N
N

N

HAL

open science

Colored-Object Programming: Color Graphs, a Visual
Formalism for Synthesizing the Behaviour of Objects

Henry J. Borron

» To cite this version:

Henry J. Borron. Colored-Object Programming: Color Graphs, a Visual Formalism for Synthesizing
the Behaviour of Objects. [Research Report] RR-2876, INRIA. 1996. inria-00073815

HAL Id: inria-00073815
https://inria.hal.science/inria-00073815
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073815
https://hal.archives-ouvertes.fr

%I NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Colored-Object Programming :
Color Graphs, a Visual Formalism
for Synthesizing the Behaviour of Objects

Henry J. Borron

Ne 2876
Avril 1996

THEME 2

Les rapports de recherche de I'INRIA
sont disponibles en format postscript sous
ftp.inria.tr (192.93.2.54)

si vous n'avez pas d'acces ftp

la forme papier peut étre commandée par mail :
e-mail : dif.gesdif@inria.fr

(n'oubliez pas de mentionner votrc adresse postale).

par courrier :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA research reports

- are available in postscript format

ftp.inria.fr (192.93.2.54)

if you haven't access by ftp

we recomnmend ordering them by e-mail :
e-mail : dif.gesdif@inria.fr

(don't forget to mention your postal address).

by mail :

Centre de Diffusion.

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

.

.

%I INRIA

SOPNIA ANTIPOLUIS

Colored-Object Programming :
color graphs,
a visual formalism
for synthesizing the behaviour
of objects.

Henry J. Borron ~

Programme 2 — Génie Logiciel et Calcul Symbolique
Action LeTool

Rapport de Recherche N° 2876 — Avril 1996 — 18 pages

Abstract. This paper is about colored object programmjng, a refinement of object
oriented programming. In this approach, the answer of an object to an external event
(message or generic function call) depends not only on its class, but also on its current
state.

The paper presents a visual formalism (a notation, not a programming environment) for
describing the whole behaviour of objects of a same class, i.e. the behaviour resuiting
from each behaviour increment defined in this class and in each of its superclasses.

The formalism describes states and transitions between them (external events) in a N-
dimension space. It is grounded on connectedness whereas related visual formalisms are
grounded on insideness (these derive from statecharts).

Keywords. Language design, visual formalism, obje'ct oriented programming, state,
transition, colored objects, abstraction, modularity, cleanness.

(Résumé : tsvp)

* borron@chris.inria.fr

INRIA, Unité de Recherche de Sophia-Antipolis
2004, route des Lucioles. BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 93 65 77 77 — Télécopie : (33) 93 65 77 65

Programmation par Objets Coloré€s :
les graphes de couleurs,
un formalisme visuel
pour synthétiser le comportement
des objets.

Résumé. Ce papier a trait a la programmation par objets colorés, un raffinement de la
programmation par objets. Dans cette approche, la réponse d'un objet & un événement
externe (message ou appel de fonction générique) dépend non seulement de la classe de
l'objet, mais aussi de I'état courant de celui-ci. :

Le papier présente un formalisme visuel (une notation et non pas un environnement de
programmation) pour décrire I'ensemble du comportement des objets d'une méme
"classe, i.e. le comportement résultant de chaque incrément de comportement défini dans
cette classe et dans chacune de ses superclasses.

Le formalisme décrit les états et les transitions entre ceux-ci (événements externes) dans
un espace a N-dimension. Il est basé sur la connexion alors que les formalismes les plus
proches sont basés sur l'inclusion. :

Mots-clés. Conception de langage, formalisme visuel, programmation par objets, état,
transition, objets colorés, abstraction, modularité, propreté. _

Colored-Object Programming:
color graphs,
a visual formalism
for synthesizing the behaviour
of objects.

"(...) diviser chacune des difficultés (...)
en autant de parcelles qu'il se pourrait
et qu'il serait requis pour mieux les
résoudre” René Descartes

(Discours de la Méthode, 1637)

1. INTRODUCTION

This paper is the first one of a sery of three companion
papers about a refinement of Object Oriented
Programming (OOP)!.

This first paper is devoted to the external behaviour of
class instances using a new formalism ; the second one
(Borron, 1996d] elaborates the handling of independent
supplementary behaviours (mixins) ; the third one

[Borron, 1995¢] is about ¢lass inheritance.

This sery specifies our proposal (results). Other articles
will describe the rationale behind such results, either
from a computer science point of view or from a
cognitive/ergonomical point of view.

1.1 Goal of the paper

This article presents a formalism for describing the
WHOLE behaviour of objects of a same class, i.e. the
behaviour resulting from each behaviour increment
defined in this class and in each of its superclasses. In
other words, the formalism is invarjant for a given class
of objects, the behaviour of these objects being imple-
mented in a flat manner or using a complex hierarchy of
superclasses : the same programming interface will be
exhibited whatever the case. The proposed formalism is
preferably used in its yisual form.

We term color graph the interface of a class, i.e. the
structure capturing the whole behaviour of its instances.
(The term behaviour is used to reflect the abstraction
level.) A color graph is made of nodes and transitions. A
node depicts a possible instance state or a contribution to
it ; a transition, the possibility for a message to occur in a
certain state and its effect on the instance state. Methods

and memory representation52 are really second citizens
in this formalism : they are defined only at the
implementation level

1.2 Overall approach

In this subsection, we sketch the links of this paper with
the other two of the sery. As a matter of fact, the way
we introduce and (re)define (class) inheritance is a key
point of our approach.

a) A form of inheritance is defined in one given color
graph, i.e. considering the whole behaviour of a single
class : termed "LOCAL INHERITANCE", this form is
initially specified for transitions (specification level),
then adapted to methods and memory representations
(implementation level)..

b) Local inheritance is then generalized to CLASS
INHERITANCE, i.e. considering a hierarchy of color
graphs, each one being attached to one class : this
results in a redefinition of class inheritance which, in our
view, clarifies this concept and brings a number of
practical advantages, for example a purely declarative
combination mechanism. The generalization is first
done for transitions (specification level) then for
methods and memory representations (implementation
level).

(graph level)

(hierarchy level)

For Transit

. described in paper 3
(specification fevel)

Eor Methods/Memory rep. | described in paper 3
(implementation level)

¢ described in paper 3

Figure 1.

To be more precise, this first paper is devoted to the
external behaviour of class instances : it describes how
color graphs are built, defining three essential constructs
(selection, decomposition, conjunction). LOCAL inheri-
tance for transitions is defined in this paper.

The third paper is devoted to CLASS inheritance from
both an abstract point of view and an implementation
one. First it shows that the decomposition and the
derivation (a specialized form of decomposition
construct devised for handling mixins) are central for
abstractly composing a class out of superclasses. In this
part, LOCAL inheritance rules for transitions are thus
generalized to CLLASS inheritance rules for transitions.
Second, it describes how concrete implementations
(methods and memory representations) can be attached
to a color graph and can be inherited LOCALLY (i.e.
inside one color graph) thanks to carefully chosen rules ;
the paper then shows how these local inheritance rules
for implementations can be generalized for CLASS
inheritance (involving a hierarchy of color graphs).

While the third paper takes for granted the derivation
and mixin constructs, the second paper focuses on their
design, elaborating them on top of the essential
constructs, The derivation, a powerful specialized
decomposition, abstracts the assembly of a basic
behaviour with a mixin one (specification level).

Although better read in a row, each paper is self
contained. This supposes some repetitions : we tried to
reduce them to a minimum.

Important : all these papers present concepts and NOT
a programming environment. A forthcoming paper will
show how a set of interactive tools may support the
proposed notation in a quite friendly way.

1 The original version of this paper was written in February
1996. Only surface modifications were made since then.

2 instance variables [in Smalltalk] or slots {in CLOS]

1.3 Plan of the paper

This first paper is organized as follows : next section
presents a formal definition of color graphs (section 2) ;
section 3 rapidly describes their visual aspect ; section 4
illustrates all this using one example ; section 5 presents
an additional concept for refining a color graph
specification ; section 6 relates the color graph
formalism to other works, notably predicates classes and
higraphs ; a conclusion stresses the consequences of
these relationships.

Depending on his/her personal tastes and habits, the.
interested reader may well prefer to start with the
example part (the Person color graph in section 4)
instead of the concepts one (section 2) : this example is
commented in a way that progressively introduces the
terms and concepts defined in the formal part ; no
backward reference is made to ensure independence.

2. COLOR GRAPHS : SPECIFYING
INSTANCE BEHAVIORS

In COP, the behaviour supported by a class (including its
ancestors)is abstracted as a whole in the form of a color
graph describing possible (reachable) instance states and
transitions between them3. For the sake of precision, a
vocabulary has been coined consistently using the theme
of colors as a metaphor.

2.1 States

States are described according to one or several
dimensions. Several dimensions are useful from a
description point of view ; they also enable to fight
against the combinatorial explosion effect encountered
otherwise (this aspect is shown in length in [Borron,
1996b]).

C-graph
In a single dimension space, a reachable instance state is
termed a color?. (The corresponding graph is termed a c-
graph). A color may be further qualified as being either
basic or ephemere. A basic color corresponds to one
point on the space unique axis ; an ephemere color
recursively corresponds to a cloud of basic colors.

P-graph .
In a N dimensions space (N=2), an elementary
contribution to a reachable instance state is termed a
pigment. (The corresponding graph is termed a p-
graph). All the pigments defined along one same
dimension form a scale. N scales of pigments, one per
dimension, constitute a palette>. Several palettes may
be used in a same p-graph, but only one is valid at a
given time (during execution). In a given scale, a

3" The reader is invited to note that we haven't extended the
color graph formalism to reactive systems (this is not due to an
intrinsic limit of the formalism itself : see § 6.2.1.3.)

4 Idioms often translate a state as a color. For example,
someone may be green with envy, red with shame, etc.

5 A palette is also termed a pigment system ; and a scale, a
family : see [Borron, 1995a). Other shifts in terminology are :
reflex transition (instead of : void transition), g-circular (d-
circular), i-circular (s-circular).

distinction is made between basic and ephemere
pigments : a basic pigment corresponds to one possible
value of a coordinate ; an ephemere pigment recursively
corresponds to a cloud of basic pigments.

A p-graph may also feature basic and ephemere blends.
Basic blends are recursively obtained by composing two
or more pigments of different scales of a same palette.
The degree of a basic blend is the number of these
pigments (2 £ d < N). In a N-dimension space, a basic
blend of degree N corresponds to one point. Ephemere
blends are less frequent : they recursively correspond to
clouds of basic blends. All basic blends involved in a
same ephemere blend have the same degree ; this degree
is the degree of the ephemere blend.

The degree of a pigment is always one. The degree of a
color graph is the number of scales in one palette (N).
Pigments and blends are collectively called p-chromas.
In a c-graph, a reachable instance state is thus
represented by k p-chromas (1 < k < N), the degrees of
which sum to N.

Chromas
Colors, pigments and blends are collectively called
chromas. Blends of degree N may also be termed colors.

2.2 Regular transitions

Regular transitions model acceptable messages and their
effect. They should not be confused with reflex
transitions : these model automatic changes due to
internal conditions. Regular transitions are described
first, just below. The adjective "regular” may be omitted
when the context is sufficiently clear.

State transitions

A regular state transition models the possibility for a
message to be received in a certain state (the source
state) and its effect in changing the dictionary of the
messages accepted by the instance (this is modelled by
the destination of the transition). A regular state
transition has a name (or a selector, to use a Smalltalk
word).

Graph transitions
The regular transitions that appear in c-graphs and p-
graphs are termed regular graph transitions. They
expressed regular $tate transitions. As such, they also
have a name (selector). For a c-graph, the transposition
is immediate : states are directly represented by colors ;
and state transitions, by graph transitions.

In a p-graph, a state corresponds to N pigments. A state
transition is thus basically represented by N micro-
transitions, one per dimension (decomposition step).
Each micro-transition flows from one pigment of the
source state to one pigment of the destination state (the
source and the destination pigments belong to the same
scale). Each such micro-transition is constrained by an
elementary clause mentioning the source pigments of all
the other (N-1) micro-transitions. Usually, most of these
micro-transitions, say k1, are side-effect free : side-effect
free transitions are circular (destination = source) and, by
convention, not shown (except one, when k1 equals N).
Applying this convention yields two cases : when a
single micro-transition subsists, it is termed a mono-
micro-transition ; when the result consists in a group of
several micro-transitions, it is termed a multi-micro-
transition.

ar

These mono- or multi-micro-transitions are constrained.
In practice, factorization is used to simplify clauses
(unification step) : the clauses of micro-transitions
having a same source and a same destination are grouped
and possibly eliminated (by convention, a clause is not
shown when expresssing that its transition is valid for all
pigments of all other scales in the same palette). After
unification and a possible simplification, a mono-micro-
transition is named a simple transition (it is possibly
constrained) ; a multi-micro-transition, a composite
transition (its components are all constrained).

Blends are useful for eliminating remaining clauses
(purification step) : a constrained simple transition may
theoretically be replaced by an unconstrained one (the
new one flows from a blend composing the clause and
the source pigment of the initial transition, to a blend
composing the clause and the destination pigment of the
initial transition). Similarly, a composite transition may
theoretically be replaced by one unconstrained simple
transition between two blends.

On top of that, we adopted a few principles for cognitive
reasons. An important one is the "unique destination
principle” : when similar graph transitions (same name)
flow out of a same source chroma to different destination
chromas, they get replaced by a unique graph transition
flowing to the ephemere chroma representing all these
destinations (the underlying system is taken advantage of
for choosing between the destinations by automatically
testing their conditions). A second important principle is
the "non ubiquity” principle : according to it, a given
instance state is to be represented only once in a palette.
This requirement conflicts with the systematic
elimination of clauses, i.e. the existence of simple
unconstrained transitions only : simple constrained
transitions and composite transitions may have to be
reintroduced®. For more details about that and the
principles underlying color graphs, refer to [Borron,
1996b].

In practice, a p-graph is usually built up from scratch.
This is done in an intuitive way : because the p-graph
dimensions are chosen to be independent or almost
independent, a state transition is most often mapped to a
simple graph transition (usually unconstrained) and,
more rarely, to a composite transition (several
interdependent constrained graph transitions). Any
graph transition goes from a pigment to another pigment,
or from a blend to another blend of same degree. An
unconstrained simple graph transition of degree d is
valid for any state made of the d pigments recursively
composing the source chroma, the (N-d) other pigments
being free ; if the transition is constrained by a clause of
degree c, ¢ other pigments are fixed’. Each effectively

6 To represent a simple transition flowing to an ephemere
blend without loosing in precision (i.e. without introducing
destinations that were not part of this original specification}, all
elementary constrained transitions of a same composite transi-
tion specifying one original destination should be kept
together : a qualification is thus required. A visual detail
(color, number, keyword or something else) may illustrate that.
(At the textual syntax level, a different deftransition will be
used for each possible destination : this solves the problem.)
The formalism is robust. In other words, less precision does
not yield a wrong result : the correct destination will be found ;
however, its computation will be less efficient.

7 As a matter of fact, the existence of unreachable states may
be taken advantage of for simplifying a clause (at unification
time).

_>—

free pigment can be replaced by any basic pigment of its
scale. Intuitively, the existence of free pigments means
the transition can be "distributed” to all pigments equal
to one possible value, or to blends mixing several of
these pigments (mixed pigments should pertain to
different scales). A composite transition is made of
several constrained graph transitions all valid at the same
time : the ANDing of the source and clause of each one
systematically yields the same result (the origin of the
composite transition). The destination of a composite
transition is obtained by combining the destinations of its
components.

Degree of a transition

In a c-graph, the degree of any graph transition is one.
In a p-graph, the degree of an unconstrained graph
transition between two p-chromas of degree d (1 < d <
N)is d. Itis d+c when this transition is constrained by a
clause of degree ¢. The degree of a simple transition is
thus d+c. The degree of a composite transition is also
d+c : it is the degree of any one of its component graph
transitions (all have the same).

[Intuitively, the degree of a state transition is the number
of dimensions that intervene in the transition (for consul-
tation or modification). For example, the draw transition
of a Circle has a degree 2. Considering p-graphs, the
above definitions usually correspond to the intuition : a
sufficient condition is that the uninitialized state is
decomposed into pigments, a quite normal situation
indeed. Considering c-graphs, the intuition is often
unsatisfied : this is because instance states should better
be decomposed according to several dimensions.]

Incoming, outcoming and circular transitions
With respect to a chroma C, an incoming graph
transition is one the destination chroma of which is C ;
an outcoming one is one the source of which is C. A
circular graph transition is such that its source and its
destination are the same chroma. A pure outcoming
(resp. incoming) graph transition is a non circular
outcoming (resp. incoming) graph transition.

Similar transitions
Given a selector S, a transition is similar to S if its own
selector is identical to S. A transition is similar to a
message if it is similar to the message selector. Two
transitions are similar if their selectors are identical.
Similarity is the property of being similar.

2.3 Current state

Token

In a c-graph, the current state of one instance is marked
by a single token in one color. On each reception of a
message (supposed to be not erroneous), this token
migrates along the regular transition which is triggered
(from the source color of this transition to its destination
color) : depending on whether this graph transition is a
circular or pure outcoming one, the token remains in its
initial place or leaves it.

Mini-tokens
In a p-graph, the state of an instance is marked by N
mini-tokens, one per dimension. A p-chroma of degree
d groups d mini-tokens when it belongs to the instance
state. On reception of a message, a simple or composite
transition is normally triggered : each involved graph

e

transition, constrained or not, moves a priori D mini-
tokens if the degree of its source is D. Note the same
scale(s) are involved at the source and at the destination.

Mark
The term mark is generic ; it refers to the possible
contents of a chroma : a token in case of a color; a
mini-token in case of a pigment ; d mini-tokens in case
of a blend (2<d < N).

2.4 Conditibns

Each chroma has an id, i.e. a natural integer (= 0) or a
name (say a string made of letters and/or digits, and
starting with a letter). Each one is also attached a
boolean condition (evaluated by sending a side-effect
free message to the instance : the associated testing
transition is automatically derived by the system) and/or
results from the instantiation of an AND-type or OR-
type construct.

2.5 Constructs

Essential constructs

Three types of essential constructs exist : the
decompeosition that explodes a color into N pigments
(one per scale in a given palette) ; the conjunction that
groups two or more p-chromas into a blend ; the
selection that materializes a choice between two or more
chromas. The first two are encountered only in p-
graphs ; the third one exists in c-graphs (selections on
colors) and in p-graphs (most of the time, selections on
pigments ; yet, selections on blends also exist). Let's
briefly pass them in review.

The selection is a diverging construct : conceptually, it
is a small tree, made of one source (an ephemere
chroma) and several destinations (chromas, too). The
condition attached to the source node is obtained by
ORing the conditions attached to the destination
chromas. These must form a partition : only one destina-
tion condition may be true at any given moment. {One
destination may occasionally be specified as being an
INIT one: when entering the selection from the outside,
this node gets selected without testing.8 The INIT
condition may be precised if necessary. 9]

The decomposition is also a diverging construct. The
condition attached to its source (a color) is obtained by
ANDing the conditions attached to its destinations
(pigments).

The -conjunction is a converging construct : concep-
tually, it is a small tree with one destination (a blend)
and several sources (pigments and/or blends). The
condition of its destination is obtained by ANDing the
conditions of its sources.

8 More generally, several INIT nodes may be specified when
the destination is not unique and depends on which regular
transition was actually activated among all those that flow to
the root selection : these INIT nodes are parameterized by these
transitions.

9 Ex.: (n=1) when the node attached condition is (n>0).

Specialized constructs
The derivation construct is a special form of decomposi-
tion in two subgraphs ; the mixin construct, a special
form of selection. Both work hand in hand for
abstracting independent supplementary behaviours and
their assembly with a basic behaviour. Their description
is given in companion paper n° 2.

Reflex transitions
In any essential construct, a source and a destination are
linked by a reflex transition. The semantics of all
essential constructs is built on top of the semantics of a
reflex transition. This one is simple : a reflex transition
is armed when its source node has received its mark ; if

armed, a reflex transition fires when the condition of its
destination node gets true. In a selection, only one reflex

transition may fire ; in a decomposition or conjunction,
all reflex transitions fire at the same time.

-This firing means the transfer of the mark(s) from the

source chromas(s) to the destination chromas(s). More
precisely, a decomposition exchanges the token of the
source color with N mini-tokens in the destination
pigments ; a conjunction transfers all the mini-tokens
present in its source chromas into its destination
chroma ; a selection transfers the mark from the
ephemere source chroma to one destination chroma, the
selected one (the testing is done automatically ; no
external message can be sent to an instance while in an
ephemere chroma)

From this, one can infer, for example, that the degree of
the destination blend of a conjunction is the sum of the
degree of all it sources ; or that the same scales are to be
involved in each destination of a p-graph selection ; ...

2.6 Local Inheritance of transitions

Inheritance rules in Colored Object Programming (COP)
include local and class inheritance rules on one hand,
specifications (transitions) and concrete implementations
(methods and memory representations) inheritance rules
on the other hand. This subsection focuses on one part
of that, namely on the LOCAL inheritance rules for
transitions, i.e. only on those rules that enable the
sharing of TRANSITIONS inside one SAME color
graph.10 Figure 1 illustrates that. Let's now introduce
these rules in a progressive manner.

Factorization facilities

Factorization facilities proceed from the idea of sharing
in one place similar regular transitions which are either
circular or flowing to the same node. They apply only
when transitions to be factorized all outcome from the
destinations of a selection (from all of them) : the goal is
not to create a new diverging topology of nodes!!, but to
reuse an existing one. Because an instance temporarily
in an ephemere chroma automatically executes a testing
and cannot accept any external message, we can use this
ephemere chroma for factorizing other transitions : this
is not ambiguous.

10 Other rules are part of the companion paper n° 3.

1T We examined this question (factorization constructs) in a
preceding paper [Borron, 1995a). A brand new node (termed
virtual) was necessary : by construction, no mark ever traverses
it. (On the opposite, chromas are visited.) Abandoning this
idea makes chroma and node two equivalent terms.

-

I

Three cases are distinguished :

(1) all transitions to be factorized are circular : they are
all replaced by one single circular regular transition
attached to the ephemere chroma. This factorizing
transition is termed i-circular (i for individual) ;

(2) all transitions to be factorized have one same
destination D which is different from the ephemere

chroma : they are all replaced by one single regular
transition originating from the ephemere chroma and

flowing to the destination D. No special name is

given to the factorizing transition ;

(3) all ransitions to be factorized flow to the ephemere
chroma : the factorizing transition thus originates
from this ephemere chroma (factorization of all
possible sources) and flows to it (common destina-
tion) : being circular, it is termed g-circular (g for
group) : when applied, the destination is one of the
selection destinations, any one in this group and not
necessarily the source node of the effectively
triggered transition (as in the i-circular case).

Circular transitions factorized in an ephemere chroma

represent a relatively frequent situation. Note that an i-

circular transition replaces d destination-to-destination
transitions (where d is the number of destinations of the
considered selection) whereas a g-circular transition
replaces in fact d? destination-to-destination transitions.
Note also that the testing transitions associated with
conditions at the selection destinations may also benefit
from an i-circular type of factorization : corresponding
-factorizing transitions unify in this case with the actual
testing transitions also existing at the selection source
(in constrast, other factorizing transitions are virtual).

Local inheritance rule

In practise, it is temptating to invent rules for avoiding to
repeat transitions having a same name in a color graph.
Factorization facilities proceed from this idea. One can
observe that a decomposition into pigments also yields
nice factorizations when dimensions are naturally
orthogonal. (As an example, compare the c-graph and p-
graph of Circle instances : in the c-graph, the surface
transition -for instance- is attached to two colors ; in the
p-graph, it is attached to one pigment.)

A common base sustains all this : regular trapsitions are
inherited along reflex_transitions (except when they
originate from the source node of a decomposition).
This is a natural property of a conjunction (because the
destination condition ANDs all the source conditions) ;
for the selection, the property results from a choice : the
factorization facilities (applied to testing or non-testing
transitions). This property "is called the local
inheritance rule for transitions. In a given chroma,
transitions that apply are thus either local (outcoming
from that chroma) or inherited.

Ancestor tree
Given a chroma in a color graph, we term its ancestor
tree (or, loosely, its ancestor graph) the structure made
by all the reflex transitions recursively converging to that
chroma (except when they conceptually originate from
the source node of a decomposition!2) : this ancestor

12 In the visual representation of color graphs (outlined in
section 3), these reflex transitions are not shown (a bar is
drawn instead). The ancestor tree is thus easy to see : it is

tree includes the source nodes of all these reflex
transitions as well as the considered chroma (called the
root).

[Ancestor trees are not graphs : no cycle is possible and
DAGs cannot exist since (1) partitioning is required in
selections ; (3) the source and destination nodes of a
selection pertain to the same family /ies ; (3) blends mix
only (yet recursively) pigments of different families.]

In a c-graph, the ancestor tree is also called the c-
ancestor-tree (or c-ancestor-graph).

In a p-graph, the ancestor tree may be simple (if the root
is a pigment) or multiple (if the root is a blend of degree
d) : we term p-ancestor-tree (or p-ancestor-graph) the
restriction of the ancestor tree to the nodes participating
to one given scale (i.e. which may hold the mini-token
dedicated to that scale).

2.7 Valid regular graph transitions and
their effect

Computing the dictionary of accepted messages

In a given class, a dictionary of accepted messages
(DAM, for short) is associated to each possible state!3,
(Note we are not considering here implementations but
specifications.) Given a state S, the DAM is obtained by
collecting all valid graph transitions that outcome from
the considered state (punctually defined transitions)
plus all those that are inherited : the DAM organizes
them according to their similarity (one entry per different
selector). In a c-graph, since each possible state is
directly represented by a color, the transitions to be
considered are all those that outcome from the colors
belonging to the ancestor tree rooted at the color
representing the state S. In a p-graph, transitions to be
considered are all valid transitions outcoming from the
p-chromas belonging to the p-ancestor-trees rooted at the
k p-chromas representing the state S (1 <k <N).

Computing the next state
When a message occurs, it triggers all valid graph

_ transitions that are simiilar to it (these transitions are

stored in the DAM associated to the current instance
state at the entry corresponding to the message selector).
If no transition is valid (no DAM entry for the message
selector), the message is invalid : an error is detected and
the user is warned ("message not understood : ...").

The external effect of a valid message is to possibly
change the instance DAM ; in other words, the instance
state. This depends on the destination(s) of the triggered
transition(s). Basically (i.e. not considering factorization
facilities), a circular graph transition has no effect on the
instance state ; on the opposite, a pure outcoming
transition may induce a new state.

To take care of a factorization facility, we consider the
elected graph transition among all those the facility
factorizes, i.e. the one that would effectively be triggered
if the facility was not used. Two cases are to be
considered depending on the actual form of the
factorization facility. If i-circular, the elected transition

composed by all the yjsible reflex transitions recursively
converging to the considered chroma.

13 Being only interested in external messages, we do not
consider here ephemere chromas.

is circular : hence. no effect on the instance state
(destination chroma = source chroma). Otherwise (i.e.
g-circular or pure outcoming), the elected transition is a
pure outcoming one : its effect is materialized by its
destination which is identical to the (g-circular or pure
outcoming) transition factorizing it.

The new state is thus computed as follows (taking care
of selections, conjunctions and factorization facilities) :

- In a _c-graph, a single graph transition may fire. Two
steps are distinguished. Move step : the token stays in its
position if the transition is i-circular (final position) ;
otherwise, the token is moved to the destination of the
transition. Propagation step : reflex transitions are
activated : a number of them (selections) may then fire,
hence the new instance state ;

- in_a p-graph, several valid graph transitions may be
triggered by a message ; each one may concern one or
several mini-tokens. Three steps are distinguished.
Move step : for each non i-circular triggered transition,
the involved mini-tokens are moved to the transition
destination. Backtracking step : moves may have de-
pleted a number of blends ; the mini-tokens that remain
in them are moved back to their original pigments.
Propagation step : reflex transitions are activated : a
number of them (selections and conjunctions) may fire,
hence the new instance state.

This algorithm presupposes the color graph in question
satisfies the "unique destination” principle. If this
principle is disobeyed in a c-graph, the token is duplica-
ted in each source of the transitions in question. When
tests are done, a unique destination is selected. A single
token subsists. (In a p-graph, this algorithm is
generalized to the affected mini-tokens.)

2.8 System-defined transitions

Testing transitions

A recurrent situation concerns the testing transitions of
a selection : they a priori exist at the ephemere source
chroma (where the testing is made) as well as at each
destination chroma (where they deliver a constant
answer). Due to the local inheritance rule, the transitions
at the destinations are inherited from the ones at the
ephemere source chroma. The underlying system auto-
matically generates these ones from the conditions
attached to the destinations.

More generally. when a chroma is attached a condition,
the corresponding transition exists at this chroma (where
it delivers a constant true answer) as well as at its
siblings (where it delivers a constant false answer), the
siblings being defined as chromas that may get the same
mark and are equally initialized : in a p-graph, the testing
transition is attached at the source of each ephemere
pigment in each p-ancestor-tree of the considered
chromal4 :ina c-graph. the testing transition is attached
at the source of each ephemere color of the c-ancestor-
tree of the considered color. (When several ephemere
chromas have been found in a same p-ancestor-tree or in
the c-ancestor-tree, a comparison is made between the
destinations of the different selections so as to capture

14 When the considered chroma is a blend. the testing
transition takes a priori the form of a composite transition for
symmetry purposes. vet it could be simplified as a constrained
simple transition.

the considered chroma and all its siblings using the least
possible number of these selections.)

Creation transitions

A special node, termed pseudo-color, represents the
case where an instance is still not created (or has been
destroyed). One or several creation transitions may
outcome of it and flow to one or several different initial
colors!3. A single default creation transition is provided
(termed make-instance for CLOS compatibility) ; a
default initial color too (color 1). Other creation
transitions are explicit (must be named). Any explicit
creation transition cancels the default one.

Objects may exist that cannot be created nor destroyed
by the user. These objects are termed immutable.
Integers constitute one such example. In these cases, a
base color is defined (the pseudo-color does not exist).

Transformation transitions
If several palettes are used, transformation transitions
may be defined by the user to explicitely pass from one
palette to another one (corresponding changes of repre-
sentation are automatically implemented by the under-
lying system}.

2.9 Multi-transitions

In this paper, we almost systematically use the term
"message” (cf. : Smalltalk) because it appears more
intuitive than "generic function” ; however, the proposed
formalism is valid also for expressing the behaviour of
objects acted on by generic. function calls (cf. CLOS).

" These generalize message sendings in considering

several specializers (i.e. instances of known classes)
instead of a single receiver.

COP naturally supports such a view : several color
graphs may be involved instead of a single one. A
transition that is attached to the chromas of several
specializers is termed a multi-transition. Multi-
transitions may be composite with respect to an involved
color graph. (Multi-transitions are not examplified in
this paper.)

2.10 Other features

Given its subject, this paper does not describes all details
about color graphs. Two other interesting features
appear in companion paper n° 2 : constrained subtrees ;
and unwilling transitions.

3. COLOR GRAPHS : THEIR
VISUAL ASPECT

An attractive aspect of COP is its visual interface, the
basis of a future visual programming environment. Let's
give some indications about it.

A node is pictured as a small bubble : inside the bubble,
a name or an integer identifies the node : close to the
bubble, the condition attached to this node is named
(inferred conditions are usually not displayed).

15 TInitial chromas may be defined at other levels. This feature
is much less used except in mixins (see companion paper 2)

-

b

Regular graph transitions are represented with named
solid thick arrows (the name, i.e. selector, is underlined
for g-circular transitions). Reflex transitions are
represented by unnamed thin arrows : using a broken
line for conjunctions, a dotted line for selections. A
decomposition is not represented using reflex transition
arrows, but by a bar stuck between the leaf nodes and the
root node (shown by its name only, most usually).

These distinctions may be intensified when the medium
enables colored drawings : it appears interesting to
attribute a same coloration to pigments of a same scale

and to reflex transitions outcoming of them ; and to draw
- all their contours the same way.

Circular transitions may be shown without arrows.
They may be further qualified (and shown) as modifying
or consulting (default) for coherency checks. Testing
transitions (i.e. regular transitions associated to side-
effect free messages used for evaluating conditions),
being automatically derived by the system, are usually
not shown. An INIT destination chroma of a selection
is shown with a double contour.

The pseudo-color is represented by a small segment
with the class name above it!®. Usually, a single
unnamed arrow ondulates from it : this one corresponds

- to the default creation transition (make-instance). In

case several creation transitions exist, the pseudo-color
may be duplicated. For immutable objects like integers,
the base color is shown as a square.

4. COLOR GRAPHS : AN
EXAMPLE

This example illustrates the decomposition, selection and
conjunction constructs. It is described in quite a detailed
way to let the interested reader starts his/her reading
using it ; it also shows how much information can be
crystallised in a single color graph (often implicitely).

have-birthday

expected-

lifespan @

hb =

\ @; .\Agi £l

Figure 2.

16 It is noted _ (underscore) in textual syntax.

Figure 2 is derived from the source code of an example
given in section 4.2 of reference [Chambers, 1993)17,
Person instances are differentiated into male and female
categories according to the sex ; into child, teenager and
adult categories, according to the age. In addition, both
criteria are used to distinguish boy and gir{ categories.

4.1 Static description

4.1.1 Color graph skeleton
a) Dimensions ; decomposition ; pigments

In terms of COP, two dimensions are used : sex and age.
(The degree of the color graph, symbolized by N in this
paper, is two.) First dimension corresponds to nodes
numbered 2 to 5 ; second one, to nodes numbered 6 to
12. Such nodes specify the state of a subpart of a Person
instance : they are termed pigments. The whole set of
pigments on a same dimension form a scale. A pigment
of each scale is required to describe an instance state.

For example, when just created, a Person instance is
uninitialized : it is represented by the pigment list (2, 6).
Pigment 2 (resp. 6) means sex (resp. age) has not
received a value yet. (This is the meaning of the
condition attached to these pigments, respectively not
sex and not age). In this case, pigments 2 and 6 result
from a decomposition of color 1, the initial state.
(Color 1 is not represented by a bubble, but uniquely by
its id above the decomposition bar.)

b) Selection ; ephemere pigments

Pigments 2, 4 and 5 (resp. 6, 10, 11, 12) are termed basic
pigments in the first (resp. second) scale ; pigments 3, 7,
8, 9 are termed ephemere pigments. Each ephemere
pigment is the source of a selection on (basic or
ephemere) pigments of a same scale. Ephemere pigment
7 is the source of a selection on three pigments : this is
somewhat unusual since selections are quite often based
on a couple of values, notably booleans. In the
considered case, this means that once the age partis
given a value, the state of this part evolves gutomatically
towards 10, 11 or 12, depending on the age value,
according to the partition defined by the conditions
attached to these destination nodes. [The cited reference
supposes age less or equal to 12 for a child (pigment 10);
age between 13 and 19 for a teenager (pigment 11) ; age
strictly greater than 19 for an adult (pigment 12).]
Ephemere pigments 8 and 9 are used when the age is
incremented.

¢) Conjunction ; blends

Besides already mentioned nodes, the color graph
exhibits also nodes 13 and 14. These nodes are termed
blends. Each one resuits from a conjunction : blend 13
is equivalent to the pigment list (4, 10) and blend 14 to
the pigment list (5, 10). These blends have a degree 2 :
they group a pigment of two different scales. In our
example, because the color graph degree is also two,
they in fact happen to group a pigment of each scale : for
this reason, these two blends may also be termed colors.

17" For the purpose of the demonstration, a slight difference
exists to create an instance of Person : the cited paper proposes
a make-person method with values for sex: and age:. The
corresponding creation transition is not represented in figure 2.

More generally. a blend has a degree d (2 <d < N):a
pigment has a degree 1.

Blends can always be removed without changing the
semantics of a given color graph : a number of details
(here, the boy and girl conditions) are to be expressed
differently (this will be shown below). Here, blends are
used since the useful ones (13 and 14) are few and allow
a clearer expression than otherwise. This is not always
the case : when many pigments exist in two or more
scales, the number of possible pigments inflate
(combinatorial explosion) ; if the number of useful

blends is high, the user may reasonably prefer to do .

without them. Let's retain that blends may be useful in
certain situations.

A color graph exhibiting pigments (and thus possibly
blends) is termed a p-graph : it has several dimensions
(N22). A color graph having but one dimension (N=1)
is termed a c-graph : all its chromas are colors.

d) Reflex transitions

In the above figure, two types of unnamed thin arrows
" exist : in dotted lines for selections (ex.: 3-4, 3-5), in
broken lines for conjunctions (ex. : 4-13, 10-13). Each
thin arrow represents a reflex transition. This reflects
that the semantics of a selection or conjunction can be
expressed in terms of the simpler semantics of a reflex
transition. This semantics is really simple : when armed,
ar ansition fires if the destination conditions get

true. (A reflex transition is armed if its source node
belongs to the current instance state.) Yet not apparent,
the semantics of a decomposition may also be expressed
in terms of reflex transitions : however, a decomposition
is not drawn using thin arrows so as to avoid a possible
confusion with the selection (a diverging consruct t00).

(In the following, we may well use condition names to
refer to a chroma instead of its number : for example,
pigment 7 will also be termed age.)

4.1.2 Regular transitions

Regular transitions between two chromas are used to
specifv the possibility for a message to be sent to an
instance !8 and its effect on the instance state : the source
and destination chromas respectively capture these
informations (simple transition). Instead of two
chromas. two sets of chromas may be necessary when
blends are not used (composite transition).

a) User defined transitions

As it usually happens when using an appropriate
decomposition, all transitions shown in the example are

simple ones.

The age: message is used for initialization. It modifies a
part of the instance state. This is reflected by the age:
transition between the source pigment 6 and the destina-
tion pigment 7. The state change can be checked by
testing the conditions age or not age : this testing is
obtained by sending the age message to the instance. in
others words by activating the testing transition age.

1% or. more generally ... for a genenc funcuon call to cecur. .

8

Similar comments can be made for the sex. transition.

Sending an expected-lifespan to one instance does not
change its state : expected-lifespan is thus represented as
a circular transition. Expected-lifespan cannot be sent
when the sex is unknown (the value it returns depends on
whether the instance is male or female) : to model this
situation, one possibility is to attach an expected-lifespan
circular transition to both male and female pigments. In
fact, it is equivalent and simpler to factorize these two
circular transitions in their father node, the ephemere sex
pigment : the list of acceptable messages in sex is
unchanged since only testing transitions can be sent in an
ephemere pigment (these sendings are done automati-
cally). The factorizing transition is termed i-circular :
each individual transition it factorizes is itself circular.

For similar reasons, bedtime is represented by as an i-
circular transition attached to the age pigment.

The have-birthday message is kind of special since, by
incrementing the age, it makes an instance stay in its
pigment (ex : child) or move to the next one (ex:
teenager) except when in the adult pigment. No
symmetry exists we can take advantage of. To model
this situation, two selections are used (for the have-
birthday transitions outcoming from the child and
teenager pigments) plus one circular transition (for the
have-birthday transition outcoming from the adult
pigment). This makes pigments child, teenager and
adult to have two or three father nodes.

The proposed .modelling of have-birthday with three
transitions is quite precise (hence, the highest possible
efficiency at run-time : only a single test to do in 8 or 9,
and none in 12). A simpler, but less precjse (and thus
less efficient) one is possible : basically, it consists in
adopting the ephemere node 7 as the destination of the
three transitions : each such transition has now three
possible outcomes (nodes 10, 11 and 12) instead of one
or two : two tests will be done at run-time, but the
correct destination will be found (robustness) ;.the
advantage is that these three transitions will in fact be
factorized in a single one, a circular transition attached to
node 7. This factorizing transition is nof i-circular, but
g-circular (g stands for group : the actual destination is
to be chosen among the group of destinations of the
selection). This examplifies a certain liberty in design.

Long-lived (which tells if a given instance has gone
farther its expected-lifespan) is represented by a
constrained i-circular transition attached to the age
pigment (the constraint, termed a clause. is shown
betwen brackets : it is the id of a blend or pigment). This
happens because both the sex and the age should be
known : one condition is captured in having the
transition attached to the age pigment : one, in having a
clause mentioning the sex pigment (number 3). (The
opposite choice is perfectly acceptable.) Long-lived is
valid for any fully initialized state. among which boy and
girl : the notation we used avoids the enumeration of all
these states (6 stable ones).

The underlying system may provide coherency checks

using the selector syntax and additional declarations!9.

19 By default. it may consider that circular transitions are for

consultation only. In our example. this is actually the case.
This also matches the selector syntax. Were have-birthday be
factorized in pigment 7. it should be declared as modifying.

o

b) Testing transitions

Testing transitions are automtically derived from
conditions. Normally, testing transitions are not shown
in a color graph. (They may be on demand.)

In the example, testing transitions are sex, male, female
(for the first scale) ; age, child, teenager, adult (for the
second scale) ; boy and girl (valid not only for blends
boy and girl, but for all fully initialized states). Testing
transitions may exist in factorized form : being side-
effect free, they are j-circular. Due to this property, sex
is attached to pigments 2 and 3 ; male and female, to
pigment 3 ; age, to pigments 6 and 7 ; child, 1eenager
and adult, to pigment 7 ; boy and girl, to pigments 3
and/or 7 (both are required under some form).

Boy and girl are solely names for encapsulating the
conditions at the destinations of the two conjunctions.
As indicated above, suppressing the boy and girl blends
is possible : in this case, a boy (resp. girl) transition
should explicitely appear either as a pair of i-circular
transitions attached to pigments 3 and 7, each one being
constrained by the other pigment (composite transition) ;
or by only one of these constrained i-circular transitions
(constrained simple transition) : being circular, all but
one may disappear. This illustrates the necessary
adaptation -of regular transitions (not necessarily testing
ones, nor even circular ones) that originate from and
flow to suppressed blends. (When suppressed blends are
ephemere, the adaptation is a bit more complex.) The
transition declarations described here is to be done by
the user when blends do not exist : when blends exist,
the same work is automatically and silently done by the
underlying system (here, boy and girl will be installed as
" a constrained i-circular transition (either in 3 or 7)).

Testing messages male and/orfemale will automatically
be sent in ephemere pigment 3 for choosing between
pigments 4 and 5 ; child, teenager and adult, in
ephemere pigment 7 for choosing between pigments 10,
11 and 12 ; child and teenager, in ephemere pigment 8
for choosing between pigments 10 and 11 ; reenager and
adult, in ephemere pigment 9 for choosmg between
pigments 11 and 12.20

Other testing transitions are constant transitions, i.e.
transitions that deliver a constant answer in a given
chroma : for example, sex can be (externally) asked in
pigments 2, 4 and 5, yielding constant answers (resp.
false, true, true). Same remark for male and female in
pigments 4 and 5 ; age in pigments 6, 10, 11, 12 ; child,
teenager, adult in pigments 10, 11, 12. Of course,
deriving from the constant answers obtained in the
above-mentioned pigments, constant answers are also
got for these messages in boy and gir! blends (as well as
for other fully initialized instances.) Boy and girl can be
sent to any fully initialized instance, yielding constant
answers : boy returns true only in blend 13 ; girl, only in
blend 14.

20 One test is normally avoided each time. However, if the
program is not to be trusted, the debug mode will be chosen :
no optimzation will be done ; all tests will be ran so as to detect
an erroneous case (partition condition unsatisfied). :

c) Creation transition

Only one creation transition exists in the color graph,
the default one (name : make-instance ; initial state : 1).

4.2 Dynamic description

4.2.1 Current state

The Person color graph describes the possible states of
Person instances. To mark the current state of one
instance, we use two mini-tokens, one for each
dimension. (We reserve the term token for color graphs
having but one dimension.) The figure shows a possible
configuration with one mini-token (the sex one) in 2, and
another one (the age one) in 10. Each mini-token may

_ be either in one pigment of its dedicated scale or in a

blend : in the latter case, the two mini-tokens must be
grouped. (A blend of degree d is a place holder for d
mini-tokens.)

The current state is stable if no reflex transition may
fire. An instance in such a state remains in it as long as
no acceptable message occurs. For example, state (2,
10) is stable : the sex mini-token cannot move from 2
until a sex: message occurs ; the age mini-token cannot
move either since no reflex transition outcoming from
10 (conjunctions) may fire as long as the sex mini-token
remains in 2.

4.2.2 Acceptable messages

Given a stable state, acceptable messages are defined by
all valid outcoming transitions, either locally defined or
inherited. (A constrained transition is valid if the
instance state satisfies its clause. An unconstrained
transition is systematically valid. Regular transitions are
inherited along the reflex transitions.) For example,
considering the stable state (2, 10), transitions sex, sex:
and have-birthday are locally defined while age,
bedtime, child, teenager, adult are inherited?! ; transition
long-lived [3] is not valid.

For 4 fully uninitialized instance, acceptable messages
are sex: and age: as well as sex and age; for a fully
initialized instance (like boy or girl), they are sex, male,
Sfemale, expected-lifespan, age, bedtime, have-birthday,
child, teenager, adult, long-lived, boy, girl. A partially
initialized instance accepts age, bedtime, have-birthday,
child, teenager, adult, plus sex and sex: (if age is
initialized) ; sex, male, female, expected-lifespan plus
age and age: (if sex is initialized).

4.2.3 Computing the next state

a) Regular case

When an acceptable message is received by an instance
in a stable state, the corresponding transition (possibly a
composite one) fires, thus making one or several mini-
tokens move to another chroma(s) ; this may in turn
yield the firing of one or several constructs, i.e. the firing

21 The adjective "inherited" is used here from a purely
topological point of view: it does not mean the transition
should be meaningful in the node from which it is inherited :
for example, bedtime in 10 is inherited from 7 simply because
it is factorized in 7 even if bedtime cannot be sent to an
instance in 7.

of one or several reflex transitions, possibly in a
recursive manner, possibly via the automatic sending of
testing messages (automatic firing of testing transitions).
For example, if a sex: message is sent to an instance in
state (2, 10), then the sex: transition fires. The messages
male and/or female (testing transitions) are automatically
sent, making (for instance) the reflex transition 3-4 fire ;
this, in turn, makes the boy conjunction fires (reflex
transitions 4-13 and 10-13 fire) : the two mini-tokens
defining the state of the Person instance get grouped into
node 13.

b) Backtracking case

The above schema is to be tuned when a regular
(inherited) transition does not move all the mini-tokens
its source node contains. To be more precise, the degree
of a regular transition is defined : if unconstrained, it is
the degree of the chroma in which it is locally defined.
(For example, the degree of bedtime (in 7) or have-
birthday (in 10, 11, 12) is one.) When the transition is
constrained, its degree results from the degree of its
source chroma and of its clause. (For example, the
degree of long-lived[3] is two.) In a p-graph, the degree
of a transition defines the number of mini-tokens
involved for consultation and/or modification.

Circular (i-circular) transitions do not induce any move.

In a p-graph, a transition of degree d may be inherited in
a chroma (blend) of superior degree (D>d). For
example, transitions bedtime or have-birthday (of degree
1) are inherited in boy or girl (degree 2). If the inherited
transition is i-circular (like bedtime), the moved mini-
tokens stay in their initial position : hence, no
complication occurs. This is usually not the case for non
i-circular transitions : for example, have-birthday moves
only the age mini-token. To cope with such a situation,
mini-tokens which are not moved by the outcoming
regular transition are first placed back into their original
pigments (backtracking phase), the moving ones being
placed at the source(s) of the transition ; then all
proceeds as explained before.

Consider, for example, a boy instance. Suppose an have-
birthday message is sent. The boy instance may become
a (male teenager). The new state may be computed as
follows : the mini-token which is involved in the have-
birthday inherited transition (the age mini-token) is first
moved to the transition source chroma (here, child) ;
this invalidates the blend boy : the mini-token which is
not involved in the inherited transition (sex mini-token)
is thus moved back to its original pigment (here, male).
Then the transition gets fired : the age mini-token
remains in child or moves to teenager. In the first case,
the conjunction (male child) fires : boy defines again the
instance state. In the second case, the instance state is
defined by (male teenager). A less precise modelling of
the age-birthday transitions, factorizing all cases in node
7 (g-circular transition) will produce the same result..

10

S. POTENTIAL : A CONCEPT FOR
REFINED SPECIFICATIONS

5.1 Motivation

The current definition of transitions (possibly, multi-
transitions involving several specializers) is a simple
declaration (deftransition) listing besides the name of
the transition (selector) and possible keywords
(qualifiers), an augmented argument list : each required
argument is followed by its class name and a list of
chroma pairs. No body is given. On the other hand, the
definition of a color graph (defcolorgraph) lists
chromas together with the conditions (:test or :test-not
conditions) and/or the way they are constructed. No
body is given for evaluating the conditions. This is but
when methods and memory representations are attached
to the color graph (see companion paper n° 3) that a
color graph may be animated.

To overcome this point, a new concept was thus
imagined, the potential. Besides the animation of a
color graph for early evaluation, this concept enables
theoretical proves (in absence of a smart prover, the user
has to do the job manually) : (a) a color graph may be
checked for consistency ; (b) optimizations may be
discovered (some tests for identifying a destination state
in a selection may be avoidable) ; (c) the best specifica-
tion of a mixin color graph may be elaborated given a
minimal set-of constraints (companion paper n°2
provides an example). Finally, a specific implementation
may be monitored at run-time.

5.2 Definition

Each (mini-)token is attached a value, most usually an
integer, that can be (1) initialized when the (mini-)token
is created ; (2) updated when a transition gets fired
(using or discarding the arguments of the message) ; (3)
tested for conditions evaluation. This value is termed the
(mini-)token potential. '

Above rules correspond to state an abstract body for
transitions and conditions. By abstract, we mean that the
computations involved in a possible animation of a color
graph have a priori nothing to do with an actual
implementation. (For example, an integer may be used as
a potential in a Stack color graph while actual Srack
instances may be implemented, say, with a list.)
Because it depends on the operations to be carried out,
the type of value for a potential is not restricted a priori.
(For example, knowing the longest sequence of
successive push: sent to a Stack instance will not be
possible using a potential of type integer : theoretically,
some questions may not receive an answer without
holding all the (mini-)token history, i.e. without storing a
list of all received messages including their arguments).

5.3 Examples
5.3.1 Stack color graph

The Stack color graph is simple : its main construct is a
selection on two basic colors, empry and not empty. The
potential concept abstractly refines the specification of
its transitions : (1) the initial value of the stack potential

Wy

is zero ; (2) a push: transition increments the potential by
one (regardless of the argument value) ; (3) a top
transition does not change the potential ; (4) a pop

transition decrements its value by one ; (5) the empty

condition is true when the potential is zero ; (6) (for a
Bounded-Stack) the full condition gets true when the
potential gets equal to the bound.

5.3.2 Person color graph

The comments we made about the effect of transitions in
the Person color graph were often based on an intuitive
meaning of its transitions (ex. : have-birthday) and
conditions (ex : child). The concept of potential makes
them more substantial.

Let's name age (resp. sex) the potential of the age (resp.
sex) mini-token. At creation time, the age potential is
given a zero value (pigment 6). The age:n message is
used to initialize the age potential : it is set to the
argument n (pigment 7). The age condition is specified
to be (age > 0) ; the child one, (age <12) ; the teenager
one, (13 <age<19) ; the adult one (age=20). The
transition have-birthday will be specified as incre-
menting the age potential by one. Etc.

Likewise, at creation time, the sex potential is given a
zero value (pigment 3). The sex:s message is used to
initialize the age potential : dépending on the argument
value, it may be set to 1 or 2 for example (pigment 7).
The sex condition is specified to be (sex > 0), the male
one, (age = 1) ; the female one, (age=2).

5.4 Enhancements

As it is transparent in these examples, a number of
enhancements appear useful to maintain a clear
separation between the potential concept and the actual
implementation, while avoiding the useless duplication
of efforts. For example, specifying the list of possible
values for each potential (at the color graph level) seems
useful because a color graph is meant to be more stable
than a particular implementation. This implies the
definition of mapping functions for obtaining a potential
from actual arguments or from an actual implementation
that needs to be looked after for debugging or
monitoring. Conversely, as shown by the Person
example, it might well be desirable for an actual
implementation to rely much on its abstract specification
$0 as to limit the implementation effort.

The potential concept is taken advantage of for
animating one color graph. To animate the color graphs
of a group of interacting objects, we have to go further
and explicitely mention —at the color graph level- the
relationships between objects in terms of exchanged
messages and answers : this corresponds to specify in
much more detail the abstract bodies of transitions.
Reference [Coleman-Hayes-Bear, 1992] offers interes-
ting tracks with the specification —at the objectchart
level- of services required from another objects (input
and output parameters are specified : an input parameter
may only be read by the object providing the required
service ; an ouput parameter is set by the providing
object).

11

6. RELATED WORK

COP derives in direct line from OOP and happens to be
related to higraphs/statecharts. These two relationships
are analyzed in the following two subsections.

6.1 Object-oriented programming

6.1.1 OOP in general .

As- a fervent of OOP, we developed this particular
formalism with the idea of pushing further the basic idea
of OOP, which —in our view— is to give objects the
reponsability they can handle [Borron, 1996e]. With
this view in mind, it is quite natural to take into account
object states when possible. Once this step is made,
QOP appears somehow as having forded the river half
way : the idea supporting OOP is excellent, but appears .
as having been not pushed to its ultimate whenever
possible, Considered from the COP bank, a traditional
class is like a single point (it offers a single dictionary of
methods). Whereas COP distinguishes several coordi-
nates on each dimension and thus exhibits a number of
points for a given class, traditional OOP aggregates them
in one. This difference accounts for the original
approach of inheritance proposed in companion paper
n® 3, and the progress it enables. To take a metaphor,
traditional OOP considers a class like an atom whereas
COP opens it and reveals ap internal structure. This
deeper understanding enables a better modelling :
concepts get purer. In our view, this is the profound
reason that enables us to get rid of the send-super
antimodular OOP construct (termed super in Smalltalk
and call-next-method in CLOS), thus enabling a pure
declarative programming style, and not a mixture of
imperative and declarative styles as regretted by Sonya
Keene, a member of the CLOS committee [Keene,
1989]. [Borron, 1996e] develops this point of view in
detail.

6.1.2 Predicate classes

The Person color graph depicted in this paper is derived
from the actual code of the Person example given in
[Chambers, 1993]. This work, the closest to ours we
know of when considering the strict OOP filiation,
promotes the concept of "predicate classes".

a) Comparison

Like regular classes, "predicate classes" specify slots and
methods that affect the behaviour of objects. But,
different from regular classes, they are attached a
predicate (what we named a condition in color graphs).
An object, instance of a given regular class having
"predicate classes"” as subclasses, behaves as if it was an
instance of one (or several) of these classes if this object
meets its (their) predicate(s). In principle, a systematic
dynamic testing of all possible predicates is to be done
on reception of each message22. The author of the cited
paper explains optimizations are possible.

This approach is quite interesting in that no separate
mechanism -roughly speaking— is necessary : the basic

22 of course, the predicate of a p.c. that ands other p.c. is not
to be tested directly.

concept of class is enlarged ; the inheritance hierarchy

and class properties are taken advantage of. This is a
very good example of reuse in design. The
implementation strategy described in the cited paper
consists in caching —in the instance- the result of the
predicate as an internal subclass (it acts as a color) and
using it to directly access the adequate dictionary. This
is akin to having a dictionary per color. "To record the
outcomes of multiple independent predicates, internal
combination subclasses can be constructed lazily as
needed” (p. 283). This parallels the combination of
scattered dictionaries when the state of an object is
expressed in a p-graph.

Let's now stress two important differences with COP.
These are :

{1) the level of abstraction : color graphs specify an
abstract programming interface while predicate classes
consist in actual implementation code ;

(2) the (structural) specification of the pext state : in
color graphs, a graph transition has a destination that
indicates either exactly the next state or a selection of
possible states. '

-> In the first case, no run-time testing needs to be
done : if the state is different, a pointer change is all
what is required ; if the state happens to be the same,
the method dictionary is not even changed (no cost) ;

-> In the second case, the selection is the narrowest
possible one if the color graph has been devised
correctly23 : to discover the actual next state, one or
several condition evaluations are to be done ; these
evaluations cannot be avoided.

On the opposite, predicate classes do not know the next
state after a method has been executed, hence —in
principle- a run-time testing to discover the current state
of an instance when it receives a message : the
implementation of predicate classes is thus necessarily
highly optimized to avoid these run-time penalties. In
the COP approach, these required optimizations are
somehow directly captured into the color graphs (by the
specification of transition destinations) : optimizations
are thus done without effort. To summarize, a color
graph provides —without sophisticated optimizations— a
code which eliminates unnecessary tests.

Another practical consequence of the specification of
transition destinations is visible at a more high level :
one can derive a predicate class hierarchy from a color
graph whereas the opposite cannot be done. Somehow,
we can state that "COP = _predicate-classes +
destinations”.

An implementation of COP using predicate classes is
therefore possible provided that the destination informa-
tions are used at run-time for systematically updating the
instance state. (Various solutions can be envisaged : one
that preserves method modularity is to produce special
after: methods.) In this way, the benefits of COP in
terms of efficiency-without-optimization are maintained.

b) Example

The next figure visually shows the actual class hierarchy
of thePerson example as it is expressed by the code in
[Chambers, 1993). Predicates classes are shown in

23 The Person color graph illustrates this point : cf. the
discussion of the have-birthday transition in §4.1.2.a.

12

rounded rectangles ; methods, as tiny circles. The make-
person method, not represented in the figure, creates a
new instance and initializes it, thus encapsulating the
code implementing a make-instance creation method
followed by a sex: and an age: initialization methods
(such an encapsulation is easily obtained in COP).

fieds methods
sex O have-birthday
long-lived
age I person I O long
FF s —__‘O bedtime
Oe -~ oe 7 . O bedtime ~———_ O bedtime
‘mle f female : child ‘ teapager ’
e

ﬁA \ lel:expected-lifespan
boy : ‘ girl)

Figure 3.

From the Person color graph of figure 2, one can
directly infer the predicate class hierarchy of figure 4.

The transposition is almost immediate. Basically, a node
is mapped 1o a predicate class : nodes 2, 3, 6 and 7 yield
direct predicate subclasses of the Person class ; except
for nodes 8 and 9, the structure for the remaining nodes
is kept unchanged. Nodes 8 and 9 can be mapped as
direct predicate subclasses of the predicate subclass age
or of class Person : in fact, since they do not hold
methods (nor memory representations), corresponding
predicate classes can be removed : this is coherent with
the fact that the destination information is structurally
lost in predicate classes?4. A new predicate class is
made to hold the long-lived method since this one
corresponds to a constrained .transition : the new
predicate class ands the sex and age ones.

One reason for the difference between figures 3 and 4 is
that the actual code of the cited reference does not take
into account a more modular expression of the age and
sex properties. A second reason was already mention-
ned : for demonstration purpose, our Person example
was made more general than Chambers'one (our color
graph does not take into account that existing Person
instances are systemtically initialized in the original
example). A third reason is apparent in figure 3 : no
adult predicate class exists in the code of the cited paper.
In COP, we systematically require a selection to describe
all the possible cases : a mathematical point of view

24 1o keep the destination informations while preserving
method modularity, a solution is to encode in two have-
birthday after: methods the choice restrictions these ephemere
nodes represent. Strictly speaking, the information is preserved
but its obviousness is degraded ... if no precaution is taken
(analyzing normal method bodies for destination extraction is a
priori difficult). A possibility is to maintain the color graph
externally and to never attempt to extract-back the destinations
from method bodies. A quite different possibility is to produce
the bodies of these specialized after: methods in a systematic
way so as to be able to easily extract the destinations back, and
to distinguish these methods from regular methods by a mark :
a destination extractor will then be able to reconstitute the color
graph from the sole methods. In this solution, no external
structure is thus necessary to obtain and maintain the color
graph.

-

-

underlies that. This is not to say that an implementation
may not support the parent class as a default and remove
one possible case.

o : .o b
‘ fmle} child t:eenagor adult
\ ~

= bedtime

b = have-birthday
| = expected-lifespan
I = long-lived

Figure 4.

Figure 3 can easily be obtained from figure 4 by
suppressing a number of predicate classes :

— taking as an hypothesis that any instance is created
and fully initialized by make-person, predicate classes
corresponding to uninitialized pigments are useless ; at
the same time, the predicates of the sex, age and sex-age
p.c. are systematically true : these p.c. can be merged
with the Person class itself ;

— the p.c. corresponding to the adulr basic node can be
removed too : the Person class is then considered as a
default.

Since the attachment of methods and memory represen-
tations to a color graph is done in companion paper n°3,
we should normally differ the completion of the
comparison to this paper. As an exercise, let's prefigure
its results :

— a memory representation with two cells (i.e. slots),
one for holding a sex value and one for holding an age
value, clearly convenes. This systematic representation is
better factorized in the Person class (figures 3 and 4) ;

— in figure 2, the attachment of methods is not difficult
to guess either. Undoubtedly, the expected-lifespan
transition requires two different methods for male and
female while threebedtime methods are necessary for
child, teenager and adult. Obviously too, the have-
birthday method can be shared in node 7. The transposi-
tion of this COP implementation to figure 4 is
immediate : basically, the attachement of methods is left
unchanged by the mapping except for the long-lived
method : as already mentionned, it is attached to the new
sex-age predicate class. Given the above mentioned
suppression of predicate classes, figure 3 is easily
obtained from this : thehave-birthday and long-lived
methods migrate to the Person class ; the bedtime
method for adult, being considered as a default, also
migrates to the Person class.

(Other examples from the cited paper may be considered
for exercises.)

13

6.2 Higraphs / Statecharts

The relationship between color graphs and the visual
formalism proposed by David Harel is almost a
coincidence (historically, we discovered higraphs and
statecharts after our design of COP). Actually, it is a
mere consequence of our decision to push the OOP main
idea to its ultimate. Because of our intent to make
objects more responsible than in OOP, we introduced a
notion of state in OOP, sublimated the concept of
message into the regular transition concept and defined
reflex transitions too. Hence, an approach that naturally
leads to graphs and, from there, to the design of a visual
formalism.

From the strict point of view of the graphical
representation, this new formalism happens to be an
alternative to higraphs or -more precisely- to statecharts.
As explained below, our color graphs are based on
connectedness instead of insideness for higraphs and
statecharts : multiple ancestors are thus possible and this
makes our formalism to be a bit more malleable than its
alternative.

The rest of the current subsection develops these points.
It is organized in the following way : first, the corres-
pondence between color graphs and higraphs/statecharts
is given ; an example follows ; then the comparison is
argumented in detail.

The next subsection focuses on objectcharts, a
refinement of statecharts. This formalism incorporates
OOP and can thus be discussed also from a semantic
point of view, including inheritance.

Higraphs
world

Statechart

OOP world
Smalitalk

C++ Eiffel Clos

?
OP world
Wizual

Figure 5.

6.2.1 Correspondence between color
graphs and higraphs

A strong connection can be made between color graphs
and higraphs. The key point concerns what we name
reflex transitions : in color graphs, they are materialized
using connectedness. Replacing connectedness by
insideness remarkably leads -modulo the a priori
arrangement of certain details25— to "higraphs" as

25 For example, in higraphs, conditions are attached to edges
(transitions), but not to blobs (chromas). In color graphs,
conditions are systematically attached to chromas (as predicate
to predicate classes), and sometimes to transitions too (these
extra conditions are termed clauses). All transitions outcoming
from a chroma thus share the condition of this chroma. This is
natural given the underlying semantics of color graphs.
Translating a color graph to a higraph should better keep this
factorization of conditions and associates this "common
condition” to each blob. Same rationale for keeping the testing
transitions unshown.

exposed in [Harel, 1988] and its companion papers about
"statecharts” [Harel et alii, 1987] [Harel, 1987].

- 1) In higraphs, colors are termed "blobs"; and
pigments, too. No equivalent to blend exists.

2) An ephemere color/pigment is mapped to ‘an
encircling blob (for example, the sex blob encircles
the male and female ones in the Person example).

3) Regular transitions correspond to directed "edges"
or, when flowing to ephemere nodes, to
"ll! pg!ggggi“-

4) A color graph decomposition exactly corresponds to
"partitioning" in higraphs26

6.2.2 Example

Next figure shows how the Person color graph maps to a
higraph or -more precisely- to what we name a "color
higraph™ : conventions in such a graph are the same than
in color graphs except for the reflex transitions (which
are represented using insideness), and for the
decomposition (which is expressed as parhtnomng, using
a vertical dashed line).

In a preliminary phase, multiple converging reflex
transitions must be eliminated from the color graph. This
is because insideness has a less intrinsic power of
representation than connectedness. Connecteness (color
graphs) allows the representation of DAGs ; insideness
(higraphs) is meant to represent stri hierarchica
relationships (trees). In our example, nodes like 8, 9, 14
and 15 of the Person color graph (figure 2) cannot be
represented in higraphs.

— Ephemere nodes 8 and 9 were meant to respect the
"unique destination” principle concerning the have-
birthday transition. This principle is the equivalent of
the acclaimed "depth” one in the higraph world : we see
here that this "depth" principle cannot be obeyed
systematically in higraphs. Forgetting the "unique
destination” principle is obviously possible concerning
color graphs : we discussed this point in [Borron,1996b].
In this case, ephemere nodes 8 and 9 simply disappear
from the Person color graph ; two have-birthday
transitions flow out of node 10 and two of node 11. In
the Person higraph, one cannot do otherwise. Or almost :
it is only possible to keep one encircling blob, not two (if
blob 8 exists, it encircles blobs 10 and 11; if blob 9
exists, it encircles blobs 11 and 12 ; blobs 8 and 9 thus
intersect). If we adopt one encircling blob (8 or 9), then
the structure is awfully not symmetrical vs. the have-
birthday transitions outcoming from blobs 10 and 11.
Figure 6 is thus meant to reflect the best possible choice.

— Blends 13 and 14 represent the boy and girl states in
figure 2 (we can imagine one may want to possibly
attach them a special behaviour).

With the higraph formalism, these states capnot be
represented as such, i.e. using blobs. (Reference
[Borron, 1996b] explores a number of extensions, but all
seem somehow awkward, external to the insideness
philosophy of higraphs, and difficult to use on a large
scale.) The rationale behind such a restriction is

26 [n both formalisms, such features are meant to avoid a
combinatorial explosion of states, an important consideration
indeed. This makes the parallel quite striking.

14

precisely the fear of an explosion blow-up problem.
However, in situations where only a few number of all
the possible combinations are useful —as illustrated by
the boy and girl blends in the Person example, this
restriction is counterproductive since it plays against
comprehensibility.

Given this, color graphs appear more malleable.

What we have done in the next figure is to represent the
boy and girl transitions.

(\
]
.]
sex)
sex: '
]
L I
V long-lived [3]
X v bedtime
expected-] S
Iifépnn) (g
V' boy[3)] 3
girl [3] &
' 3
]
n
v o
\ =
\
]
\.
Figure 6.

Note these transitions are constrained : hence, an extra
cognitive effort to identify the clause contents (here,
blob 3), to correctly interpret each such transition as
characterizing an interesting state and to memorize the
result. (In the Person color graph, these transitions
exist ; but —as a result of a convention— they are
normally not shown except on demand : they naturally
stem from the existence of the conditions boy and gir!
of the two blends.)

Suppose a regular transition is now to be added to the
boy (or girl) state as it happens with the draw transition

for Circle instances when fully initialized. This is easily .

done in the Person color graph and the result is
immediate to grasp since the transition is directly
attached to boy (or girl). Using a higraph, the transition
cannot be attached to a boy (or girl) blob since such
blobs do not exist : it should be attached to an other blob
(ex. : child) and constrained. The resulting higraph
representation thus implies an added cognitive load. For
transitions flowing to an ephemere blend, the result is
more complex and requires more effort.

6.2.3 Comparison between color graphs
and higraphs

1) Connectedness vs. insideness : a recur-
rent debate

As reported by references [Fitter-Green, 1979] and
[Green, 1982}, the insideness vs. connectedness choice

has been the subject of a debate for expressing

hierarchical relationships in the early seventies : [Nassi-
Schneiderman, 1973} and [Jackson, 1975] had both their
adherents at that time. This choice is also very clearly
expressed in [Harel, 1988] where, for example, set-
theoretic relationships in entity-relationship diagrams are
more elegantly and cheaply expressed by insideness than
by connectedness.

(-

(20

hys

2) Good properties of higraphs are valid

for color graphs

a) higraph claims

In his papers, Harel insists much partionning as well as

on hyperedges. For example, [Harel et alii, 1987](p. 54)
lists the reasons why “"people working on the design of
really complex systems have all but given up on the use
of conventional FSM's and their state diagrams”

(1) "State diagrams are flat"

(2) "State diagrams are uneconomical when it comes to
transitions” ;

(3) "State diagrams are extremely uneconomical, indeed
quite infeasible, when it come to states" ;

(4) “State diagrams (...) do not cater naturally for
concurrency”.

Then, about the idea of depth (i.e. the hyperedges), the
same paper states : "This simple idea, when applied to
large collection of states in a multi-level manner,
overcome points 1 and 2 above.” (p.55). About the
partitionning, it explains : "If the orthogonality construct
is used often, and on many levels, difficulties 3 and 4
above are overcome in a reasonable way" (p. 55).

b) these claims are valid for color graphs

As noted in subsection 6.2.1, the decomposition cons-
truct in color graphs is equivalent to the partitioning in
higraphs, while transitions to ephemere nodes in color
graphs are equivalent to hyperedges in higraphs.

If we consider a given higraph, a color graph equivalent
can be built using this correspondence. Concerning this
equivalent, the above claims are obviously maintained.

Note this equivalent is particular. It is purely
hierarchical. It does not exhibit multiple ancestors
(blends, in particular). Let's suppose we systematically
prohibit blends (as done in higraphs) and -more
generally- multiple ancestors. This is possible : as
already announced, blends in color graphs are strictly
optional and the application of the "unique destination”
principle, the other source of multiple ancestors in color
graphs, may be relaxed. Then, for this restricted form of
color graphs, the above acclaimed qualities of higraphs
can undoubtedly be stated too.

Next subsection shows that this restriction about color
graphs can be rid off in practise.

3) Color graphs are more malleable than
higraphs

a) this is not dangerous in practise

What about allowing multiple ancestors ? If they result
from the "unique destination” principle (the “depth”
principle) in color graphs, then no danger is to be feared.

The only problem that may be encountered lies in the use
of blends (combinatorial explosion problem). However,
the programmer is by no way forced to use them.

He/she may do so when the useful ones happen to be «

15

few (as in the Person example). This is like having a
road in a mountain : driving too fast is known to be
dangerous, and people thus drive with caution. When
possible, they speed up ; otherwise, they go slowly.
There is no real need do deploy state police forces all
along the road for systematically imposing a low speed !
Programmers will use blends appropriately (taking the
opposite point of view is like hypothesizing that
programmers are fool).

b) this is in fact an advantage

The capacity of supporting multiple ancestors is an
advantage for color graphs vs. higraphs.

As examplified by the Person class, the color graph
formalism enables a systematic observance of the
acclaimed "depth" principle (“unique destination”

~ principle), which is not true for the higraph formalism.

(Note that we intend to propose a flexible environment
in practice, one where transitions like have-birthday in
nodes 10 or 11 can be represented as in figure 2 or figure
7, i.e. respecting or not the "unique destination”
principle.)

Concerning blends, their appropriate use a priori enables
a better representation of composite transitions : a simple
transition appears more immediate to interpret than one
or several composite ones with their clauses. The
drawback lies in the existence of these extra nodes
(blends) with their reflex transitions.

Our proposal thus consists in preferring malleability to
rigidity : depending on the complexity of the class to be
modelled, the user is invited to choose among several
possible representations. With practice, a good
representation (if not the best possible one) is to be
expected. As in other forms of programming, users will
develop personal styles, some of which will appear
better than others.

This malleability may be important in practice since, to
quote [Green, 1982], (p. 34), "The details of the notation
profoundly influence its usability (...) A saving too small
to be measured [on a small scale] could become a major

improvement a thousand times up.”

4) Limitations

Whereas statecharts are meant for reactive systems, like
operating or avionics systems, communication networks,
.. (statecharts have primitives for concurrency), color
graphs are currently restricted to transformational
systems.

This restriction is not due to a theoretical reason : the
mechanisms proposed for statecharts may in fact be
incorporated in color graphs.

Like its equivalent formalisms, our proposal has a more
profound limit : a finite number of states are required.
Thus, if continuous values are used, this condition may
not hold.

states
&
transitions

concurrency* inheritance**

visual
formalism

insideness connectedness

@ T v » T O —

(*) Concurrency mechanisms may be adapted to color graphs.
(**) Objectcharts support (a form of) inheritance.

Figure 7.

5) Partial conclusion

The discussion of the Person example shows that human
factors are more complex, intricated and subtle than one
may think at first sight. If a question exists, it is not
about the compared theoretical powers of expression of
the two formalisms (due to their mathematical
grounding, they are basically identical for these
applications), but about their compared ergonomics2’
- (including the single/multiple ancestors aspect).

The ergonomic aspects of color graphs were seriously
thought about [Borron, 1996b). They integrate practical
as well as conceptual reflections (ex. : [Green et alii,
1981] [Green, 1989] {Green, 1990])). And the above
comparison shows. that this formalism brings a useful
malleability.

To avoid the biaises due to habits and/or personal tastes,
we intend to collaborate on a careful experiment such
like [Green, 1977] [Fitter-Green, 1979] [Green, 1982]
[Gilmore, 1986] [Petre-Winder, 1988] [Soloway-Bonar-
Ehrlich, 1988] [Scanian, 1989]. (The same pragmatic
and objective attitude was taken in [Harel, 1988}, p.519).
It will be particularly interesting to measure how much
the extra malleability of color graphs is going to be used.
Enhancements are also supposed to result from the
study.

6.3 Objectcharts

“Objectcharts are extended statecharts in which the
effect of state transitions on [object] attributes are
specified” [Coleman-Hayes-Bear, 1992}, p.12. In certain
states, attributes of an object may be reported on via
additional services termed "observers”. Hidden attributes
are specified as such, but are treated as observers.

NWIVPIO 3$3OrLOO

Observers are named, but not represented by arcs. (We -

support this feature too.) Necessary input/ouput
parameters are specified for each service (we already
mentioned this in subsection 5.4.) Besides the service
name, the initial and final state names, a transition
specification also comprises a firing condition and a
postcondition. The former is a predicate which may
mention state names, attributes and observers ; the latter
is "a predicate on the initial and final values of
attributes and observers which characterizes the effect of
the transition” (p.13).

27 The interested reader will find in [Borron, 1996b]
additional arguments about the ergonomic aspects of color
graphs vs. higraphs.

16

‘uses

What is the correspondence with COP ? A firing
condition implemented with attributes is like an abstract
condition body implemented with potentials ; a
postcondition, like an abstract transition body. Yet,
potentials are abstract (they relates to an invariant
specification) whereas attributes are part of objects .

Another work is reported in [McGregor-Dyer, 1993]. It
"a style of state diagram similar to [the]
objectcharts”. Yet, it introduces a new notation, a
vertical box containing T(rue) and F(alse). This notation
"reduces the complexity of the diagram slightly" (p.66).
As a matter of fact, this new notation corresponds to the
selection construct, yet in a less general manner. The
extended objectchart formalism is thus based on
insideness as well as connectedness. One figure of the
cited paper, the Queue, corresponds almost exactly to a
color graph (connectedness only).

The inheritance aspect of objectcharts are discussed in
companion paper no 3.

7. CONCLUSION

The proposed formalism is visual and object-oriented.

7.1) An extremely object-oriented
formalism :

The proposed formalism is object-oriented. As a matter
of fact, it has been designed for pushin ject

orientation to its utmost : it thus incorporates the concept
of instance state and models the effect of messages (or
generic function calls). A color graph synthesizes the
whole behaviour of a class of objects. (The term
"whole" reflects the invariance of a behavioural
description vs. its implementation, flat or highly
hierarchical).

The formalism is abstract : this paper is not concerned
with the implementation of objects in terms of methods
or memory representations ; class inheritance is not
considered at this level éither (these points are the
subject of companion paper n° 3).

The formalism is highly structured :

(1) instance states may be described according to one or
several dimensions (hence the concepts of colors,
pigments and blends) ; essential constructs exist for
describing AND or OR relationships between these
states (decomposition, conjunction and selection
constructs) ; these constructs are themselves built upon a
more basic concept, termed the reflex transition ;
conversely, above the essential constructs, more abstract
constructs also exists, like the mixin and the derivation
ones (cf. companion paper n° 2) ;

(2) a condition (evaluated by sending a side-effect free
message to the instance) is attached to each chroma
(color, pigment or blend) : this condition may be defined
by the user and/or is inferred by the underlying system

-

ters

-~y

(on the basis of constructs) : the associated testing
transition is automatically derived by the syvstem ;

(3) acceptable messages and their effect are modelled by
regular state transitions. These are normally depicted by
multiple constrained graph transitions according to the
color graph dimensions : two conventions were adopted
to simplify the representation of regular graph transitions
and to possibly eliminate the clauses (i.e. constraints) :
five othér principles are also used for designing simple
color graphs, among which the “unique destination”
principle and the "non ubiquity” principle. Testing
transitions are normally not shown.. Factorization
facilities have been set up for factorizing regular
transitions at selection destinations : more generally,
regular transition inheritance (along void transitions) can
be taken advantage of for devising a simple expression
of regular transitions. Given a color graph. we show how
to compute the dictionary of acceptable messages for a
given state ;

{4) to materialize the current state of an instance in a
given color graph, a mark is used : it consists in a set of
mini-tokens, one per dimension (the term token is used
in a 1-dimension color graph) ; the paper describes the
effect of constructs and regular graph transitions on
{mini-)tokens :

(5) in addition to the color graph formalism itself, a
supplement of behavioural specification is handled via
the potential concept. A potential is a value that is
attached to each (mini-)jtoken. It can be initialized (when
the (mini-)token is created). modified by a triggered
transition (using its arguments or discarding them) and
tested (for condition evaluation). A potential is abstract :
a priori, it has nothing to do with a possible
implementation.

7.2) A visual formalism
7.2.1 acceptability

The proposed formalism is visual. Generally speaking, a
visual formalism is not expected to satisfy everyone
since some people are more "auditive” than "visual” :
because their preferred way of thinking is not based on
visual representations, the use of a visual formalism is
far from being intuitive for them : it does require an
important cognitive effort from their part. The visual
formalism presented here is not expected to be an
exception and hence cannot be reasonably expected to
especially attract these people.

However. some other people are preferably oriented
towards “visual” or "kinetic” mental representations. In
1945, a survey done about the creative methods of
mathematicians reported on the mental pictures of such
~a priori— abstract scientists [Hadamard, 1945]. Albert
Einstein replied that "the elements in [his] thought
[were] of visual and some of muscular type”. Jacques
Hadamard wrote : "My mental pictures are exclusively
visual.” Being in charge of the survey, he conclued that,
for almost all the polled mathematicians, "The mental
pictures {...) are most frequently visual, but mayv also be
of another kind ~for instance kinetic". [Larkin-Simon,
1987) acknow-ledges this fact and shows why it is
advantageous to use diagrams. They display important

informations otherwise only implicit in & textual
representation and very costly to compute from it. The
visual formalism presented in this paper follows this
line.

7.2.2 malleability

The visual formalism we propose happens to be
essenliall_v28 equivalent to the higraph/statecharts forma-
lism developed by David Harel : whereas the higraph
formalism is based on insideness. our formalism is based
on connectedness. This makes it more malleable than its
alternative (a point which may be important in practise:
while not loosing any strong aspect of higraphs.

A higraph representation can always be mapped to a
purely hierarchical color graph. When appropriate. this
first color graph can itself be upgraded to a better color
graph (same semantics. yet expressed in a simpler way).
For example, in some situations. a color graph will better
be expressed with blends (higraphs do not support them)
while. in other situations, it will be better to avoid their
use (as systematically done in higraphs).

This brings an important consequence all the
acclaimed qualities of higraphs/statecharts are valid for
color graphszg. In particular, there is no question about
how well color graphs will scale up with complex ap-
plications. Complex applications have been built using
statecharts : the color graph formalism will thus undoub-
tedly be able to support them equally well (at least).
Another immediate consequence of the correspondence
between statecharts and color graphs is worth to be
noted : the primitives used in statecharts for specifically
supporting reactive systems may be imported in color
graphs (restricted in this presentation to transformational
systems). :

Conversely, this relationship implies that parts of our
work can be imported into higraphs, statecharts and
derived formalisms, notably two aspects that are
developed in companion papers n®2 and n” 3 :

— our proposal for handling mixins (to the best of our
knowledge, our mixin and derivation constructs do not
exist yet in Harel's formalism nor in the derived ones) :
— our proposal for inherjtance by dimensions.

7.3) results important for the next two
companion papers

Four points presented here are worth to be retained for
elaborating the derivation construct in companion paper
n°2 : (1) the decomposition construct (the derivation
construct is to be designed as a specialized form of
decomposition) ; (2) the splitting of a regular state
transition into multiple constrained transitions ; (2) the
concept of mini-token ; (3) the concept of potential.

Two points are important for devising class inheritance
in companion paper n°3 : (1) the decomposition
construct (this one will act as a pair of "scissors” for

28 Inheritance is not supported in higraphs/ statecharts.

29 Lers stress this point again. Telling the opposite supposes
a bad use of the extra malleability of color graphs (for example.
using blends when not appropriate). In higraphs. bad use is
systematically avoided : higraphs are hierarchical (this is so to
speak a hard-wired property) : the counterpart is that no
malleability exists.

decomposing a class into subclasses) ; (2) the local
inheritance of regular transitions along reflex transitions,
with notably the concept of p-ancestor-tree. This form of
local inheritance (i.e. inheritance inside a same color
graph) will be extended first to local concrete
implementations (methods and memory representations),
then to class inheritance (i.e. considering a hierarchy of
color graphs).

Acknowledgements

Subsection 6.2 would not have been possible without the

precious help of Df Philippe Verdret, a former colleague of us
at INRIA Sophia-Antipolis, both a computer scientist and a
psychologist. Having read the first version of [Borron, 1995a]
[Borron, 1995b] in March 1995, he brought to our attention the
existence of [Harel, 1988], the paper devoted to visual
formalisms and more precisely to higraphs. Thanks for his
suggestion and for all his remarks since then. Thanks also to
Gregor Kiczales for his personal encouragements.and for

pointing to us [Chambers, 1993] after a presentation of our .

work to him in July 1994,

Bibliography

(Borron, 1995a] Henry J. Borron. "Colored-Object Program-
ming : Describing Interfaces”. In GL'95 Proceedings.
(Huitiemes Journées Internationales sur le Génie Logiciel
et ses Applications.) November 15-17, 1995.

[Borron, 1995b] Henry J. Borron. “Colored-Object Program-
ming : Concrete and Abstract Implementations”. In
GL'95 Proceedings. November 15-17, 1995.

[Borron, 1995¢] Henry J. Borron. “Colored-Object Program-
ming : Inheritance by dimensions". (First version in
October 1995.) Research Report 2878, april 1996.

{Borron, 1996a] Henry J. Borron. "Colored-Object Program-
ming : Goals and Metaphors”. January 1996.

[Borron, 1996b] Henry J. Borron. "Colored-Object Program-
ming : About the visual formalism”. (First version in
January 1996.) Research Report 2879, april 1996.

[Borron, 1996¢] Henry J. Borron. "Colored-Object Program- -

ming : About the programming activity”. (First version in-
January 1996.) Research Report 2880, april 1996.

[Borron, 1996d] Henry J. Borron. “Colored-Object Program-
ming : mixin and derivation, two conjoint concepts for a
rigorous handling of independent supplementary
behaviours”. (First version in February 1996.) Research
Report 2877, april 1996.

[Borron, 1996¢] Henry 1. Borron. “"Colored-Object Program-
ming : Rationale”. February 1996.

[Borron, 1996f] Henry J. Borron. “Colored-Object Program-
ming : A solution to the siate partitioning anomaly”. In
preparation.

[Borron, 1996g]) Henry J. Borron. "Colored-Object Program-
ming : Ergonomic and cognitive issues”. May 1996. To
be published in ERGO-1A'96 Proceedings.

[Chambers, 1993] Craig Chambers. "Predicate classes”. In
Proceedings of ECOOP'93. pp. 268-296. . Springer-
Verlag. July 1993.

[Coleman-Hayes-Bear, 1992] Derek Coleman, Fiona Hayes
& Stephen Bear. “Introducing Objectcharts or How to
use statecharts in Object-oriented design”. IEEE
Transactions on Software Engineering, Vol 18, no 1.
January 1992,

[Davies, 1991.b] Simon P. Davies. "The role of notation and
knowledge representation in the determination of
programming strategy @ a framework for integrating
models of programming behavior”. Cognitive Science.
Vol 15, 547-572. 1991.

18

"(Scanian, 1989]

[Fitter-Green, 1979] M. Fitter & T.R.G. Green . "When do
diagrams make good computer languages ?".
International Journal of Man-Machine Studies. Vol.. I1.
pp- 235-261. 1979.

[Gilmore, 1986] D.J. Gilmore “Structural visibility and
Program comprehension”. In People and Computers :
Designing for Usability (Proceedings of the second
Conference of the BCS HCI SG). Harrison and Monk
(eds). Cambridge University Press. pp. 527-545.
September 1986.

[Green, 1977] T.R.G. Green.
statements and their comprehensibility to professional
programmers"”. Journal of Occupational Psychology.
1977.

[Green, 1982] T.R.G. Green. "Pictures of programs and
other processes, or how to do things with lines".
Behaviour and Information psychology. Vol. 1, no 1, pp.
3-36. 1982

[Green, 1989] T.R.G. Green. "Cognitive dimensions of
notations”. In A. Sutcliffe and L. Macaulay (Eds.),

People and Computers (Vol 5). pp. 443-460. Cambridge -

University Press. 1989.

[Green, 1990] T.R.G. Green. "The cognitive dimension of
viscosity: a sticky problem for H.C.I" In D. Diaper, D.
Gilmore, G. Cockton and B. Shackel (Eds.), Human-
Computer Interaction - Interact'90. Elsevier. pp. 79-85.
1990.

[Green et alii, 1981] T.R.G. Green, M.E. Sime and M.J.
Fitter. “The art of notation”. In Computing Skills and the
Computer Interface. M.J. Coombs & J.L. Alty (Eds).
Academic Press. pp. 221-251. 1981.

[Hadamard, 1945] Jacques Hadamard. "The psychology of

invention in the mathematical field". Dover Publications,

New York. 1945.

{Harel, 1987] D. Harel. “Statecharts : a visual formalism for
complex systems”. Science of Computer Programming.
Vol. 8, no 3, pp. 231-274. June 1987.

[Harel, 1988] D. Harel. "On visual formalisms".
Communications of the ACM, Vol. 31, no §, pp. 514-530.
May 1988.

[Harel et alii, 1987] D. Harel, A. Pnueli, J.P. Schmidt, R.
Scherman. “On the formal semantics of statecharts”.
(Extended abstract). In proceedings of the second IEEE
symposium on logic in computer science (Ithaca). pp. 54-
64. IEEE Press. June 1987.

[Jackson, 19851 M. Jackson. “Principles of program
design”. Academic Press, London. 1975.

[Keene, 1989] Sonya E. Keene. "Object-oriented
progamming in Common Lisp. A programmer's guide to
CLOS". Addison-Wesley in association with Symbolics
Press. 1989.

[Larkin-Simon, 1987] Jill H. Larkin & Herbert A. Simon.
"Why a diagram is (sometimes) worth ten thousand
words”. Cognitive Science. Volume 1, no 1, pp. 65-100.
January-March 1987.

{McGregor-Dyer, 1993] John D. McGregor & Douglas M.
Dyer. "A note on inheritance and state machines".
Software Engineering Notes, Vol 18, no 4. October 1993.

[Nassi-Schneiderman, 1973] 1. Nassi & B. Schneiderman.
"Flowchart technigues for structured programming”.
SIGPLAN Notices, 8 (8), pp. 12-26. 1973.

[Petre-Winder, 1988] Marian Petre & Russel Winder.
"Issues governing the suitability of programming
languages for programming tasks”. In D.M. Jones and R.
Winder (Eds.), People and Computers IV (Vol 6). pp.
199-214. Cambridge Unversity Press. 1988.

David A. Scanian. "Structured flowcharts
outperform pseudocode : an experimental comparison".
IEEE Software. September 1989.

[Soloway-Bonar-Ehrlich, 1988) E. Soloway, J. Bonar & K.
Ehrlich. "Cognitive strategies and looping constructs” :
an empirical study". Communications of the ACM 26,
pp- 853-860. September 1983.

"Conditional program

1.

IS 2%

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine - Technopdle de Nancy-Brabois - Campus scientifique
615. rue du Jardin Botanique - B.P. 101 - 54602 Villers tés Nancy Cedex (France)
Unité de recherche INRIA Rennes - IRISA. Campus Universitaire de Beaulicu 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhéne-Alpes - 46, avenue Félix Vialiet - 38031 Grenoble Cedex 1 (France)
Unité de recherche INRIA Rocquencourt - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

“ISSN 0249 - 6399

AR

