A Criterion for Uniqueness of a Critical Point in $H_2$ Rational Approximation

Abstract : This paper presents a criterion for uniqueness of a critical point in $H_{2,\RR}$ rational approximation of type $(m,n)$, with $m\geq n-1$. This criterion is differential topologic in nature, and turns out to be connected with corona equations and classical interpolation theory. We illustrate its use on three examples, namely best approximation of fixed type on small circles, a de Montessus de Ballore type theorem, and diagonal approximation to the exponential function of large degree.
Type de document :
Rapport
RR-2869, INRIA. 1996
Liste complète des métadonnées

https://hal.inria.fr/inria-00073822
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:49:57
Dernière modification le : samedi 27 janvier 2018 - 01:31:27
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:59:06

Fichiers

Identifiants

  • HAL Id : inria-00073822, version 1

Collections

Citation

Laurent Baratchart, Edward B. Saff, Franck Wielonsky. A Criterion for Uniqueness of a Critical Point in $H_2$ Rational Approximation. RR-2869, INRIA. 1996. 〈inria-00073822〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

88