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La Détection de Points Singuliers Multiples
dans la Méthode de Continuation PC

Résumé : Dans cet article, on montre comment utiliser la méthode de détec-
tion des points singuliers multiples — points limites multiples et points de bifur-
cation multiples — en vue de la résolution numérique de systemes d’équations
non linéaires par des méthodes de continuation de type Prédicteur-Correcteur.

Mots-clé : Détection, Points singuliers multiples, Méthode de continuation

PC



The Detection of Multiple Singular Point in PC-Continuation Method 3

1 Introduction

The PC-continuation method is mostly used to numerically compute bifur-
cation branches at present (see [EA90]). The detection of singular point is
necessary during PC-continuation computation. Recently, the detection for
simple singular point has been discussed, see for example [EA90]. In [Kat76],
the case of odd multiple singular points was studied. We here,give a general
detection for both cases, odd and even.

Assume that E is a Banach space,for the sake of simplicity, £ = RY (for
infinite dimension,the conclusion is still valid). We consider a smooth enough
nonlinear functional equation with a bifurcation parameter A € R :

G(u,\) =0, x R — E. (1.1)

A point (ug, Ag) is called m a multiple singular point if it satisfies:

(H1) G(uo, Xo) = 0.

(H2) D,G(uo, Ao) is a Fredholm operator with index zero,zero is one of
its eigenvalues,both the algebraic and geometric multiplicity is m > 1.

Here D,G(u, A) denotes the Frechet derivative with respect to the variable
u, and D, Gy will denote D, G(ug, Ag), the Frechet derivative evaluated at the
point (u, A) = (ug, o).

Furthermore, if

(H3) D\Go € Rang(D,Gy) or D\Gy ¢ Rang(D,Gy)
is satisfied too, then (ug,Ag) is called a m-multiple regular bifurcation point
(RBP) or an m-multiple limit point (LP).

The Fredholm operator theory shows that there exist eigenfunctions ¢;,1 =

1,2,--- ,m and adjoint eigenfunctions ¢;,1 = 1,2,--- ,m such that

RR n" 2867
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Ey = ker(D,Gy) = span{g;,i =1,2,--- ,m},

B = ker(D,GY) = span{t;,i =1,2,--- ,m},

E = Rang (D,Go)={veE <, v>=0,Yi=1,2,--- ,m},

E* = Rang (D,G5) ={v e E*, < pi,v>=0,Y;=1,2,--- ,m},
< @i > = 0, < i, >=0i,1,5 =1,2,---m,

E = ker(D,Go) @ Rang(D,Go) = By & E
E* = ker(D,G;) ® Rang(D,G}) = B @ B~

Here E* denotes the dual space to E.
In addition, there exists g € Rang(D,Gyo) such that

DuGOS«QO + D/\Go =0 if (UO, Ao)iS a RBP
wo =0 if (ug, Ao)is a LP (1.2)
< o,y >=0,1=1,2,--+ ,m.

Let
E = ker(D,Gy) & span{po}.

It is obvious that £ = ker(D,Gy) for the case of an LP.

Let 7 be a linear bounded functional such that
Voe E, ((v—mv)v) € ker(D,Go).
In the sequel we introduce the notation

¢; = DuwGopipj,

= o Dy Gopor: + DurGop; for RBP
qio = DuDGO(S‘907 1)9‘92 — { Du/\GOSOi fOI’ LP,
DG + 2D, G + DG for RBP
_ 2 . wuT0P0¥0 w00 Ao
do = DColo; L)(go 1) _{ D, Go for LP,
Gijk = DuwuuGopipj @k, gijo = Du DGo(po, 1)pip;,

gioo = DuD*Go(o, 1)(0, 1)¢i, qooo = D*Golo, 1)(@o, 1)(@o, 1),

INRIA
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i _{ 0 if ¢;; ¢ Rang (D,Go)
Yz € Rang (D,Go), DyGozij + qij =0 if ¢;; € Rang (D, Gy),
_J 0 if g0 ¢ Rang (D, G)
0 = { zio € Rang(D,Go), DyGozio + Gio =0 if g0 € Rang (D,Gy),
_J o if goo ¢ Rang (D, Gl)
00 = { zoo € Rang (D,Go), DyGozoo + goo = 0 if goo € Rang (D, GY),

asz =< ¢k7Qijl >, afjo =< ¢k,qij0 >, afoo =< Uk, Gioo >,
CLgoo =< ¥k, Gooo >, d¥ =< Yy, D\Go >,

“fj =< ¥, qij >, afo =< Y, Gio >, a’go =< ¥k, Goo >,
bfj =< ¥g, zij >, bfo =< Yy, zio >, b’go =< Yk, Zgo >

It is clear that ¢;;, gij, af-“]-, afﬂ are symmetric with respect to the subindex.
We also need to introduce the matrices and vectors:

Ak = (CLZ—),A% = {afo}a AOO = {GSO} la]7k = 1a27 e, M
AO = {A(IJ7A37 e 7A9n}T7 A= {A17A27 e 7Am}T7

A AY
Mk N ( A§T Clg]; ) ’ M = {M17M27"' 7Mm}T‘

2 Preliminary

In this section we will give some Lemmas which will be used frequently.

Lemmal Rank(M)=m+1iff Y0#veE
there exists a w € E,w # 0 such that

D*Go(v, mv)(w, mw) € Rang(D,Gy) (2.1)

Proof [t is sufficient that if (2.1) is not valid then Rank (M) < m + 1; if
Rank(M) < m + 1 then (2.1) is not valid too.

Assume that (2.1) is not true, then there exists vg € E,Vwg € E and we
have

D*Go(vo, mvg)(wo, mwg) € Rang (D, Gy). (2.2)

RR n" 2867
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Let pT' = {a', a2, .-+ ,a™, o’} € R™*! such that
vo = a'p; + a0, Z(O/)Z +(a”)? #0
=1
and Vo©' = {3, 3%,.-. 3™, 3°} € R™*! such that
wo = Bpi + Bo.

Then, (2.2) yields

< by, D*Go(vo, mvo)(wo, mwp) >= 0,k =1,2,--+ ,m. (2.3)
A simple calculation shows that
pIMyv =0, VYve R (2.4)

Hence

p' M, =0

So that p is orthogonal to every row vector of Mj. Because of dim {span(p*)} =
m hence Rank (M) < m + 1.

Conversely,if Rank (M) < m+ 1. Let Y be a spanning subspace by all row
vectors of M and dim(Y') < m + 1. Therefore there exists a nontrivial vector
ol ={ot, 0% -+ ,0™ 0%} € YL such that

O'TMk = 0 VI<k<m
oMy = 0 VpeR™ " ={ut pt, - u, 6

Set v = Jigoi + 0%, w = /,Liapi + 11°pg. From
D*Gy(v, 7v)(w, 7w) € Rang (D,Gy), Yw € E,

we obtain that (2.1) is not valid. The proof ends. O

Remark 1 Indeed,

Vo= a'pi+a’po,  w = p'e; + 1o,

INRIA
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DzGO(Ua W'U)(‘w, ﬂ-w) = qijai/ui + Qio(aiﬂo + /liOéO) + QQo&OMO,
(2.5)

< u, D Golo, mo) (w, m0) >= abaipd + ab(¥u® + pia?) + abga®y
k=1, ,m. (2.6)
Lemma 1 is equivalent to that Rank (M) = m + 1 iff V(a,a") € R™*!,
equation . ' '
C‘fjo‘l/l] +agy(a’p’ + pfa®) + aga’u® = 0

has no nontrivial solution (g, u°).

Denote
A(O{) = (afjai7k7j = 1727"'m)m><m (27)
Ao(a) = {afoai7k = 1a27"'m}71;;><1' (28)

Then the system (2.3) can be rewritten
(A(@) + apA®, Ag(a) + a®A%) < ZO ) =0. (2.9)

When (ug, Ag) is a RBP then o # 0. In this case, (2.9) has a nontrivial

solution iff
Rank (A(a) + apA®, Ag(a) + a®A%) < m + 1,¥(a,a”) € R™ x R.

If (wo, Ao) is a LP then ¢q = 0.(2.9) is a system with m equations and m
unknowns. Therefore, (2.9) has a nontrivial solution iff

RankA(a) < m,

Rank(M) < m + 1 = D*Gy(v, 7w) € Rank(D,Gy),Yv € E,Vw € E.
(2.10)

RR n" 2867
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Lemma 2 For any matrix 7' € R™*™, any [,r € R™,a € R, we have
T T T x ¢ ¢
det ro. )= adet(T)—1"T"r,m > 2 (2.11)
where T™ is a cofactor matrix of 7'
Proof Seein [YW].

Lemma 3 Assume 7' € R™*™,. Then
7T =TT" = det(T)1, (2.12)

where [ is an identity matrix,T™.
Furthermore, if Rank(7") = m — 1, then

T* = ol (2.13)

where g, ¥g are the right and left null vector of T' respectively.
If Rank (7') < m — 1, then

T* = 0. (2.14)
(for the proof see in [YW]).
Remark 2 From (2.12) it follows that
det(T*T) = det(TT™) = (det T')™.
Therefore
det(T™) = det(T)™ " (2.15)

Remark 3 By (2.11) and (1.1) the determinant of M}, is given by
det(My) = af, det(Ay) — AV Az AY (2.16)

INRIA
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3 Bifurcation Equations and Branching Solu-
tions

Assume that there exist a solution arc ¢(s) = (u(s), A(s)) of (1.1) in the neigh-
borhood at (ug, Ag) depending smoothly on some parameter s,, for example
the arclength such that

Gu(s), A(s)) = 0,u(0) = ug, A(0) = Ao. (3.1)
Differentiating (3.1) twice with respect to s and evaluating at s = 0, we
obtain
D, Goi(0) + DyGoA(0) = 0, (3.2)
D, Goii(0) + DyGoA0) = —D?*Go(1(0), A(0))(2(0), A(0)). (3.3)
(3.2) yields that
e=im{ 7y Epn (34
Combining(3.2) and (1.2),we can write
D, Go(1(0) — %) = 0.
Hence
a(0) € E,u(0) = € + %0 (3.5)
where £ = (€',£2,---£™) € R™. Substituting (3.5) into (3.3) leads to
D, Goii(0) = —D)\Gon — ;€' — 2io€ € — qoo€°¢° (3.6)
with
n=\0) (3.7)

RR n" 2867
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It is clear that there exists a nontrivial solution (0) iff
DrGon + qi€' € + 2qio€ €" + 2qoo€’€® € Rang(D)\Gy). (3.8)
Then (3.8) implies

Fo(6,€0m) = a6 4 2aE 660 + a0 4 Py =0,k =1,--- ,m.

(3.9)
or
fr = ETAE 4 2A0EE° + agy°° + dFy = 0, (3.10)
(€7, %) M ( go ) +d'n=0k=12,---m. (3.11)
To avoid indetermination, we add to (3.9) the normalization equations
T ¢0 ¢\ _

(&5, €)M, < & ) =0 for RBP, (3.12)

e+ =1

T k,, —

{ gT?’f;rd =0 o Lp, (3.13)

where we use d* = 0 for BRP, £° = 0 for LP.
(3.12) is called the algebraic bifurcation equations (ABE), and (3.13) s
called the limit point bifurcation equations (LPBE)(see [DWD82]).
Equations (3.12) (3.13) can be rewritten as

ABE : { AL +28A4° + ECAR=0 RBP,
EME+¢6%¢° =1 (3.14)
LPBE : { AT(OS dn =0 for LP.
&e=1 (3.15)

INRIA



The Detection of Multiple Singular Point in PC-Continuation Method 11

It is wellknown [DWDS82] that not all roots of bifurcation equations can
be used to generate solution branches of (1.1). Only all isolated roots of
bifurcation equations can be used to generate solution branches. However,a
root of bifurcation equation is isolated iff the corresponding Jacobian matrix
evaluated at the root is nonsingular.

The Jacobian matrices of RBP,LP respectively,are

Jp(€,€°) =2 [ ?T(f) + oA ?Jof + AR ] for ABE
(3.16)
Ju(En) =2 [ ?T(f) ’ ] for LPBE (3.17)
By applying lemma 2,we can evaluate the determinant of Jacobian Jpg, Jy as
follows
—ET(A(§) + LPAY)(A% + £°A%)), '
det(J(€,1)) = —26TA(€)"d. (3.19)

In the following we discuss above ABE and LPBE separately.

1. We consider the case of ABE. ‘
Firstly, assume that (£,0) is a root of ABE, here £° = A(0) = 0. In this

case (3.14) becomes

A(E =0 5
{ TE 1 (3.20)

Therefore,
(A) €#£0 iff A(¢) is singular,det A(&) = 0;
(B) ¢ is a eigenvector cooresponding to zero eigenvalue of A(¢).

From (3.18) we have

det(J(€,0)) = —€7 A(€)"(A°%) (3.21)

RR n" 2867
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By applying Lemma 3, if Rank(A(£)) < m — 1 then A(()* = 0; if Rank
(A(€)) = m — 1, then by (2.13) it follows that

—ETA(E)"(A%) = €Tt (A%) = —¢T A%,
Consequently,we obtain

0 if Rank(A(£)) <m —1

det(J5(¢,0)) = { €T A% if Rank(A(€)) = m — 1 (3.22)

Secondly,assume £° # 0, from (3.14) it follows that
A%+ A% = ()TN A(E) + €2 A%, (3.23)
Substituting (3.23) into (3.18) leads to

det Jp(€, €%) = 2[¢° det(A(¢) + £° A7)
H(E)THET(A(E) + LA (A(E) + €°A°)¢]

Using (2.12) implies that

det Jp(€,€°) = 2[£° det(A(E) + £7A%) + (£2) 1€ det(A(€) + P A°)I¢]
2(67)7 " det(A(E) + A" (IE1* + (£7)*)

(3.24)

det Jp(&,€%) = 2(€%) 7  det(A(€) + €°A?) (3.25)
Finally,we conclude

Theorem 1 Assume that (£, %) is a root of ABE,

(A) If£° =0 then Jg(&,£°) is nonsingular iff
(i) A(¢) is singular with Rank (A(£)) =m — 1
(ii) £ is an eigenvector of A(€) corresponding to zero eigenvalue but not

an eigenvector of A corresponding to the zero eigenvalue.
Furthermore, det Jg(£,0) can be evaluated by

det Jp(£,0) = —¢T A% (3.26)

INRIA
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(B) TIf €% #£ 0 then Jg(&,£%) is nonsingular iff A(€) + £°A° is nonsingular.
Furthermore, det Jg (¢, £°) can be evaluated by

det Jp(€,€%) = 2(£%) 7" det(A(€) + £°A9). (3.27)

2. We consider the case of LPBE.
Firstly, we assume 7 = A(0) = 0,. From (3.16) we obtain

A(£)€ =0 Ny
{5%21. (3.28)

A(¢) is singular, € is a eigenvector corresponding to zero eigenvalue of A(§).
By applying Lemma 3,we have

. |0 if Rank A({) <m —1
ALy = { €7 if Rank A(¢) = m — 1.

From (3.19) we have

_Jo if Rank A(§) <m —1 ..
det J1(¢,0) = { 274 if Rank A(£) = m — 1. (3.29)
Secondly, we assume 1 # 0. From (3.15) it follows that

d=—n"tA(EE.

Substituting it into (3.19) leads to

det Jo(&,m) = 207" ¢T A(€)* A(€)¢

In view of Lemma 3,we obtain
det Jp(&,1) = 2n7 €T det(A(€)) 1€ = 27" det(A(€)) (3.30)

Finally, we conclude

RR n" 2867
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Theorem 2 Assume that (£,7) is a root of LPBE.
(A) If n =0 then Ji(&,0) is nonsingular iff
(i) A(€) is singular with Rank A(§) = m — 1,
(i) d¢ Rang (A(€).

Furthermore det J1(£,0) can be computed by
det Jy,(€,0)) = —2¢7d. (3.31)

(B) If n # 0 then JL(&,n) is nonsingular iff A(€) is nonsingular too.
Furthermore,det Ji(£,n) can be evaluated by

det Jr,(£,m) = 27" det( A(€)) (3.32)
The number of isolated root of bifurcation equation (ABE,LPBE) is limi-

ted. Equations (3.14) and (3.15) form a system with m equations and (m + 1),
so Bezout’s theorem (see [EA90]) allows a maximum of 27 isolated roots in

the m dimensional complex projective plane. Because (£!,€%,--- €™, &%) or
(€4,€%,--- €™ n) is a root of ABE or LPBE respectively, then so is
(=&, =& =™, =€) or (=& —€%, -+, —E&™,n), which is distinct in com-

plex projective plane but generates a branch with the two tangent vectors
te = (0(0), A(0)) = (£&'0:, £€°) or 12 = (+£'¢;,0)

determined by the direction of approach to (ug,Ag), both roots relate to the
same arc, hence they will not be considered distinct.Thus we can have at most
2™~1 isolated real roots of bifurcation equations.

Assume that (€1, €2) or (€1, 7.) is an isolated root of ABE or LPBE respec-
tively, then we have

i(0) = Epi+ o, € =A0) for ABE, (3.33)
or
W(0) = Eig;,  A0)=0 for LPBE. (3.34)

Consequently (3.6) has unique solution,i.e.

D, Go((0) — A(0)go) = _(Qijfifi + 2qi0€LE) + qoo2€.) for ABE,
(3.35)

INRIA
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or
D, Goii(0) = —1.DyGo — (g;;6.€))  for LPBE, (3.36)
with )
< i(0) = A0)o, x >=0,
or

< i(0),¢ >=0,k=1,2,---  ;m.
Let us denote this unique solution by

vy = { i(0) — A(0)po for ABE (3.37)

i(0) for LPBE

It is well known [Kat76] that there exists a unique solution corresponding to
(€*,€%) or (£*,n*) and starting at (ug, Ag) along direction %(0) defined by (3.33)
or (3.34) which can be expressed as

u(s) = uo + s(£'(s)pi + €°(s)po) + 35%v(s o -
{ )‘25; = Ao + 820((8))99{‘01’ R](31i<p ) ¥ (3.38)

(3.39)

{ u(s) = uo + s(fi(s)api) + %32'1)(5) for LP
A(s) = Ao+ 35%n(s)

where functions £'(s), £°(s),n(s) and v(s) are unique with initial conditions

€(0) = €,€°(0) = &, 1(0) = 7", v(0) = vo. (3.40)

RR n" 2867
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4 Example

Taking m = 2, let

1 1 1 1 1 1
_ | @11 Gqo _ | @1 Gy _ | G1o Qo9
Qa1 = a2 , Q12 = a?. a2 , Qg = at a2
11 %19 11 G2 12 Qo9
1 1 1 1
a a a a
10 %3 11 %12
a0 = 2 2 + 2
ayy Gyg aip @20
1 1 1 1 1 1
a _ | @10 Q39 + Q19 Qo9 P TION)
0 = 20 42 A g2 |2 = a2
12 Qo9 10 %3 10 %
1 1
o = _ ayq ay9
= al al
21 22
1 1 1 1 1 1
B = | G = | % G| R O
a%1 a2 |’ a%2 a2 |’ a%Q d?
1 1 1 1 1 1
_ | @11 Qoo _ | @12 Qgo _ | @22 Qgo
Y11 = 2 2 |12 = 2 2 |22 = 2 2
a1 Qoo a1y Qoo gy Gpo
1 1 1 1
_ | @0 Qoo _ | @20 Ago
Yo = a2 a2 y Y20 = a2 a2
10 %po 20 %po

—P2 = ’7122 — Y11722
Elementary calculation shows that

det A(§) = ) ay€'¢, (4.1)

7,7=1

det(A(§) +6°4%) = Y ay€'¢ (4.2)

,7=0
For LPBE, we introduce
¢! =sind, * = cos b,
then LPBE can be rewritten as

ah sin® 6 + Qab cosfsin @ + a%Q cos? 0 +nd' =0,
a%l sin? 6 + 2a%2 cosfsinf + a%Q cos? 0 +nd* = 0.

(4.3)

INRIA
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For ABE, we introduce
¢ =sinpsind, £ = cos psinf, £ = cos b,
then ABE can be rewritten as

1 . 2 . 2 ¢ 1 . . 2 1 2 . 2
aj, sin 99251n 0 + 2a1,sin p cos psin” § + ay, cos” @ sin” 0

a1 - . a1 . 1 20
+2ayysin” @ sin @ cos 8 + 2a, cos psin @ cos 8 + ag, cos” 0 = 0,

(4.4)
a?, sin? psin® 0 + 2a2, sin p cos psin® 0 + a2, cos? psin? 0
+2a?, sin? ¢ sin 0 cos 6 + 2a3, cos @ sin 6 cos O + a3, cos? § = 0. (4.5)
(i) Assume that (£,0) is a root of LPBE.
There is a nontrivial solution to (4.3) iff
o’ > 0,0} = aaj (4.6)
and
dral, + d%al ifal, =0
T 22 12 11
D { d*aj, + d*aly + od* ifal; #0 (4.7)

(ii) Assume that (&,7) is a root of LPBE there is a nontrivial solution to
(4.3) iff

Bty — Br1Paz > 0 (4.8)

because of

Br1sin® 0 4 2B12sin 0 cos @ + By3 cos* 6 = 0

which can be obtained from (4.3). In view of
det A(€) = ayy sin® 0 + 2a19 sin 6 cos 0 + agq cos® 0, (4.9)

we can conclude (4.8) and «;; # af3;; garanties that A(£) is nonsingular.

RR n" 2867
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(iii) Assume that (£,0) is a root of ABE then (4.4) and (4.5) become

1 o2 9 1 1 2 _
ayq8In” @ + 2a;, sin @ cos  + ay, cos” p = 0,

a3, sin® @ + 2a, sin @ cos ¢ + az, cos® p = 0. (4.10)
It is obvious that (4.10) has a nontrivial solution iff
R Zii Ziz > 0,02 = adl,. (4.11)
In this case
Y A% = al,sin® o + (aby + a?y) sin @ cos @ + a3y cos® (4.12)
It is clear that if aj, = 0 then Jg(&,0) is nonsingular iff
aio(“%z)Q + (aéo + a%o)a%ﬂb + a%o(ab)Q # 0 (4.13)

if aj, # 0 then Jg(&,0) is nonsingular iff
aio(ab + 0)2 + (aéo + a%o)ah(aiz +o)+ a%2(“i1)2 # 0 (4.14)
(iv)  Assume that (£,£° # 0) is a root of ABE. From ABE we can obtain
(711 8in% 0 + 2715 sin  cos @ + o, cos® @) sin® f
+2(720 sin @ + ya0 cos p)sinf cosd = 0. (4.15)
If

P = =72 — 11722) > 0, (4.16)
combining(4.15),(4.4),(4.5) we obtain

po sin® ¢ + py sin® p cos © + p; sin® p cos? P+
p3sin @ cos®  + pycost o =0 (4.17)
where

Po = 4aj 7ty + afe1n — 4710711010

P = 8ajy¥ip + 8aiy710720 — 8ajgy10712 — 4y12(@50710 + aigy20) + 411712600
P2 = 16“%2’710’720 + 46&1’7220 + 4@2’7120 - 4’712@0’712

—4agyy20m11 — 8(710a30 + V20a10) Y12 + 4ade Y1z + 2650711712

ps = 8ajy¥sp + 8710720019 — 4(V10G30 + V20010) Y22 — 8712G30Y20 + 4agy V12722
P4 = 4“%27220 - 4’720’7226‘%0 + a(lJo’Y222

If po # 0 then (4.17) has four roots.
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5 The Case of Degeneration

In this section, we consider the degenerate case. We need the information from
a high order derivative of G((u, A) at (ug, Ag). To do that, differentiating (3.1)
three times with respect to s and evaluate at s = 0, we obtain
DyGlo 1 (0) + DyGo A (0) = =3(qi;€' + g€ 1° + qoin’ + q00E"n°)
— ikl € " = 3qijo € — 3qioot €% — qooot°€°°  (5.1)
where
(0) = €'@i + 0, (0) = n'i + 1’0 (5.2)
and £° = ).\(0), n° = )\(0) Let ¢ =) (0). Taking the inner product of (5.1) with
Uy we get
i€ E 4 3o €0 + 3afyo€ €0 + agget €"E°
+3(a € + aio(€n° + ') + aget’n’) + d*c =0 (5.3)

n'n+n°n° =1 for RBP (5.4)

n'n=1 for LP (5.5)

Equations (5.3)-(5.5) with ABE or LPBE are the bifurcation equations of the
degenerate case.
Set

A(¢) = (aszfjfl)w‘lo(f) = (afjofj)
A% = (afy), A = {afyo}, V¢ e R™, € € R

Then (5.3)-(5.5) can be rewritten as
A(E)E + BEAD(E)€ + 3E0L0 A + 06060 A
3(A(En + nPA°% + 2A%) + A%¢%0) =0 for RBP (5.6)
6+ =L+ =1
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A(E)E+3A(n +dc =0
{ e = 1y =1 for LP (5.7)

The Jacobian matrices of (5.6) and (5.8) are denoted by
jﬁ = [Jij]i:174,j:1j3jL = [jij]i,jzljg (5.8)

where

Ji1 = 3(A(E) + 200 A°(E) + A + A(n) + n°AY),
Jiz = 3(A(€) + € A°),

Jia = B(AUE)E + 260AME + OG0 AM - A% 4P A),
J14 - 31405 —|— 3501400,

(5.9)

Tor = 267, Jpy = 0, Jp3 = 26°, a4 = 0,

J31 = 0,J3 = 20T, Jag = 0, J34 = 2n°;

Jin = 3(A(€) + A(n)), Jiz = BA(€), Jis = 4, (5.10)
J21 = 2§T7 J22 = 0, J23 = 07

Ja1 = 0,059 = 207 Joz = 0.

For example, consider the nonlinear elliptic boundary value problem

Au+Af(u)=0 inQ=10,1] x[0,1]
{ u=>0 on 0N} (5-11)
Assume that f(u) satisfies
F(0)=1,f"0)<0. (5.12)

Let X = Hj(Q),a(u,v) = (Vu,Vv) Vu,v € X. The linear operator 17" : g €
L*(2) = Tg € X is defined by

a(Tg,v) = —(g,v) Yve X (5.13)
Problem (5.11) can be expressed by

G(u,A) =u+ AT f(u) =0. (5.14)
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The mapping G : X x R — X is defined well and smooth.
The singular set Sg of (5.14) on {(0,A); A € R} is

So = {(0,20), 00 = (p* + ¢*)m, (p,q) € N x N}.
Simple calculation yields

DGy =1+ XI,D\Go=0,D,,Gqg =0,
DuuGo - 0, Du)\Go - T, D,\/\)\Go - 0, (515)
DuuuGO = )\Of///(O)Ty Duu)\GO = 07 Du/\/\GO = 0.

The eigenfunctions corresponding to A\ are given

e(z,y) = 2sin prasin gmy W(pg) € N x N

Sz, y) = 2sin gma sin pry
We take Ay = 657 as an example, then

(ph(h) = (871)7 (P3,CI3) = (774)
(P2,92) = (178)7 (P4,Q4):(4a7)-

. The four eigenfunctions are
e1(x,y) = 2sin 8w sinmy, @s(x,y) = 2sin Tra sindmy,

wa(z,y) = 2sinmasin8ny, @4z, y) = 2sindmra sin Tmy. (5.16)

Elementary calculation shows that

afj:O,algozo,afO: _/\2_05ik7 i, 5,k =1,2,3,4
aly = f"(0) < wipjpr, x>
1

9
a}lcll = ‘1522 = ak§33 = @344 = Z_f/”(o) _
" y N
pij = G = g = gy =y = aje = f7(0) k#1# (5.17)
afﬂ =0 otherwise.

Bifurcation equations become

30k’ + a0 =0
(€7 + (@7 + (@ + (€ =1 19
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((0), Ag) is LP from (5.17),(5.18) and we have
51[3770 + (%({:1)2 + 252{:3 + 25354 + 25254)f”/(0)] — 07
52[3770 + (%({:2)2 + 251{:3 + 25154 + 25354)f”/(0)] — 07
53[3770 + (%({:3)2 + 25251 + 25154 + 25254)f”/(0)] — 07
54[3770 + (%({:4)2 + 25152 + 25153 + 25253)f”/(0)] — 07
(E)2 + (E2)2 + (€3)2 + (€42 = 1.
6 Detection of a singular point
We consider
B D,G(s) D\G(s)
o(s) = det ( i (s) )\(5) > . (6.1)
By using lemma 3 we obtain
o(s) = )\(3) det(D,G(s)) — ’l.LT(S)(DuG(S))*D/\G(S), (6.2)
where
D,G(s) = D,G(u(s), A(s)).
(D,G(s))* is the adjoint matrix of D,G(s). On the other hand,
D,G(s)i(s) + Dy\G(s)A(s) = 0. (6.3)

If )\(3) # 0, multiplying both sides of (6.2) with )\(s) and combining (6.3) we

obtain
A(s)o(s) = [Ms) 2 det(DyG(s)) + @T (DL G(s))* DyG(s).1u(s).
Taking lemma 3 into account we derive
A(s)a(s) = (JA(s)]* + [a(s)]*) det(D.G(s))- (6.4)

It is obvious that A(s)o(s) and det(D,G(s)) have the same sign. On the other
hand,
140 2
€% + o(s?) for RBP
_ 2
Als) = Ao+ { %T}SQ + o(s?) for LP
ic0
: = for RBP
_ 2
Als) = { ns + o(s?) for LP
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This means that )\(3) will change sign passing through s = 0 for LP and do
not so for RBP. Consequently, we conclude

Theorem 3 Suppose (ug, Ag) be a singular point of (1.1).(€,£%), (€, n) are the
root of ABE and LPBE respectively.

If €2 = A(0) # 0 for RBP, then o(s) and det D,G(s) will change or do not
change their sign passing through s = 0 simultaneously.

If n # 0 for LP,then one of o(s) and det(D,G(s)) will change sign passing

through s = 0 and another one do not so.

By applying Kato’s perturbation theory of eigenvalues, D,G(s) on the so-
lution branch in the neighborhood at (ug, Ag) has an eigenvalue p(s) with m
multiplicity (algebraic and geometric) continuously depending on s without
changing multiplicity (there exist a exceptional point with respect to s for a
special kind of D, Gy such that multiplicity will be change (see [Kat76],Chapter
2),we do not consider this case).

Let ¢;(s) be associate eigenfunctions
DLG()gi(s) = pls)or(s) i= 1,2 m, (6.5)
with
p(0) =0,0;(0) =¢; t=1,2,--- m. (6.6)

Differentiating (6.5) with respect to s and evaluating at s = 0 we obtain

DunG(s)is)i(s) + DrG(s)A(s)pi(s) + DuGls)i(s)
= pls)pils) + pls)i(s).

Hence we have

Sy — Dy Got(0)p; — D, Gopi® + p(0)p; for RBP
DuGogi(0) = { — Dy Got(0)p; + p(0)¢; for LP.
(6.7)
Taking the inner product with ¥, we derive that
afjf]: + ak e = p(0)d for RBP,
af]-f] = p(0)dx; for LP
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i.e.

A(€) + €°A° = 5(0)I  for RBP (6.8)

A(€) = p(0)] for LP (6.9)

where (£,£°) and (€, n) are the root of ABE and LPBE respectively.
It follows that

det(A(€) + €°A°%) = p(0)™  for RBP (6.10)

det A(€) = p(0)™ for LP (6.11)

Hence,we can conclude that A(£) + £°A°(for RBP) and A(¢)(for LP) are non-
singular iff p(0) # 0. Since p(0) = 0,p(0) # 0 means p(s) will be change sign
passing through s = 0.

Theorem 4 On any solution branch of (1.1) generated by an isolated root
(€,€°) or (€,m) of ABE or LPBE with:

£ #+0  for RBP
n#0 for LP

we can conclude that if m is odd p(s) det(D,G(s)) will change its signs passing
through (ug, Ao), if m is even then sign of det(D,G/(s)) will not change.
Proof Since (£, %), (€, n) are isolated root of ABE or LPBE respectively.
A(E)+E°A% A(¢) are nonsingular according to theorems 1 and 2 . Therefore
(6.10), (6.11) show that p(s) will change sign. Because other eigenvalue of
D, Gy do not change its sign passing through s = 0, the sign of det(D,G(s))
depends on p™(s) only. If m is odd, the sign of det(D,G(s)) changes passing
through (ug, Ao), if m is even it does not change. The proof ends. a

Combining Theorem 3 and 4 we conclude

(1) For RBP.if £2 £ 0, o(s) change sign passing through s = 0 if m is odd,

it does not change sign passing through s = 0 if m is even.

(2) For LP, if n # 0,then o(s) does not change sign passing through s = 0
when m is odd, o(s) changes sign through s=0 when m is even.
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