : they both have three alleys (a trunk and two branches). The number of nodes on each alley (trunk included)
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is the same in the two trees (two on each trunk, two on each left branch, one on each right branch). There is one crossing
due to methods m4 and m5 : the classes of their arguments are not found in the same order in the CX0 and CY0
hierarchies. ‘

dy1

Figure 167.

9.2,2 Selecting methods

Assuming global regularity, search may be organized per group of dimensions. The first solution (obtained by the
selection algorithm shown in subsection 9.1.2) enables the identification of one or several groups of dxi dimensions. In
each group, the search may be done going up in the leftmost ¢xi dimension. If the method found does not satisfy the
whole group of dimensions (i.e. if its degree is smaller than the number of the dimensions in question), this is because
this group has been fragmented : a search is thus also made along the leftmost unsatisfied dimension. If the method
found does not completely satisfy the group of formerly unsatisfied dimensions, a new search is made in the new group
of still unsatisfied dimensions. Etc. Once each alley has been identified, a search is done upwards in each one to find
new methods along these alleys. And so on. '

(Since the selection is done along the dxi dimensions in the CXO hierarchy, the "prevalence of combined items" rule is
likely to be not verified. Thus alleys may appear in disorder compared to the (final) invocation sequence tree. In
practice, after fragmentation of the dxi dimensions, a new method may regroup one or several subgroups of dxi. : this
occurs when the method degree is greater than the number of dimensions of the group (subgroup, in fact) to which it was
initially thought to be attached.]

9.2.3 Checking the selected methods

During the selection, we have to check that : :

— the hierarchies rooted in Cxg, Cyo, ... are globally regular vs the m methods (cf. subsection 9.2.1) :

— the set of involved (and -if any- employed) dimensions for the first, second, ... arguments are satisfied once and only
once (cf. subsection 9.1.3). :

9.2.4 Producing the combined method
a) Ordering '

The methods previously selected are sorted so as to respect the “prevalence of combined items" rule (which is likely to be
not observed when the selection is done along the dxi dimensions of the CX0 hierarchy). In other words, the invocation
sequence diagram is organized to be a list of trees.

" A further re-ordering may be necessary in case several methods are proposcd by a same class in the first hierarchy (the
one rooted in CX0) : in this case, these methods are sorted according to their order vs. the dyi dimensions, and if equal in
that dimension too, according to their order vs. the dzk dimensions. etc. In the previous figure, this case is illustrated by
ml-and m2 : ml is placed before m2 due to the respective order of the m/ and m2 specializers (CY0 is placed before
CYI).
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b) Combinatign

Once the ordering of methods has been determined for the dxi dimensions, then the m methods are ordered. What
remains to be done is simply to produce a combined method. As noted for the systematic masking style (subsection
9.1.4), all happens as_if we were combining micro-methods in case of single dispatch. Thus, the combined method is
produced exactly as if m was a message, the x instance being the receiver (see section 8). Next figure illustrates this.

dyi
dy3
dx4 dva
CX3 dx3 y
cx2 cv2 cY3
cv1 m7 CY1
CX0
CYo Me CYo

combined method => { [mtm2 {[M5S5m4Im3 } ] [(M6m7m8 ]}

Figure 168.

This combination algorithm may be extended with qualifiers and can be tuned or changed to some extent via MOPs. It

generalizes : E

- the CLOS algorithm (see next section) : this one corresponds to having a single dimension per argument. Note the
ordering of several methods when originating from the same class X is also determined in CLOS by looking at the
ordering vs. the other arguments ("To compare the precedence of two [applicable] methiods, their parameter
specalizers are examined in order (...) the first pair of parameter specializers that are not equal determines the
precedence” ([Bobrow et alii, 1988], p. I-27) ; _

- the message case (one argument) with systematic combination (see section 8) : it corresponds to considering but one
argument (the first one, i.e. receiver).

- the generic function case (several arguments) with systematic masking (see subsection 9.1).
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10. SOPHISTICATED COMBINATION METHODS WITHOUT INDIVIDUAL
METHODS NOR THE SEND-SUPER ANTIMODULAR CONSTRUCT

10.1 GETTING RID OF THE SEND-SUPER CONSTRUCT

10.1.1 A reverse approach

Till section 8, we considered a style where masking was systematic. To somehow examplify this style, we named it
"Smalltalk-like". As a matter of fact, masking is not systematic in Smalltalk : sending a message to super instead of self
breaks the masking. Contrary to Smalltalk, CLOS is based on a systematic combination of methods. To be schematic,
all methods found in the hierarchy of a class are to be combined. As for Smalltalk, this statement is approximate : if we
consider the standard combination method, the :before and:after methods are all combined ; but the primary and
:around methods are not. These methods are usually not combined and the approach is similar to Smalltalk : like the
super mechanism of Smalltalk, an exception mechanism is provided (call-next-method). We can summarize this
situation in saying that the combination of all methods found in a hierarchy is the rule... except that (for some type of
methods the rule is to select one method only except that ... (combination is still possible via the call-next-method)).

We propose a more systematic approach : systematic combination unless refused. Note the philosophy is quite different

from the Smalltalk style and from the CLOS style (restricted to primary and :around methods). The default in these
languages is no combination unless an explicit call is made (via super or call-next-method, generically termed here

send-super50) Our proposal considers the opposite default : the combination is systematlc unless an explicit indication
is given.

10.1.2 Advantages

This reverse approach has several adavantages.

a) A unifying mechanism

The mechanism we propose is a unifying vs. the Smalltalk and CLOS styles :

— to emulate a Smalltalk-style, the indication 'masking should occur' is basically set for every micro-method. When a
Smalltalk-method uses super, its equivalent micro- -methods are not attached the indication ;

— to emulate a CLOS-style, the micro-methods equivalent to the :before and:after methods are not attached the
indication ; those equivalent to the primary and :around methods are attached the indication under conditions similar
to Smalltalk (i.e. when call next-method does not appear inside the CLOS methods in question).

b) A purely declarative mechanism

A question which is somewhat perturbing in traditional OOP is that it mlngles declaratlve and imperative programming
techniques for method combination.

The declarative technique consists in attaching qualifiers (like :before, or :after) to method declarations and using these

qualifiers as a basis for method combination, notably for implementing MOPs : present in CLOS, this technique is
(unfortunately) not quite frequently supported by OO languages.

To be general, the imperative technique is due to the OO construct used for calling, from inside a given meth dy, a
method having a same name but normally masked (for example, because it is defined in a superclass of the class in which
this method body exists). Such a construct (ex. : super in Smalltalk ; call-next-method in CLOS) allows reuse while
preventing infinite looping, but it is npon modular. Sonya Keene. a member of the CLOS committee, expresses her worry
about it in clear terms3!. While the declarative technique lets the user “predict the order of methods without looking at
the code in the bodies of the methods', the imperative technique is "in a sense (...) a violation of modularity” and should

50 send-super is suggestive but not quite good from a scmantic point of view since the next method which is called is determined vs.
the linearized list of classes (termed class precedence list i CLOS) and is thus not necessarily in an ancestor class of the class
possessing the method from which the send-super is issued : call-next-method, from this point of view, is better. Yet, because our
proposition is gencral and not directed against call-next-method in particular, we prefer to use send-super.

31 [Keene, 1989], section 5.8, p.111 : "Guidelines on controlling the generic dispaich’.
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thus be used “only when that power is truly necessary”. Unfortunately, "some programs" cannot be written"without
resorting to the imperative technique".
As shown below, our proposal consists in attaching to the header of micro-methods.(or. possibly, transitions) the

indication 'masking should occur' in the form of a keyword (:masking), exactly like the :before or :after keywords. As
shown below, no call-next-method (nor super) is any longer necessary.

10.2. GETTING RID OF INDIVIDUAL METHODS

In CLOS, a parameter specializer may either be a class or a list (eql form), form being evaluated once, at the time the
method is defined. Be object the result of evaluating the form : (eql form) denotes in fact (eql object). This feature
enables a filtering on a particular object. For example, it we want to implement the factorial method, we can write a
general method using Integer as a specializer and a specific method using (eql 0) to stop the recursion. (This style of
programming, without any explicit testing, illustrates what is done in CQOP.)

(defgeneric  fact (x)}

(defmethod fact ((x Integer })
(" x (fact (- x 1))))
(detmethod fact ((x (egl0)))

1)

Figure 169.
In COP, there is no need for an (eql form), since an object may be identified with a particular state. Next two figures

show this for the factorial example, both in visual and textual form. (Note that we made the code more secure by
distinguishing the negative integers and avoiding to attach them the factoria! transition.)

O (deftransition fact ((x Integer ( aa) (B P)))

(defmethod fact ((x Integer o))
fact (" x (fact (- x 1))))

@ (defmethod fact((x integer B))
1)

Figures 170 & 171.

10.3 SOPHISTICATED COMBINATIONS

As annouced before, our basic scheme can effectively be tuned so as to mimick —without the harmful send-super
construct— the mechanisms supported by traditional OOP. As an example, we will consider the sophisticated CLOS ones.
The goal is to let the user systematically "predict the order of methods without looking at the code in the bodies of the
methods" without resorting to call-next- method and its companion next-method-p (which tests wnhm the body of a
method if a next method cxnsts)

10.3.1 Basic idea

First, let's review the different cases of method combinations in CLOS supposing a single dimension per class hierarchy
to ease the initial comparison. (In the next subsection, this restriction will be removed.)

a) The standard method combination

This frequent combination deals with :before, :after, primary and :around methods. Original methods of a CLOS
program will generally be splitted up according to the class colors and pigments. Certain call-next-method invocations
may vanish in the process.
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The solution we propose applies to the bodies of the resulting methods :
- :before methods are represented as pre-methods, :after methods as post-methods ;
- primary and :around methods are represented as pairs of pre- and post-methods.
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Figure 172,

The above figure illustrates our proposal (the numbers give the order of method executions).

Note the relative ordering of methods in CLOS (ex. : the running of :before methods from most specific to least specific
or the running of :after methods from least specific to most specific) appears as a mere consequence of our more general’
mechanism (pre-methods in ascending order, post-methods in descending order).

Extra data ¢control may be provided to respect in details the call-next-method sgmanticssz. (The consequence of method
splitting about temporaries is also dealt with?3.)

b) Other method combinations

Besides the standard method combination, CLOS offers a number of other built-in method combination types (simple
ones, like progn or max). In these, the :around and primary roles arc recognized. The former role may use call-next-
method (and next-method-p) exactly as in the standard method combination : the above analysis54 thus applies. The
latter role can't use call-next-method (hence, a simpler treatment than with the standard method combination) ; order of
primaries is defaulted to :most-specific-first but can be changed to :most-specific-last : obviously, such an effect can
easily be obtained in our approach by specifying the primary methods as being pre- or post-methods.

A user is also given two possibilities to define other method combination types. The first one, termed “short form”, leads
to the considerations just evoked (the simple built-in method combination types act as if they were defined using this
form). The second one, termed "long form", provides great flexibility. From the perspective of the current discussion,
this form leads to the considerations already evoked, either about the standard method combination type (which can be
defined using it) or about order of methods.

52 _ to-next-method is reserved to exceptionally transmit explicit arguments from a primary or :around micro-method
to the next micro-method (upwards), i.e. from a pre-method to the next one. (In any case, a pre- and its associated post-
method receives the same arguments.) Using to-next-method when no next pre-method exists is an error ;

- from-previous-method is reserved to transmit the result(s) of a less specific primary or :around micro-method to its
caller, i.e. the result(s) of a given post-method to the next post-method. The rcturned results, if necessary, are to be bound
to (at least) an argument or a temporary. Using from-previous-method when no previous post-method exists is an error.
53 As mentionned before, a shared declaration will be used to ransmit data (temporaries) from a pre-method to its associated post-
method, thus mimicking temporaries shared thru a common encircling let in CLOS. (An efficient implementation is possible.)

54 Primary or :around methods are typically made of a first part making a number of computations, followed by a call-next-method
the result(s) of which is (are) used in a second part. The pre-method corresponds to the first part ; the post-method. to the second.
More complex schemes may appear in traditional OOP (presence of several instances of call-next-method instead of a single one.

possibly under the control of test or loop statements). In the COP view, thesc extra controls are obtained using colors at an appropriate
level. :
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10.3.2 Genefalization

a) Single dispatch

a.1l) Justification

The invocation sequence diagram of a regular hierarchy is a tree or a list of trees, each one being made by a group of one
or several dimensions. Note that the combined method which is obtained, say for for pre-methods, was established
without requiring the [combination] to be specified in detail. Same remark for the second {combination}.

In case of an isojated dimension, the tree is a simple list. Thus, the above proposition applies directly : the list of classes
to be considered is the one obtained by linearization ; all methods are ordered along this line ; pre-methods are combined
in ascending order and post-methods in descending order. (Note this choice exactly induces the CLOS ordering>> for
:before, :after, :around and primaries without requiring any further specification.) :
As a matter of fact, the line constitutes by itself an alley. In the [combination} which is obtained, items are used but once
and the way they intervene is a priori compatible with an ascending order (i.e. from most specific to least specific) or a
descending order (i.e. from least specific to most specific) : the interpretation of the [combination] may be different in
case of pre-methods (ascending order is the default : methods are processed from left to right between the brackets) and
post-methods (descending order is the default : .methods are processed from right to left between the brackets). Hence,
the compatibility with of the CLOS combination.

In case of a group of cooperative dimensions, the set of methods to be considered are those that are valid for the group :
the above figure does not hold any longer as such since methods are along several lines instead of a single one, these
lines forming a tree. However :

— in case of a degenerated tree (a list). there is no difference with the case of an isolated dimension : the ordering of
methods is like the CLOS one. (All methods have the same degree, otherwise dimensions would not be organized as
a list, but as a tree. Because these methods have the same de gree, the prevalence of combined items rule was not
applied and thus has not introduced any perturbation in their initial order —the linearization order. Say in a different
way, all dimensions except one may be conceptually removed : this does not perturb the order of the methods.) ;

— in case of a non degenerated ree, what has been said for an isolated dimension is also valid for the items alopng each
alley. Since the set of alleys form a tree, the result for an alley can be extended to the whole tree : any item is used
but once and the way it intervenes is a priori compatible with an ascending order or a descending order. Thus, in this
case, our proposal generalizes the CLOS combination .

Concerning the {combination}, mostly used in a tree but also for collecting the combined method of each group), being
not constrained in all its details, it allows plenty of variations. Parallel computations are possible. Otherwise,
computations on a left alley may be done before or after the computations on a right alley. The first option is the most
natural one since it respects the order of the dimensions, which is usual in COP. The choice also impacts the result
returned by the combined method. The proposed default is thus a processing from left to right.

Let's now suppose that both pre- and post-methods exist along the dxi dimensions. Suppose, for simplicity, that the
invocation sequence diagram is made of only two isolated dimensions, dx0 and dx/. Since dimensions are independent,
there is no difference between the following orders : (a) ascending dx0, then dx! (pre-methods), then descending dx0, and
finally dx/ (post-methods) ; (b) ascending and descending dx0 (pre- and post-methods of dx0), then ascending and
descending dx/ (pre- and post-methods of dx/). This result can be extended to diverging alleys in a same tree. Thus, we
can process each alley in turn for both the pre-and post-methods, or each group in turn for both the pre-and post-methods,
or process the whole invocation sequence diagram for pre-methods, then for post-methods. The result would be the same

in any case (if the whole sequence is not interrupted). The proposed default is the latter case, but this can be changed
(MOP).

This can be generalized in case gualifiers are used for enabling sophisticated combination methods, so as to mimick
CLOS (cf. figure 172). We can either process the whole invocation sequence diagram (default), or each group or each
alley in turn, first for the pre-methods (in order : around, before, primary methods) and then for the post-methods (in
order : primary, after, around methods). Mixed solutions are also possible.

In any case, this generalizes appropriately the CLOS combination along the list of classes obtained after linearization in
the restricted case of a single specializer (single dispatch). Were the invocation sequence diagram reduced to a smgle
degenerated tree (one or several parallel dimensions), the result would be identical to CLOS.

55 When comparing an ordering of methods with the ordering that would be obtained in CLOS, we implicitely suppose the
linearization algorithm to be the same (the CLOS linearization algorithm is replaced by ours which is monotonic).
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a.2) Example 1: pre-methods

Next figure shows the invocation sequence diagram of a regular hierarchy. Supposing that the bubbles represent pre-

methods, the ascending order is represented using arrows. Let's focus on each group of dimensions in turn :

— the first dimension dx0 is isolated : if it were alone, the combination we propose would be identical to the CLOS one ;

— the next three dimensions dx/, dx2 and dx3 are cooperative. They form a tree. As explained above, the combination
we propose generalizes the CLOS one ;

— the last two dimensions dx4 and dx5 are cooperative. The tree they form is degenerated into a list. Thus, the methods
along these sole dimensions combine exactly like in CLOS.

In the combined method established for the whole invocation sequence diagram, pre-methods appear in the order of a
bottom-up, left to right, pre-order traversal.

dx2

dx1

dx0

D
)

m4

dx5

dx4

m17

mi6

combined method => { {mim2m3 ]
[mAmS ([ m6m7 {{m8mI9 J{miOmitmi2 ]} ]
[ mMI3 m14 m1S 1} 1
(mi6 m17 ] }

Figure 173.

This figure is a priori valid for :before methods as well as for pre-methods of primaries or :around methods (masked
methods are supposed to have been filtered out before the systematic selection and combination). Thus, if we introduce
the appropriate qualifiers, three combined methods may be obtained using the above formula (say, before-combined,
primary-p-combined, around-p-combined.

If :before methods, pre-methods of primaries and pre-methods of :around methods are all to be run, one solution is, of
course, to run around-p-combined, before-combined and primary-p-combined in that order. Yet, since each alley is
independent, two other notable solutions are possible : (1) take each group (list or tree) in turn, and for each one, produce
the primary, the after and the around combined methods ; (2) take each alley in turn, and for each one, produce the
primary, the after and-the around combined methods. Mixed solutions are also possible. In any case, this corresponds to
what is done in CLOS (see figure 172) with the methods numbered 1, 2,... (around-p-combined), then 3, 4,... (before-
combined) and finally 5, 6,... (primary-p-combined). Were the invocation sequence diagram reduced to a single
degenerated tree (one or several parallel dimensions), the result would be identical to CLOS.
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a.3) Example 2 : post-methods

Next figure examplifies the case of an invocation state diagram with post-methods only : each m'.. method is a post-
method ; the descending order is represented by arrows.

Post-methods appear in the combined method for the whole invocation-state diagram as found in a post-order, top-down,
left to right traversal. It is easy to check that the same formula can be obtained from the one established for pre-methods
simply by inverting the order of methods or {combined} methods inside each pair of brackets (and changing m... to m’...).
In other words, as already mentionned above, the same formula can be used for pre- and pos-methods, with simply a
different interpretation of the [combination] in each case : from left to right in case of pre-methods ; from right to left in
case of post-methods.

dx1 +
N

dx5

dx4

combined method => { [m3m2m'1 |}
- ({[{{mMImM8 ][ m12m'11 m'10 1} m7m'é ]
[ mM15m'14 m'13 11}
m'5 m'4 ]
{mi7m'16é 1}

Figure 174.

The figure is a priori valid for :after methods as well as for post-methods of primaries or :around methods (masked
methods are supposed to have been filtered out before the systematic selection and combination). Thus, if we introduce
the appropriate qualifiers, three combined methods may be obtamed using the above formula (say, after-combined,
primary-P-combined, around-P-combined.

If :after methods, post-methods of primaries and post-methods of :around methods are all to be run, one solution is, of
course, to run primary-P-combined, after-combined, around-P-combined. Yet, since each alley is independent, two
other notable solutions are possible : (1) take each group (list or tree) in turn, and for each one, produce the primary, the
after and the around combined methods ; (2) take each alley in turn, and for each one, produce the primary, the after
and the around combined methods. Mixed solutions are also possible. In any case, this corresponds to what is done in
CLOS (see figure 172) with the methods numbered 7, 8,... (primary-P-combined), then 9, 10,... (after-combined) and
finally 11, 12,... (around-P-combined). Were the invocation sequence diagram reduced to a single degenerated tree (one
or several parallel dimensions), the result would be identical 1o CLOS.
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a.4) Example 3 : pre- and post-methods

Next figure examplifies the case of an invocation state diagram with a set of pre- and post-methods : each m... method is
a pre-method ; each m'... method is a post-method.
dx2

dx1

Figure 175. : N

As explained above, we can either process the whole invocation sequence diagram, or each group or each alley in turn,
first for the pre-methods andthen for the post-methods. In the first case (default), this consists in running the combined
method shown in figure 173, then the combined method shown in figure 174 : {fml m2 m3] ... [m16 ml7] [m'3 m"2
m'l] .. [m'17 m'16]}. In the second case, the three [combined] methods inside these two global combined methods are
interleaved : {{ml m2 m3] [m'3m'2 m’'l].. [ml6 mI7] [m']7 m'I6]}. In the third case, each list between brackets for
pre-methods is completed with corresponding post-items. In any case, the result is the same (if the computation is not
interrupted). Next three figures express these three possibilities. (Note that the simplifications in notation implicitely
introduced in the formulas, for example (a] {b] => [a b], imposc some requirements on the [combination] or the
"{combination}.) .

combined method 1 => { {mIm2m3 ]
[(mdms {[{m6m7 {[mM8m9 ][ mOmiimi2 1}]
{ m13 mt4 m15 1}1
[miemi17 ]
[ m3m2m'1l ]
f{l{I{m9Im8 j{m12m'11m'10 ]} m7m'é ]
[ m15 m'14 m't3 ]} m'sm'4 ]
[mM17m'16 ]} .

Figure 176.

combined method 2 => { [MIm2m3 m3m2m'1 ]
[mdm5 {[mém7 {[m8m9 J[miOmitmi2 ] }]
[ mMm13mi4amis 1}
{{{{mM3m8 J[mi2m'1t m'10 1} m'7m'é ]
[ Mm15 m14 m'13 ]} m5m'4 i
[Mi6mM17 m17m't6 ]}

Figure 177.
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combined method 3 => { [MIm2m3 m3m2m1 ]
[mam5 {[m6mM7 { [ MBmIMImMS8 ]

ImiOmiitmi2m'12m'i1 m'10 11}
‘m'7 m'é ] _ '
[ m3Imidmism1sm'14 m13 11}

m's m'4 ] .
[ mémi7 m'17 m'16 11}

Ficure 178

The case just studied corresponds, notably, to the use of primary methods. If we now consider combination methods
using qualifiers, once again, due to the independence of each dimension. a number of equivalent processings are possible.
We can either process the whole invocation sequence diagram. or each group or each alley in turn, first for the pre-
methods (in order : around, before, primary methods) and then for the post-methods (in order : primary, after, around
methods). Mixed solutions are also possible. Using the same notation as above, the default solution is : around-p-
combined, before-combined, primary-p-combined. primarv-P-combwned. after-combined, around-P-combined. This
corresponds to what is done in CLOS (see figure 172) with the mzthods numbered 1, 2.... to 11, 12... Were the invocation
sequence diagram reduced to a single degenerated tree (one or several parallel dimensions), the result would be identical
to CLOS. :

b) Multiple dispatch

This case derives directly from the above study about single dispatch (§a) since the algorithm for producing the
combined method in case of multiple dispatch simply consists in reducing the problem to the case of single dispatch. As
explained in subsection 9.2.4 :

(1) the invocation sequence diagram for the CXQ hierarchy (the hierarchy associated to the first argument) is ﬁrst ordered
as a list of trees : the same thing was done in case of single dispatch ;

(2) the algorithm which is used for the combination of the selected m methods —which are multiple-dispatched— is the
same than for single-dispatched ones : and. in both cases. the ordering which is taken into account is precisely the one
in the CX0 invocation sequence diagram.

The refinement for ordering several methods attached to a same ancestor of CX0 in case of multiple dispatch has no
effect on this demonstration ; but it ensures that the result would be identical to the CLOS one in case each CX0, CY0....
hierarchy is made of one dimension only.

Hence, sophisticated combinations methods (using qualifiers) may be set up, mimicking and generalizing the CLOS
ones, even in case of multiple dispatch.



CONCLUDING PART

11. SUMMARY

COP, an offspring of traditional OOP, is based on the intuition that the basic idea of OOP ("let's give responsability to
data structures”) is an excellent idea which has not been pushed to its ultimate. COP considers that objects have states
and it makes their behaviour depends on these sates (in addition to their classes).

Companion paper n°! describes the formalism we use for this, i.e. color graphs describing the whole behaviour of a class
of objects using states and transitions between these states. A color graph is an abstract formalism capturing the states
of a class of objects in a N-dimension space, the possible evolution of object states in this space being specified by
"regular transitions" triggerred by external events —messages (single dispatch) or generic function calls (multiple
dispatch)— and "reflex transitions”, i.e. transitions that fire on internal conditions. In addition to being abstract, a color
graph describes the whole behaviour of a class of objects, i.e. the behaviour implemented by methods and memory
representations in this class and its ancestors.

Thus several problems are posed : (inheritance) relationship between a class and its ancestors in terms of color graphs,
mapping of a color graph to an implementation (methods and memory representations) ; (inheritance) relationship
between an implementation of a color graph and the implementations of its ancestors.

In this paper, inheritance is progressively and fully analysed. Two levels are distinguished :

— the local level (a single color graph is considered) ; A

— and the class level (a hierarchy of classes is considered. each one being described by a color graph).

In addition, inheritance is analysed first for transitions (at both levels), then for implementations (at both levels, too).

The basis for inheritance is our local rule for inheritance of transitions : in one‘given color graph, “regular transitions” are
inherited along "reflex transitions”. This was shown first in a c-graph (one dimension) —the simplest form of color
graph, then in a p-graph (several dimensions). Local inheritance was then extended to class inheritance

Concerning the implementation aspects, a few decisions were taken : a node in a color graph may be attached a memory
representation ; a transition, a pre- and a post-method. On that basis, local inheritance of methods and memory
representations also along reflex transitions was formulated. This being handled, its extension to class inheritance (in a
hierarchy of color graphs) was examined.

The key point in our proposal is to consider objects as being multidimensional. Inheritance is viewed in a space of N-
dimensions. A critical pass consists in linearizing the ciasses found along each dimension when considering what an

object of a certain class and in a certain states inherits from its class hierarchy. This linearization.along several

dimensions leads to the definition of congruency, a desired property of linearization algorithm : if an algorithm is

congruent, then the linearization along one dimension can be obtained —in the correct order— from the linearization of

the whole hierarchy by restricting it to classes that impact the dimension in question. The LOOPS linearization algorithm -
is shown to be congruent. However, it is also shown that congruency and monotonicity are antagonistic properties (at

least if progression along a path of classes is done blindly). The solution we choose consists in using a monotonic

algorithm (we propose a new one) and solving a possible conflict by pnvxlegmg the leftmost dimension. On the way, we

propose a new monotonic linearization algorithm.

Another important property is introduced : regularity. Regularity is obtained for memory representations in normal
conditions. Concerning methods, a hierarchy is regular vs. its methods named m, if all m methods of degree= K that exist
along a same dimension do satisfy the same K dimensions. In case of multiple dispatch, the dimensions of all arguments
are 1o take into account. Regularity vs. methods. although not automatic, is obtained in practice. This makes the
"invocation sequence diagram" (an abstract of the methods found along the dimensions of a hierarchy) a list of trees
(provided that the "prevalence of combined items”, a natural rule. is applied). This enables in turn a systematic
combination style to be set up, possibly with qualifiers, possibly with multiple dispatch, thus generalizing in all points the
CLOS algorithm.

The paper also shows that these very sophisticated method combinations may be obtained without the need of the anti-
modular OO construct send-super (super in Smalltalk. call-next-method in CLOS,...), hence a purely declarative
mechanism. Concept simplicity is increased in other ways too : individual methods can be ridden of ; the execution order
of :before, :after. ... methods. being based on a more fundamental order. the one of pre- and post-methods, appears more
"natural” than otherwise (in CLOS, for example).
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12. RELATED WORK

As a description formalism, color graphs are cousins of higraphs [Harel. 1987] {Harel. 1988]. These are used for
describing reactive systems. Color graphs take advantage of connectedness whereas higraphs use insideness. The power
of expression for non reactive systems is the same. Color graphs can be judged as potentially dangerous since they
-enable the user to specify blends ; however. this featwre is onily an alternative enabling simpler specifications' in usual
cases (it avoids clauses). a mere possibility that 1s supposed 0 be used cleveriy (when leading to too many blends. users
are naturally supposed to refrain from their use). )

Predicate classes [Chambers, 1993] also feature states, but the basic mechanism is subclassing : if the state of an instance
of class C is such that it (dynamically) verifies the predicate of a4 subclass of C. then it inherits automatically from that
subclass (cells and methods). Color graphs are more powerful because the next state after a message is basically
unknown in predicate classes whereas color gruphs specify the destination of each transition.

As mentionned in companion paper n°2, [McGregor-Dver. 1993] is a work close to us in its basic ideas. vet largely not so
fully worked out in its development (even for mixins). It is quite striking to note that the authors basically have the same
understanding as ours : they propose two “teciiniques”  "First. a state from ¢ base class could be decomposed into two or
more substates in the derived class. The second technique v as to add a new set of states that are in parallel to those that
existed in the base classes” (p. 68). This is akin to the idea of aerivauon and decomposition. Although with a different
formalism, our work is more precise. This was shown about the derivauon and mixin constructs. the less easy parts from
our point of view (handling orthogonal composition i« much easier). Note our work respect the so-called “strict
inheritance model” since all the constraints mentioned in the cited work are fulfilled in oour approach. Namely (pp. 64-
63) : (1) "A child class can not delete a state of any of its parent classes” : (2) "Any new state introduced in a child class
is wholly contained in a existing state of one of the paren: classes™ (31 "A child class may not delete a transition from
the state machine of one of its parent classes” This work does not extract mixins as such : it does not attempt to express
an algorithm for combining items found in a whole hierarchy . '

A more recent paper is [Sane-Campbell. 1995]. It seems to be much less developed than our work and very much
implementation concerned (C++ oriented). As ours. it does not consider concurrency. Mixins are apparently not
considered, nor multiple dispatch.

The work which inspired us the most is certainly CLOS {Bobrow et alit. 1988]. The idea of linearizing according to each
dimension is directly inspired from CLOS. which does not consider the existence of dimensions, but which linearizes a
class hierarchy. The concepts of qualifiers for building sophisticated combinations and MOPs for enabling some changes

~ vs, the proposed defaults are those of CLOS. Our work extends the CLOS proposal by taking into account states. The
proposal we make enables the elimination of the call-next-method. an anti-modular construct the use of which is
discouraged in CLOS : COP thus features a purely declarative style as reccommended by Sonya Keene [Keene, 1989].
Note also the disparition of the individual methods, i.e. specialized by an (eql form).

As far as the linearization is concerned. we deeply appreciate the work done in [Ducournau et alii, 1992], [Ducournau et
alii, 1994] and [Ducournau et alii, 1995] as well as other papers from the same authors. The rigor they introduce in this
domain is welcome. We modestly attempt to define congruency in the same way. A number of questions remain open :
is the LOOPS linearization algorithm the only one that is blind and congruent ? Is it possible or impossible to find a non
blind algorithm that is both congruent and monotonic ? Would it be useful ? (i.e. is a better solution than the one
presented here possible ?)

Concerning inheritance, it seems -to the best ot our knowledge- that our approach "by dimensions” is completely new.
One can interpret our work as somehow providing automatically a correct "point of view" [Carré-Geib, 1990] (here, a
dimension) using the color graph description (a number of naming problems are avoided due to narrower contexts ; this is
hot to say that all naming problems disappear : the solution proposed by the authors is interesting in this respect ).

We are currently browsing the literature to test COP against what may provoke difficulties in OOP. We found a solution
to the so-called “state partitioning anomaly"” as defined in [Aksit-Bergmans, 1992]. A separate paper will describe it in
details. It also appears that the proposal made by [Ossher-Harrison: 1992] for combining inheritance hierarchies meshes
well with our approach by dimensions with the decomposition and derivation constructs.
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13. CONCLUSION

In this paper, inheritance is progressively developed from simple and intuitive local inheritance rules in a single color
graph for transitions up to a highly sophisticated combination algorithm for multiply-dispatched methods (in fact, the
most sophisticated we know) that fully generalizes the CLOS approach. Both a systematic masking style ("Smalltalk-
style”) and a systematic combination style ("CLOS-style") are addressed. Are also addressed, orthogonally, both a
message-style (single dispatch) and a generic-function-style (multiple dispatch). - Contrasting with the imposition of
magic rules extracted out of a hat like a bunny rabbit, this development fully explains all inheritance rules.

Given that the color graph formalism we use is "connectedness-oriented” whereas the higraph formalism is "insideness-
oriented”, our results may be incorporated in the statechart formalisms and derived ones.

From a conceptual point of view, the interpretation of inheritance in terms of dimensions was found quite illuminating. It
may well bring new and important results due to a new mathematical point of view on inheritance. Intuitively, it appears
that merging all the points (coordinates) that exist on one dimension, as it is implicitely done in traditional OOP, certainly
makes inheritance difficult to deal with.
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APPENDIX

THE EXPANSION OF STQ

Next figure shows the expansion of the STQ p-graph. Instead of not empty, we note q (resp. s) the substate corresponding
to "the number of pushed (resp. enqueued) elements is strictly positive”. The graph is not symmetrical because of the
masking effect of pop in Stack.

STQ

enqueue:

Figure A.1.

(Note : This figure is not meant to be interacted with by the programmer. In fact, our proposal precisely enables the
programmer to avoid building it in a brutal way. This figure simply shows that a relatively complex result may be
obtained with a minimum of effort.) '
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