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Abstract: = We present in this technical report a simple yet efficient algorithm
for stabbing a set & of n axis-parallel boxes in d-dimensional space with ¢ points
in output-sensitive time O(dn + nlogc) and linear space. Let ¢* be the minimum
number of points required to stab S, then we prove that
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where 2™ is the rising factorial power: 2™ = [[7;'(z +4) = ("™ !). Since

finding a minimal set of ¢* points is NP-complete as soon as d > 1, we obtain a
fast precision-sensitive heuristic for stabbing S in output-sensitive time and linear
space. In the case of congruent or ‘constrained’ isothetic boxes, our algorithm reports
respectively ¢ < 2971¢* and ¢ = O(c¢*) stabbing points. Moreover, we show that the
bounds we get on ¢ are tight and corroborate our results with some experiments.
We also describe an optimal output-sensitive algorithm for finding a minimal-size
optimal stabbing point-set of intervals. Finally, we conclude with insights for further
research.
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Un Algorithme Efficace pour Percer un Ensemble de
Boites en Grandes Dimensions

Résumé : Nous présentons dans ce rapport de recherche un algorithme simple et
efficace pour percer un ensemble S de n boites isothétiques de dimension d. Notre
algorithme calcule un ensemble de ¢ points percant S en temps sensible & la sortie
O(dn + nlogc) et espace linéaire. Si ¢* est le nombre minimal de points requis pour

. xd xd—1 (logn+1)d_1 -
C (4 k m
percer S, alors nous montrons que ¢ < min{ < + o — 1w }, oux
. . . . mo_ m—1 N (z+m—1 .
est la puissance factorielle croissante: ™ = [[7 ' (z + i) = (7" *). Puisque

trouver un ensemble minimal de ¢* points est un probleme NP-complet dés que
d > 1, nous obtenons une heuristique adaptative efficace pour percer S en temps
sensible & la sortie et espace linéaire. Daus le cas de boites isothétiques congruentes
ou de boites isothétiques contraintes, notre algorithme renvoie au plus ¢ < 247 1¢*
et ¢ = O(c*) points. De plus, nous prouvons que les bornes obtenues sur ¢ sont
précises et corroborons nos résultats théoriques par des performances pratiques. Nous
décrivons également un algorithme adaptatif optimal qui calcule un ensemble de taille
minimale de points percant une famille d’intervalles. Finalement, nous concluons sur
les aspects ultérieurs de ce travail.

Mots-clé :  Géométrie algorithmique, Algorithmes adaptatifs.
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1 Setting the problem

Let S be a set of n d-dimensional geometric objects of constant descriptive-size. We
say that S is stabbed by k points if there exist k£ points so that each object of S
contains at least one of these points. Thus, S can be immobilized under translation
with k& points. Given a set S as above, finding the minimum k& so that S can
be stabbed by k points has been shown to be NP-complete [FPT81| as soon as
d > 2. Therefore this problem is untractable for small values of n (say n ~ 20 and
d = 2 — See section 3.4). This problem is also referenced in the literature as the set
covering problem (or dually as the hitting set problem) where it is transformed into
an optimization problem by means of matrix formulations. Let V = {S;|i € I} be a
collection of v = |V| = |I| subsets of 2° for a set S of n elements. We want to find a
minimal covering collection, i.e. a sub-set I’ C I of indices so that S = |J;c;» S; with
|I'| as small as possible. In other words, we want to minimize e/ x x = |I’| subject
to Az > e for x a {0,1}"-vector, e = (1,...,1) and A a (v X n)-binary matrix, each
column of which is the incidence vector of one of the sets I;, 1 <i < w.

Some heuristics that give approximation of the minimum stabbing number ¢* have
been given. V. Chvital [Chv79| gave a polynomial time (cubic) greedy algorithm to
find a cover set of size ¢ such that ¢ < ¢*(1+1log k) where k is the maximum column
sum (k < n). D.S. Hochbaum [Hoc82] proposed another cubic algorithm with a
cover set of size at most ¢*f, where f is the maximum row sum. Interestingly,
Bellare et al. [ BGLR93] showed that no polynomial time algorithm can approximate
the optimal solution within a factor of (§—e)log |S|, unless NP C DTIM E[n'°8°&"],
where ¢ > 0. This result has been recently succesfully extended to the best possible
log n bound by U. Feige [Fei96].

One major drawback from the computational geometry point of view is that these
methods do not consider geometrical objects nor their shapes. (Although it has been
shown that the intersection graph? of d dimensional convex objects can be arbitrary
as soon as d > 3 [Weg67|). This means that we have to supply matrix A. One way to
proceed is to consider from the whole arrangement of the objects all the sets defined
by vertices. More precisely, to each vertex we associate the set of objects containing
it (thus, the size of the matrix is O(n?) x n and these algorithms require O(n4+2)
time and O(n*!) space).

! More precisely, Fowler et al. [FPT81] showed that covering a set of points with fixed-size squares
(the so-called BOX-COVER problem) is NP-complete as soon as d > 1.

2The intersection graph of a set of objects is defined as follows: we associate to each object a
node and there exists an edge between two nodes iff the corresponding objects intersect.

RR n -~ 2854



4 F. Nielsen

D.S. Hochbaum and W. Maass [HM84] considered the case of geometrical objects
and give polynomial approximation scheme (note that no fully approximation scheme
exists unless P=NP — we refer the reader to the comprehensive text book [GJ79]
for a complete explanation). Their method is innovative since it is general and takes
into account the nature of the objects. It should be noted that their method applies
only to geometric objects. Unfortunately, the running time of these algorithms are at
least cubic and thus cannot handle a huge amount of data. Moreover, their algorithm
considers sets of identical convex objects T, or dually covering sets of points with
convex translates T*. (T* is the centrally symmetric convex object of T').

Many applications coming from VLSI design, image processing and point loca-
tion have to deal with large inputs [TF80]. Recently, H. Bronninman and M.T.
Goodrich [BG94] investigate these problems using the Vapnik-Chervonenkis dimen-
sion (VC-dimension). They obtain precision-sensitive set covers if the VC-dimension®
is bounded as it is generally the case when considering geometric objects. Their al-
gorithm uses nontrivial concepts (and subroutines) such as set systems, e-net, net
finder, ... (see also [Mat91]) and still relies on the fact that matrix A is computed
beforehand.

In this paper, we are even more restrictive by considering the case of axis-parallel
boxes in high dimensions (that are often considered in VLSI design, image processing
and point location in d-dimensional euclidean space); for example, we are given a
set of points in E¢ and some hypercube H,;. We want to associate to each point
a hypercube that contains it so that we minimize the number of hypercubes. In
other words, we want to cover the point set with a minimum number of patches,
i.e. translates of Hy. Throughout the paper, the boxes are considered to be closed,
i.e. points on the boundary of box B stab B. Our main algorithm, described in
section 3, will not require to compute the arrangement of the isothetic boxes*. Note
that, we do not consider d as a constant in the sequel.

We give in this paper a simple algorithm and study its approximation factor®.

This fast algorithm may be useful in many applications. More precisely, we
give a truly output-sensitive O(dn + nlog c)-time algorithm that computes a set of
¢ points stabbing the set of n d-dimensional boxes. Interestingly, we show that

. d wd—1 log n4+1)3—1
¢ < min{Sy + —(Cd_l)! —1,c¢* (logn+1)77 Og(z_l))!

rising factorial power: ™ = [[7; (z +14) = (

} where ¢* is the optimal value and ™ is the

r+m—1

0 _
™ ) and z” = 1. Moreover, we

3The VC-dimension of d-dimensional isothetic boxes is 2.

*Computing the arrangement of a set of n isothetic boxes cost O(n?) time and space [PS85].

Sa is an approzimation factor of an algorithm A if ¢ < ac® where ¢* is the optimal value and ¢
is the value delivered by algorithm A.

INRIA



Fast Stabbing of Boxes in High Dimensions 5

exhibit a generic example where this bound is matched. We can refine the complexity
analysis to show that ¢ < 297'¢* and ¢ = O(c*) when dealing respectively with
congruent isothetic boxes and ‘constrained’ boxes.

The paper is organized as follows:

In section 2, we consider the case of a family of n intervals and give an optimal
O(n(log c* + 1))-time algorithm that gives an optimal stabbing set of ¢* points. We
use this basic case in order to devise another algorithm and analyze its behavior.

In section 3, we enhance the algorithm in higher dimensional space and study
both its running time and its approximation factor. We show that the given bounds
are tight. We refine the analysis for sets of congruent isothetic and constrained
isothetic boxes. We corroborate our theoritical results with experiments.

Finally, in section 4, we conclude and give several guidelines for future research.

2 An optimal algorithm for stabbing intervals

In this section, we consider the case of intervals, i.e. 1-dimensional boxes. Let S be
a set of n intervals.

2.1 Principle

Finding the minimum value ¢* so that S can be stabbed with ¢* points is easy and
already known in [DG82, HM84|. Consider the interval I that has the rightmost left
endpoint p. I must be stabbed by a point and clearly, the best place to stab it is on
the left endpoint p. We then remove all the intervals stabbed by p and loop until all
the intervals are stabbed. We thus obtain a minimal-size set of ¢* points that stab
S. A straightforward algorithm based on these facts has running time O(nc*) with
linear space. We show below how an adequate preprocessing can yield an optimal
output-sensitive algorithm in time ©(n(logc* + 1)).

Remark 1. In dimension 2 (and therefore in higher dimensions), the rectangle
R with the rightmost left edge is not necessary the one that has the topmost bottom
edge so that we cannot exhibit a rectangle R where we can easily a priori compute
the best place to pierce it.

Remark 2. Let b*(S) be the maximum size of any subset of pairwise disjoint
boxes of S. Clearly, ¢*(S) > v*(S). In the 1-dimensional case, the above algorithm
shows that ¢*(S) = b*(S) (which is not the case in higher dimensions). This property

RR n -~ 2854



6 F. Nielsen

is no longer true in higher dimensions. (For example, in dimension 2, we may have

(8) > $°(5))

2.2 Getting an output-sensitive algorithm

The methodology consists in grouping the intervals into groups and to preprocess
each group in order to answer efficiently queries [Cha95, NY95|. Typically, our
queries are of two kinds: “what are the intervals stabbed by a point p?” and “which
interval has the rightmost left endpoint?”. Moreover, we must be able to remove some
of these intervals at some steps. We use the interval tree of McCreight [McC80, PS85]
as the data structure for answering these queries. Assume we know an estimate c¢* of

. Then, we group the n intervals into [ %] groups of size at most ¢* and preprocess
each group into a static interval treeS for a total cost of o[ % 2] ¢* log ¢*) = O(nlog c*).
At some step 7, we find the rightmost left endpoint p; of the remaining set of intervals
and remove the n; intervals stabbed by p; from their corresponding groups. Thus the
total cost of this step is O(n; log c* + = log c*) (see [PS85] pp 352-355). Therefore,
the total cost of these c* steps is O(nlogc* + Zc"log c*) time since Zf;l n; = n.
If we only want to know if ¢* > p we can derive a O(nlogp)-time algorithm by
choosing ¢* = p and stopping the iterative process as soon as we have computed i =
mln{c ,p} stabblng points. Note that our algorithm works in time O(n(logc* + 1))
if ¢ < ¢* < ¢*“. Since we do not know ¢* beforehand we iteratively estlmate it by
squaring our current estimate. We start with any arbitrary value for ¢*, say c* = 2.
Thus, we obtain an O(Zﬂoglogc 1 n2') = O(nlog ¢*) time algorithm.

Since verifying if among n numbers k are distinct requires Q(nlogk) time on
the real RAM [KS86], it follows that this lower bound also holds for the stabbing
problem by reduction in linear time. Therefore, we obtain the following theorem:

Theorem 1 Given a set S of n intervals, there exists an optimal output-sensitive
algorithm that reports an optimal stabbing point set of size ¢* in optimal ©(n log c*)
time with linear space.

Remark. As a direct consequence, we obtain a ©(nlog c¢*)-time algorithm for
computing the union of a n-interval set S, where ¢* is the minimal number of points
required to stab S. Note that it is not possible to get an O(nlog C(S))-time algo-
rithm for computing the union of intervals, where C(S) is the number of connected
components of S. (We may have ¢*(S) = [§] but C(S) =1.)

5In this context, static means that we know beforehand the 2¢* endpoints of each group. We
only remove intervals and not add new ones to that data-structure.

INRIA



Fast Stabbing of Boxes in High Dimensions 7

Table 1: The table below shows the value of ¢ as a function of c¢*. We estimate c* by
c* = 22" For example, for 216 = 65536 < ¢* < 232, we set ¢* to 22*,

¢t = 4 16 256 65536 232 (10 digit-number)
i(cxr=2)=012 3 4

2.3 A fast algorithm and its analysis

One major drawback when implementing the previous algorithm is the preprocessing
step (or guessing step when we find a good estimate c~* of ¢*) that takes into account
only a few critical values, namely the values in {2%'|i € N}. (That is the width
22(22" — 1) of the i-th range, where the group size does not change, is rapidly
growing and therefore the preprocessing step becomes inefficient in practice). We
only make at most 4 guessing steps in practice — See Table 1.

Moreover, we have ¢* < ¢* < ¢*2 so that in the worst-case, we choose ¢* = ¢*2—1
in order to adapt our preprocessing in time O(n)log ¢*? = 20(n)log ¢*. This yields a
factor of 2 in the hidden constant. By drawing the graph of the complexity function,
we see that it is always under the graph of a function an log ¢* for some real a and
that the function is linear by intervals. The size of these intervals however grows
quadratically and explains the poor behavior in practice of that algorithm.

We propose below a very simple “divide & conquer” algorithm :

Basic case. If n =1 then choose the left endpoint of I € Z = {I} for piercing Z.

Recurse. Find the median m of the 2n endpoints and partition Z depending on
whether the intervals contain m (Z,,), are located to the left of m (Z;) or to
the right of m (Zy). Choose point m to stab the intervals of Z,,, and recurse on
Il and IQ.

Let ¢*(Z) denote the minimum number of points required for stabbing Z and
denote by ¢(Z) the number of points returned by the algorithm. Observe that 7
can be stabbed with a single point iff there are n left endpoints followed by n right
endpoints. Let z, and z,41 be respectively the n-th and (n + 1)-th smallest end-
points of the 2n endpoints. Then, we compute our median m = I’“LZA in linear
time [BFP*72].

Let us prove that ¢(Z) < 2¢*(Z) — 1.

Proof. We have:

RR n~°2854



8 F. Nielsen

oT) = c(Zm) =c*(Z) =1 if both Z; and Z, are empty,
|\ 1+4¢(T1) +¢(Zy)  otherwise.

We can modelize the running of the algorithm with a binary tree. Each node has
a subset of intervals Z,, and a point stabbing Z,,. Its left (right) child is Z; (resp.
7). Now, if 71 # 0 and Z, # 0 then we have at least two disjoint intervals. A leaf
of this tree is a set of intervals that are stabbed by a single point. Thus, the number
of stabbing points reported by our algorithm is the number of nodes of that tree.
The number of leaves of the tree is bounded by the maximum number b* of pairwise
disjoint intervals. Clearly, ¢*(Z) > b*. The tree is a strictly binary tree, i.e. each
internal node has exactly two children. Thus, there are b* — 1 internal nodes and
o(T) < 2b* —1 < 2¢(T) — 1.

The trick is to ensure that whenever Z; # 0 (resp. Zo # () then Zy # 0 (resp.
Z; # (). This comes from the fact that we have |Z;| = |Z3|.

Note that we can take m = x,, instead of m = %
result.

. We obtain the same

a

One may ask whether this bound is tight or not. We can prove the tightness
of this result by building a family 7 of intervals such that ¢(Z) = 2¢*(Z) — 1: Let
Z; = {[0,1],[5,3],[2,3]}. We have ¢(Z1) = 3 = 2 * ¢*(Z1) — 1. Then, we can
recursively set in the intervals [$,1] and [2, 3] another ‘scaled’ copy of Z; and so on,

. Thus, we are able to build a family Z of 3 x (2* — 1) intervals (for any 7 > 1)
so that ¢(Z) = 2¢*(Z) — 1 = 2! — 1. Indeed, we have by construction ¢*(Z;;1) =
ML)+ (L)), (L) = *(T)), (Ti) = e(Z}) and c(Zit1) = (Z;) + c(Z)) + 1 = 2¢(T;)
where 7] is a translated copy of Z; . The proof follows by induction on 3.

Let ¢(Z) denote the running time of the algorithm (n = |Z|). Then, we have:

HT) = {An if ¢(7) =1,
Bn+ t(Z1) + t(Z2) otherwise.
with A, B some constants. We can prove by induction on n that ¢(Z) < Cnlogc+Cn
where ¢ = ¢(Z) and C = max{A, B}.
Proof.
Clearly, if n = 1 then ¢((Z) = A < Clogc + C (note that ¢ = 1). Otherwise,
either t(Z) = An < Cnlogc+ Cnif ¢(Z) =c*(Z) =1 or

t(Z) < Bn+ Cn'logc; + Cn'log cy + 2070/,

INRIA



Fast Stabbing of Boxes in High Dimensions 9

with n’ < % and ¢; + ¢ +1 = ¢. Thus,

t(Z) < Bn+ CE max {loge; + logea} + Cn.
C

c1tc2=

The last inequality is maximized for ¢; = cg < 5 since the logarithmic function
is concave’. Therefore, we have:

HZ) < Bn+ Cnlogc— Cn+ Cn < Cnlogc+ Cn.

Theorem 2 Let S be a family of n intervals and denote by ¢* the minimal number
of points required to stab S. Then, there exists a simple output-sensitive algorithm
that computes a set of ¢ points stabbing S in time O(nlogc) and linear space, with
c<2c¢* — 1.

Remark 1. If we pick a randomly chosen endpoint x of Z and set m = z then
we obtain ¢(Z) < (1 4 [logn])c*(Z) instead of the output-sensitive bound ¢(Z) <
2¢4(7) — 1.

Remark 2. We may get a (truly) fast algorithm that reports an optimal stabbing
point set by first running the above approximate algorithm and getting a set of ¢
points so that ¢ < ¢ < 2¢* — 1. In a second step, we choose ¢* = ¢ and run
the optimal algorithm described in section 2.2. Thus, the graph of the complexity
function of this new algorithm is not anymore linear by intervals.

Remark 3. Although the greedy algorithm [Chv79| performs generally a H,, factor
from the optimum (H, = Y7, 1 and H, <1+ logn), for the case of intervals we
can show that it will return at most 2¢* — 1 points [Nie96]. Moreover, there is a
family of intervals where the greedy algorithm attains this worst-case bound.

3 The algorithm in higher dimensions

3.1 Principle

The “divide-and-conquer” strategy holds in any dimension and for any kind of objects.
We show in that section how we can get results on the approximation factor when
dealing with axis-parallel boxes. Let S be a set of n d-dimensional boxes. Each

"Clearly, if f is a concave function then we have f(a) + f(b) < 2f(2E2).

RR n~°2854



10 F. Nielsen

box can be viewed as the intersection of 2d halfspaces. A facet f of a box B is a
(d — 1)-dimensional box of the boundary 0B supported by a hyperplane Hy. If Hy
is defined by an equation of type x; = [ for some real | then we say that f is a
facet of type i. In other words, a facet of type ¢ is perpendicular to the i-th axis.
A box B can be viewed as the ordered cartesian product ngl[ri_ (B),r;(B)] where
[r7(B),r;] (B)] is the range of B along the i-th dimension. We say that box B is
to the left (right) of x; = 1 if 7 (B) < I (resp. 77 (B) > 1). Let X@ be the set
of values defining the facets of type d, i.e. X@ = {z|3 B € S such that 7 (B) =
zor ) (B) =x}.
We describe below the algorithm (see also Figure 1):

Intervals (Basic case). If S is one-dimensional then apply the optimal algorithm
of section 2.2 for piercing this set of intervals.

Partition. Let =\’ and :vgﬂ)_l be respectively the n-th and (n + 1)-th greatest

(d) ()
elements of X(@, Compute the ‘median’ m = % of X(@ in linear

time [BFP*72|. Partition S according to the hyperplane H,, : (x4 = m);

e Let S; be the set of boxes that do not cross H,, and are to the left of H,,.

e Let Sy be the set of boxes that do not cross Hy,, and are to the right of
H,.

e Let S, be the set of boxes intersecting H,,.

Marriage. Stab the boxes of S,,, by piercing the set of (d — 1)-dimensional boxes:
S/, ={BNH,|BE€S,}

Conquest. Stab recursively S; and Ss.

Let t(S) and ¢(S) be respectively the running time of the algorithm and the
number of stabbing points delivered by this algorithm. Sometimes, when we want to
specify the dimension d of S, we put in subscript of these notations a d. Thus, t4(S)
and cq(S) denote respectively the running time and the output size of our algorithm
for a set of d-dimensional isothetic boxes S. Denote by ¢*(S) the minimum number
of stabbing points of set S. We study both the approximation factor and the running
time of the algorithm. In the sequel, d is not assumed to be a constant.

Our algorithm relies on the following simple facts:

INRIA



Fast Stabbing of Boxes in High Dimensions 11
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Figure 1: Partition of § into three subsets depending on their location with respect
to the hyperplane H,, : (x4 = m). We denote by S/, the set of (d — 1)-dimensional
boxes S, N Hy,.
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12 F. Nielsen

Monotonicity. For any O, ¢*({O} US) > ¢*(S).
Additive rule. Let 7; and 7, be two subsets so that VI, € 71, VI, € Ty, [1 NI, = 0
then C*(Il UIQ) = C*(Il) + C*(Ig).

Cutting rule. Let S be a set of boxes and H a hyperplane of type ¢, with 1 <17 < d.
Then, ¢*(Sy) = ¢*(S}) where Si; = {BNH|B € §} and Sy = {B|BNH # (}.
This rule seems to be appropriate only for isothetic d-boxes.

We have:
c (5) _ Cd—l(Sm n Hm) if S =85 = (Z),
BT 7\ cac1(Sm N Hy) + ca(S1) + ca(Sz)  otherwise.

Let us prove by induction on the lexicographically ordered vector (d,n) that
C*(S)d C*(S)d_l

¢S =g+ oy — L
Proof.

For d = 1, section 2.2 describes an optimal algorithm so that ¢(S) = ¢*(S) <
c*(8) +1 — 1 since 2° = 1 by convention (finite calculus rules may be found
. . a a1
in [GKPY4]). If |S| = n = 1 then ¢(S) = ¢*(S) = 1 < g + gy — L.

Otherwise (d > 1 and n > 1), there are two cases depending on whether S1,82 =
(0 or not (recall that |Si| = |S2|).
If S = S3 = 0 then we have:
e N I (! !
!

<Gt ey STa taoo b

since (c*(‘SHd;(ld)(_cI)(st*z) > 1 (recall that ¢*(S) > 1).
If S1,8 # 0 then we have:

Cd(S) = Cd(Sl) + Cd(SQ) + Cd_l(Sqln),

«(S) <

el eemt el TeewT (@@ eoT)

with 1 < ¢*(81),c¢*(S2) and ¢*(81) + ¢*(S2) < ¢*(S) since ¢*(S),) = ¢*(Sm) < ¢*(S).
Since the rising factorial power is convex, the right hand side of the last inequality

INRIA



Fast Stabbing of Boxes in High Dimensions 13

is maximized® for ¢*(S1) = 1 and ¢*(Ss) = ¢*(S) — 1 (or the other way around). It
follows that:

c*(S) —1)¢ *(8) —1)%71 STt o+ (8)T? 14 14-1
ts) <! (c)i' o ((d)—1)3 +((d(—)1)' * (;—)z)v) Sta Tty
« d—1 * d—2
C(S)S&(c*(S)—l—kd)—lrc(S) (c(S) -1+d-1) -1,

and therefore

The tightness of the analysis will allow us to derive a collection of examples in

section 3.2 such that ¢(S) = C*(d‘?)d + C*(Ss_)f)i!l -1

Remark. For small values of ¢*(S) we get an approximation factor which is
polynomial in d. As an example, consider ¢*(S) = 3 then we have ¢(S) < d(d + 2)
(the approximation scheme of Hochbaum and Maass [HM84] has an exponential
dependence in d).

However, when ¢*(S) is large (say ¢*(S) > dné) we have the trivial bound ¢(S) <
n. It does not reflect the dichotomy process. Therefore, we study the relationships
between ¢(S) and |S| = n.

Let us prove that:

(S) (logn + 1)d_1

c(8) < 7

(%)

Proof.

Recall that we denote by c¢4(S) the number ¢(S) of stabbing points returned by
our algorithm for a set of d-dimensional isothetic boxes S (this is an abuse of notation
that might however help the reader when checking the proofs).

®Let f(-) be a convex function defined on range [a,b] then max,<.<s{f(c)} < max{f(a), f(b)}.
Let gm(z) = 2™. gm(z) is convex on [0, +o00) for m > 0. Define f(z) = gm (z)+gm(c—2)+gm—1(z)+
gm-1(c—z) for 1 <z <c—1. f(z)is convex on [1,c — 1] and therefore maxi<.<.—1{f(2)} < f(1).
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We do the induction on the lexicographically ordered vector (d,n). If d = 1
then section 2.2 gave an optimal algorithm, i.e. ¢(S) = ¢1(S) = ¢*(S) and (x) holds
trivially since 20 = 1 and 0! = 1. If n = 1 then ¢(S) = ¢*(S) =1 < 1 x %.

Otherwise (d > 1 and n > 1), we distinguish on whether 1,82 = 0 or not. In

the former case, we have:

ooy logn+ 1) - (logn 4+ 1)
c(8S) = ca—1(S) < *(S) @2 < c*(S) a-1
since W > 1 with equality for n = 1.

In the latter case, we have:

Cd(S) = Cd(Sl) + Cd(Sz) + Cd—l(S;n),
: _ n r\ * (108'”-1-1)ﬁ
with |S1] = [S2| £ § and ¢cq—1(S;,) = ca(Sm) < ¢ (S)W. Thus, we get

—2
Cd(S) < (C*(81)+C*(82))W+C*(8)%7

since ¢*(S1) + ¢*(S2) = ¢*(S1 U S2) < c*(S).

log n + 1)m

c*(S)( @= (logn+d—1),

c(8) <
(S) (logn + 1)d_1

c(8) < BT

Let us now analyze the time spent by this algorithm for reporting the c4(S)

stabbing points.
We have:

1a(S) = 0 if § =0,
d | An +tg_1(S)) + ta(S1) + ta(S2) otherwise.

INRIA



Fast Stabbing of Boxes in High Dimensions 15

with A some constant related to the implementation of the partition scheme [BFP*72]
(e.g., a typical value for A is 4 — see [BFP'72]).

Clearly, a trivial bound we can get is ¢4(S) < Adn(2¢(S) — 1):

We prove below by induction on the lexicographically ordered vector (d,n) that
ta(S) < A(nlog c(S) + dn) (x).

Proof. If d = 1 then we proved in section 2.2 an O(nlogc(S) + n)-time algorithm.
Therefore, ¢1(S) < Bn(logc(S) +1) < An(logc(S) + 1) for A > B. If n = 1 then
tq(S) < Ad and (%) holds trivially.

Otherwise (d > 1 and n > 1), consider the two cases depending on whether
81,82 = 0 or not: In the former case, we have t4(S) = t4_1(S) + An. Thus, we get

ta(S) < An((d —1) +log c(s)) + An < An(d + log «(S)).
In the latter case (S1,S2 # 0) , we have:

ta(S) = An 4 t4(81) + t4(S2) + ta—1(S},),

with 1 < |81, |Sa| < 5, [S1]+ S| +[S),| = n and ¢(S) = ¢(S1) + ¢(S2) + ¢(S),). Let
n' =181 = [S2| (|S),| =n —2n'). Hence,

ta(S) < A (n—i—n' log ¢(S1)+n'd+n'log ¢(Ss)+n'd+(n—2n") log c(S,'n)—l—(n—Zn')(d—l)) ,

ta(S) < A(nd +2n' + n/(log ¢(S1) +log ¢(S2)) + (n — 2n') log C(S,'n))

But log ¢(S1) + log ¢(S2) is maximized when ¢(S1) = ¢(S2) < C(f).

Therefore, we get

ta(S) < A(dn + 21 log ¢(S) + (n — 2n') log c(s;n)),

with ¢(S),) < ¢(S).
Finally, we get t4(S) < An(d + log ¢(S)).

Note that when ¢(S) = ¢*(S) = 1 then our algorithm requires O(nd)-time (this is
easily checked). Let N = O(nd) denote the input size of our set S of n d-dimensional
boxes. Then, our algorithm runs in O(N + % log ¢)-time and linear space.
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Theorem 3 Let S be a set of n d-dimensional boxes. Denote by c* the minimum
number of stabbing points of S. Then, there exists an output-sensitive algorithm that
reports a set of ¢ stabbing points of S in time O(dn + nlog c) with linear space whose
wd Wy ot} =T

approrimation c is bounded by min{% + % -1, c*%}.

Remark 1. It would be interesting to analyze probabilistically the algorithm under
the uniform distribution of the isothetic d-dimensional boxes [Cof88]. Note that if
the stabbing points are split into two balanced groups with respect to the hyperplane

H,,, at each stage s of the algorithm, then we get ¢(S) < ¢* (5)%. We
expect in practice far better results. This is mainly due to the fact that we maximize
all the terms in the complexity analysis (e.g., ¢(S},),c(S1), ¢(S2)) — See section 3.4.
Indeed, it is unlikely that ¢*(S),) = ¢*(S).

Remark 2. Extending this approach to the case of a family of n > 2 d-dimensional
k-oriented objects (for a fixed constant k), we get an O(dn + nlog ¢)-time algorithm
which is however not anymore precision-sensitive (this is mainly due to the fact
that the Helly number of these families is d + 1 and not anymore 2 as for the case
of parallelotopes, i.e. axis-parallel boxes). In that case, we can prove that ¢ <
(klogmn + 1)4-1.

Remark 3. As soon as we consider d — boxes with d > 2, greedy algorithm may
yield a H,, factor from the optimum [Nie96].

3.2 A bad example

Let us now analyze the tightness of the upper bounds. In that section we assume
w.l.o.g. that m = x%d) (see the algorithm in section 3.1).

Consider first the planar case. We want to exhibit an example showing that our
algorithm reports Q(min{c*?,1 4 c*logn}) stabbing points for a family of planar
boxes (we proved, for the planar case, that ¢(S) < min{c*(S)% - 1,c(S)1+
logn)}). In the following, we define a box by its S.W. (leftmost bottommost) and
N.E. (rightmost uppermost) corners.

Let E. be a family of boxes requiring exactly ¢* points to be stabbed. Denote
by |E.«| its cardinality, i.e. the number of boxes of E.-. We use a parameter b in
order to build recursively E.« (initially, b = 1 and Vb, b', |E(b)| = |E+(b')|, in other
words |E.(b)| does not depend on b).

Define E.-(b) recursively as follows (Figure 2 depicts the construction of E.«(b)):

o El(b) = [(07 %)7 (b7 %)]

INRIA
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! 1 1 1 1
! 1 1 1 1
! 1 1 1 .
1 ' |Ecx_1| 4 ¢* — 2 copies of B
R v [
. . ¢
: Ees-1(3) : 1 1 1
/:/_\ 1 1 1
1 1
Ber—1 : : : ¢ —1
1 1 1
' 1 1
! 1 1 1 1
: ***** i B : 1 1
1 Bi : ) : :
| I [ V 1 |
! 1 1 1 1
1 1 1 1
. ! ! '
I . . .
‘median’ line
Figure 2: Building a family E.-(b) of 2-boxes so that c(E.x (b)) = Q(c*(E.(b))?).
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o |Ecx_1| + ¢* — 2 copies of box B = [(?f,c — 1), (b,¢* + 7)] union {B; =
[(0,i— %), (53,i+ $)]|1 <i < c*} union box B' = [(§,c* — 1), (b ¢* + 1)] union
the boxes resulting from Eq«_1(2) (note that b becomes 2 at this stage).

Clearly, E.«(b) can be stabbed with a minimal set of ¢* points: {( i, m)\l <

1 < c*}.

But our algorithm will report exactly (Zfil i)t —1= w—kc* —1=9Q(c*?)
points.

Note that in order to design this example, we need at least n = 2 ~! boxes.
(Indeed, we have |Ecx| = 2|E+_1| + 2(¢* — 1) and E; = 1). So that we also check
that ¢ < ¢*(1 + logn).

We can also build in hlgher dimensions, using the same principle, a family S of
boxes so that ¢(S) = Q(=; (8) )- Recall that a d-dimensional box B can be viewed as
an ordered product of d ranges B = [a1,b1] X...X[ag, bg]. Given a (d—1)-dimensional
box B’, we can extend it to a d-dimensional box B = [a1,b1] X B'.

Define the set Egii)(b) of boxes as follows:

« BY0) = (0.3, ). (0§, })] for any d.

. |E£f)_1| + |E(d_1)| 1 copies of box B = [(32,..., 3 ¢* — 1) (b,...,b,c* + 1)
union [0, ] X E(d 1)( ) union the box B’ = [(% ey %,c* — 5, (b,... b+ 1))

union Eﬁf)_l(g).

Clearly, we have \ng)| = 2(|E§f71)| + \ng)_ﬂ)
ng)(b) can be pierced with an optimal set of ¢* points: {(z, 4C*3_bi+1 eees g L <

i < c*}. However, our algorithm will return Q(%) stabbing points (using Euler’s

summation formula). More precisely, we can prove by induction on d that our algo-

rithm will return exactly ¢ = d, +1 ;dl), 1 stabbing points.

Proof. We do the proof by induction on the lexicographically ordered vector (d,n).
If d =1, cleary ¢(S) = ¢*(S). If |S| = n =1 then ¢(S) = ¢*(S) = 1. Otherwise,
following our algorithm we have:

(BED) =1+ (BD )+ (B,
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Plugging our inductive hypothesis, we get:

d 1y, d—1 _1y.c—2
@) _ 14 CEL) B e EEDT emE )
e/ = d! (d— 1) (d— 1) (d—2)! ’

using c*(EEf)) = ¢* for any k > 1, we get

d xd—2

(B = (c+d—1) (c+d—2)—1.

L+
(d—1)!
Setting back ¢* = c* (Egii )), we finally obtain the desired result:

d!

d d—1
(ED) (BT

oB) = ——+ d—1)

— 1.

a

We can also check that ¢ < C*M since 2¢° 1 < |E(d)\ < 4 (more

(d-1)!
precisely |E |— 0(2¢" ¢*4=1)).

Thus, when the dimension d is fixed, we have exhibited a family of boxes such that
the algorithm gives an approximation that matches the upper bound < —I— d* dl), - 1.

We can also provide the same kind of scheme to build a family & of unit hypercubes
* d
so that ¢(S) = Q(© Eﬁ) )

3.3 Congruent or Constrained boxes

The previous section exhibits an example where our algorithm reaches its worst-case
performance. However, in order to build it, we did consider stretched boxes, i.e.
non-constrained boxes. We define the aspect ratio of a d-dimensional box B =
(a1, ..., aq), (b1, .., ba)] to be max; j—1_a{ Z;:Z; we will call aspect
ratio of § the maximum of the aspect ratio of the boxes in §. Note that if the boxes
have bounded aspect ratio then also have bounded-size (volume) but not the converse.
Thus, hypercubes have aspect ratio equal to 1. We use nonbounded aspect ratio in
order to build our bad example. In [HM84]|, the polynomial-time approximation
scheme depends on the aspect ratio of the congruent isothetic boxes.

In this section, we refine the analysis of the approximation factor whenever the
projections of the d-boxes onto the d axis have the bounded aspect ratio property.
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Note that the boxes may have a nonbounded aspect ratio but their projections (sets
of intervals) may have their aspect ratio bounded.

Lemma 4 Let S be a set of n congruent isothetic d-dimensional boxes. Then, our
algorithm guarantees that ¢(S) < 2971¢%(S).

Proof. For sake of simplicity, let us first consider the case of (unit) hypercubes.
S is a collection of n congruent hypercubes. We prove below by induction on the
dimension that ¢(S) < 2971¢*(S). Section 2.2 shows that the algorithm ensures
c1(8) = ¢*(S) for (unit) intervals.

Otherwise, let S be a set of n d-boxes. Consider the ordered sequence (left to
right) of cutting hyperplanes of type d: (H,,(1) : g = a1), ..., (Hm (k) : x4 = ag)
with the associated partition of the hypercubes S/,(1),...,S}, (k). Clearly, we have
ai+1—a; > 5,1 <i < k—1 for the case of unit hypercubes. Therefore S/, (i)NS}, (j) =
0 if |i — j| > 2. We have:

k
= ca1(Sp(4))
=1
k
8) <2972 N " (S, (1))
=1

We can decompose the last sum taking into account the parity of ¢:

5] [51-1
ca(S) < zH( H(SL )+ S (S (20 + 1))).
=1 =0

But $H] ¢ (84,(20)) = ¢*(Up_y| 2 S(20)) < ¢*(S) and TL2)
c*(U;_g. OB 1S (2i +1)) < ¢*(8S) since both S (21) N S, (27) =

S! (2]+1)—(Z)assoonasi7éj.
Therefore, we get:

A7 (S0, (2i41)) =
= (ZJ and S/, (2i+1)N

ca(S) < 2772 x 2¢4(8),
ca(S) < 2471e%(8).

We only use the fact that all the boxes have the same i-width (width along the
i-th dimension). Therefore, the result applies for congruent boxes. O
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In [HM84], Hochbaum and Maass also consider this problem (in its dual form
however) and gave an O(ldnﬂd“)—time algorithm (a polynomial time approximation
scheme) which ensures that ¢(S) < (1+ 7)%c*(S) for a given integer [ > 1. Thus, for
I =1 it yields an O(n?)-time algorithm with performance ratio 2¢.

Since our algorithm proceeds dimension by dimension, we only need to have the
bounded aspect ratio for the projected boxes (along the d axis). Let S be a collection
of n constrained boxes:

8 = {[(b1,17 ceey bl,d)a (ul,l, ceey ulyd)], ceey [(bn,la ceey bn,d)a (un,l, ceey un’d)]},

. u wi g —bs
with maxi,j:l..n{u;i 11} < By, ..., m&Xi,j:L_n{ﬁ} < By, for some constants

B;>1,1<1<d.
Using the same technic as above, we get the following lemma:

Lemma 5 Let S be a collection of n d-dimensional constrained boxes with By, ..., By
defined as above. Then, our algorithm will return ¢(S) stabbing points so that ¢(S) <

(T [2B:])e*(S).

We may assume w.l.o.g. that By = max;—; _4{B;}. Otherwise, we make a simple
rotation of the orthogonal frame in linear time. This also means that we may have
a direction where the projected boxes are not constrained since we are able to solve
exactly the problem in one dimension (see Section 2.2).

We can also mix up our algorithm with the PTAS (polynomial-time approxima-
tion scheme) of [HM84] in order to obtain tradeoffs both for the running time and
the performance ratio.

One might wonder whether an additive constant is possible instead of a multipli-
cative constant in all our bounds concerning ¢(S). It is very unlikely! Indeed, unless
P=NP is it not possible to achieve the absolute performance ¢(S) < ¢*(S) + k for
some constant integer k.

Proof. We do the proof by contradiction (see also [GJ79] for this kind of tech-
nic). Consider that we have a deterministic polynomial time algorithm ALG that
guarantees ¢(S) < ¢*(S) + k. Then we consider k£ + 1 non-overlapping copies of
our boxes. Let Sii1 be this data set. Algorithm ALG will return ¢(Sk1) stabbing
points so that c(SkH) < *(Sk+1) + k. One of the copies of & in Si1 requires
at most | SPAtl ‘,jjjl | = ¢(8) stabbing points and ¢*(Sk11) = (k + 1)c*(S). Thus, we
will be able to have a deterministic polynomial-time algorithm ALG-B such that
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c*(8) <e(S) <c*(8S)+ kL_H Since finding the value of ¢*(S) is NP-complete, we get
the contradiction unless P = NP. O

Let G be the intersection graph of a set of n d-dimensional isothetic boxes S,
i.e. to each box corresponds a node and there is an edge between two nodes iff their
corresponding boxes intersect. Isothetic boxes have nice combinatorial properties.
For example, a set of boxes have a nonempty intersection iff they intersect pairwise
(this is an Helly-type theorem [DG82, HD60]|). Therefore, finding a minimum-size
set of stabbing points can be done by first computing G in quadratic time and then,
finding a minimum clique partition of G, i.e. a set of cliques (complete subsets
of G) whose union covers the vertices of G. There is a one-to-one correspondence
between these two problems. As a direct corollary, it implies that the mimimum
clique partition is NP-complete (as proved in [GJ79]), even for intersection graphs
of isothetic boxes.

Note that if every 3-subset of S (i.e., a subset S € (‘g)) has an empty intersection
(NS = 0), then the stabbing problem can be solved in polynomial time by reduction
to the maximum matching problem.

The stabbing problem is related somehow to ¢(p, ¢)-numbers and N(p, ¢; d) num-
bers [HD60, GW93]. N(p, ¢;d) numbers are defined for 2 < ¢ < p for the class P
of isothetic d-boxes as follows: it is the smallest integer so that for every set S € P
of parallelotopes, we have: if every p-subset S € (‘z) contains at least one g-subset

Q € (‘2) that has a nonempty intersection (NQ # @), then S can be stabbed by

N(p,q;d) points. Debrunner et al. [HD60, GW93] proved that N(p,q;d) < (p_§+d)
if2<q<p.
Therefore, we have:

1
c*gN(b*+1,2;d):(b +d),

d

since every (b* 4+ 1)-subset of S contains at least a pair of intersecting boxes.

There is much literature concerning c¢(p,¢) numbers. Perhaps, one of the most
challenging conjecture that remains unsettled is the following:
Conjecture (Wegner 67). If € is a family of parallel rectangles in the plane,
no p of which are pairwise disjoint, then I can be stabbed by 2p — 3 points.

This conjecture has been confirmed for squares and p < 4 but remain opened for
‘nonconstrained’ boxes, i.e. non-bounded size boxes.
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3.4 Experimental results

We did the implementation in C++ using the LEDA® and CGAL!'? librairies. The
code length is about 1000 lines. It should be noted that the algorithm and therefore
its implementation are robust. Indeed, we only compare our standard input values
without creating intermediate values (even when our algorithm reports intersection
points). Since the problem of computing the minimum value ¢* so that our set is
c*-pierceable is NP-complete, we could not compare in the experiments the precise
relationships between c and c¢*. Note that if instead of implementing the optimal stab-
bing algorithm of intervals of section 2.2, we implement the heuristic of section 2.3
then we get ¢ < O((ijfl)). We did choose that solution in our experiments (see
discussion of section 2.3).

However, loosely speaking, if we admit that in average ¢*(S!,) = ¢*(S )% and
c*(81) = ¢*(8Sy) (which might be the case, for example, when considering the uniform
distribution of congruent boxes) then we expect ¢(S) to be an O(1)-approximate of
c*(S) for fixed dimension d. Indeed, let K; with Ky = 1 be the multiplicative
constant. We have:

log e*(8)] (S) - aon
o(S) < Ka(c*(S)) <+ D 2'Ka(( )T ).
=0

Therefore, we find K5 <1+ 2%1 le,l with K1 = 1. Thus, in the planar case we
get under these hypothesis that ¢(S) < 3.42¢*(S). (This result is corroborated in
the experiments (using a good lower bound for ¢*(S), e.g. b(S)).

We report the value of ¢(S) in Table 2 for a set S of uniformly distributed isothetic
planar boxes. We have also implemented an exhaustive search procedure for finding
a minimal set of piercing points. This algorithm could not handle input size greater
than 25 (although some tricks have been plugged!! in). Table 3 shows the number
of configurations explored by the exhaustive algorithm.

As an application, we considered the following problem (already mentionned in
the introduction): given a set of n cities C = {C1 = (z1,¥1),---,Cn. = (T, Yn)}, We
wish to cover them by a minimum number of a given ‘unit’ square S = [—r, 7] x [—r, 7]

Library for Efficient DataStructure and Algorithms. Max-Planck Institut fiir Informatik, Im
Stadtwald — 66123 Saarbriicken — Germany.

105ee “The CGAT Kernel User Manual” — INRTA Sophia-Antipolis (France).

" Finding good cuts for an exhaustive algorithm is interesting in itself since it allows to handle
large input sizes for ‘special’ down-to-earth tailored instances (see for example the well-known
Traveling Salesman Problem [RSL74]).
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|S| = 16 32 64 128 256 512 1024 2048 4096 8192 16364 32728 65536 130000 260000 520000
e(S)=9 1423 30 56 78 123 188 272 417 648 928 1413 2093 3122 4486

Table 2: Considering uniformly distributed rectangles in the unit square.

IS|]= 14 15 16 17 18
conf(S) = 15120 29400 99120 241272 672964

Table 3: Number of different configurations conf(S) for some input set S, i.e. number
of distinct piercing point sets of size ranging over [¢*,n] for small values of n. Note
that for d-dimensional set S of boxes, the complexity of the arrangement of S is
O(|S|%). Thus, we have conf(S) < ch*(s) (OU;.SH)) < 20081,

of side length 2r. We associate to each city C; = (x;,y;) the square S; = [z; —r,x; +
r] X [y; — ryy; + 7] for 1 < i < n. Let § = {S1,...,Sn}. Now, we use the fact that C
can be covered with & translated copies of S if and only if S can be stabbed with &
points. We ran our program on 120 cities of the United States of America (the input
file is freely distributed and may be found in the Stanford GraphBase [Knu93|). The
results are depicted in figure 3.

Figure 4 shows some experiments for sets S that are 20-pierceable, i.e. ¢*(S) = 20.
The left chart shows the number of stabbing points reported by our algorithm in case
of congruent/nonconstrained boxes. The right chart depicts the running time of our
algorithm. (We took the average over 20 trials).

It may be nice to study the average stabbing number a,(d) of a fixed-size ran-
domly chosen set of n d-boxes as a function of d.

4 Concluding remarks

We have investigated in this paper the stabbing problem for a set of d-dimensional
isothetic boxes which consists in finding a set of points so that each box contains at
least one of these points.

Finding a minimum-size set of stabbing points has been shown to be NP-complete
as soon as d > 1, even when considering congruent isothetic boxes. Therefore
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Figure 3: Finding a covering of 120 cities of the U.S.A. Our algorithm reports a set
of 25 unit squares covering the 120 cities. Any solution requires at least 11 squares.
(Considering the corresponding piercing problem, one may find 11 disjoint squares.)
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Piercing Constrained vs. Nonconstrained | sothetic Boxes  Piercing Constrained vs. Nonconstrained | sothetic Boxes
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Figure 4: Impact of the dimension over a set S (¢*(S) = 20 and |S| = 20000)
of constrained/nonconstrained d-boxes for 1 < d < 20. The right chart exhibits
the running time of our implementation (the slope of the lines for the constrai-
ned /nonconstrained cases are O(d + log ¢*) and O(dlog c*) respectively.

that problem is untractable in practice. We gave in this technical report a heu-
ristic that computes ¢ points stabbing a set of n d-dimensional axis-parallel boxes
in output-sensitive time O(dn + nlogc) using linear space. Moreover, we proved

wd wd—1 d—1 _
that ¢ < min{% + % -1, c*%}, where x™ is the rising factorial power:

" = HZZ_OI(:U + i). We showed the tightness of the bounds by building a generic
family S of d-dimensional boxes so that ¢(S) = Q(c*(d‘?)d ). We proved in the case of
congruent boxes and ‘constrained’ boxes that ¢ < 2971 and ¢ = O(c*) respectively.
Our algorithm can be easily parallelized onto PRAM computers in order to gain
efficiency (see [AL93]).

We plan to investigate in a nearby future the tradeoff between the running time
of any stabbing algorithm for sets of boxes and its relative performance.

We also focus on the case of c-oriented objects and general convex/non convex
objects.

This technical report raises some open problems:

e the exact relationships betwen ¢* and b* (from N(p,q;d) numbers, we get
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the hardness of approximation of constrained boxes compared with general
boxes inside the polynomial hierarchy of problems.

e Can we find for ‘nonconstrained’ isothetic boxes an algorithm which guarantees
some ratio between b and b*?

e Can we obtain better fast approximation algorithms by applying to our set of
c stabbing points other (time-costly) algorithms?

e In [IA83|, H. Imai and Ta. Asano gave an algorithm to compute a maximal
cell in an arrangement of n isothetic boxes in O(n% !logn). Can we compute
a maximal cell in a better running time? This would improve the running time
of the greedy algorithm.

Another aspect of this problem that is currently being investigated is to give

efficient algorithms to detect whether a set of objects is k-pierceable or not for small
values of k& [KN95, KN96|.
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