N

N

Detecting Diamond Necklaces in Labeled Dags (A
Problem from Distributed Debugging)
Michel Hurfin, Michel Raynal

» To cite this version:

Michel Hurfin, Michel Raynal. Detecting Diamond Necklaces in Labeled Dags (A Problem from
Distributed Debugging). [Research Report] RR-2838, INRIA. 1996. inria-00073852

HAL Id: inria-00073852
https://inria.hal.science/inria-00073852
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073852
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Detecting Diamond Necklaces in Labeled Dags
(A Problem from Distributed Debugging)

Michel HURFIN, Michel RAYNAL

N ° 2838
Mars 1996

THEME 1

apport
derecherche

%I INRIA

RENNES

Detecting Diamond Necklaces in Labeled Dags
(A Problem from Distributed Debugging)

Michel HURFIN, Michel RAYNAL

Theme 1 — Réseaux et systémes
Projet Adp

Rapport de recherche n° 2838 — Mars 1996 — 13 pages

Abstract: The problem tackled in this paper originates from the debugging of distributed
applications. Execution of such an application can be modeled as a partially ordered set
of process states. The debugging of control flows (sequences of process states) of these
executions is based on the satisfaction of predicates by process states. A process state that
satisfies a predicate inherits its label. It follows that, in this context, a distributed execution
is a labeled directed acyclic graph (dag for short). Debug or determine if control flows of
a distributed execution satisfies some property amounts to test if the labeled dag includes
some pattern defined on predicate labels.

This paper first introduces a general pattern (called diamond necklace) which includes
classical patterns encountered in distributed debugging. Then an efficient polynomial time
algorithm detecting such patterns in a labeled dag is presented. To be easily adapted to an
on-the-fly detection of the pattern in distributed executions, the algorithm visits the nodes
of the graph according to a topological sort strategy.

Key-words: Distributed systems, On the fly global predicate detection

(Résume€ : tsvp)

Unité€ de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : (33) 99 84 71 00 — Télécopie : (33) 9984 71 71

Détecter des colliers de diamants dans des graphes
étiquetés, orientés et sans circuits

Résumé : Le probleme abordé dans cet article a été rencontré dans le cadre d’une étude
sur la mise au point des application réparties. L’exécution de telles applications peut étre
modélisée par un ensemble partiellement ordonné d’états locaux des processus. L’analyse
des flots de controle (séquences d’états locaux) de ces exécutions est fondée sur le fait que
les états locaux satisfont des prédicats. Un état local qui satifait un prédicat hérite de son
étiquette. En conséquence, dans ce contexte, une exécution répartie est représentée par un
graphe étiqueté, orienté et sans circuits. Mettre au point ou déterminer si un flot de controle
satisfait une propriété revient a tester si le graphe étiqueté inclut un motif défini a ’aide
des étiquettes des prédicats.

Cet article présente tout d’abord un motif général (appelé collier de diamants) qui inclut
les motifs classiques rencontrés dans le domaine de la mise au point des programmes répartis.
Ensuite, un algorithme performant qui permet de détecter de tels motifs dans un graphe
étiqueté et dont la complexité en temps est polynomial, est exposé. Afin d’étre facilement
adaptable pour détecter au vol des motifs lors d’une exécution répartie, ’algorithme visite
les sommets du graphe selon la stratégie du tri topologique.

Mots-clé : Systémes répartis, Détection au vol de prédicats globaux.

Detecting Diamond Necklaces in Labeled Dags 3

1 Introduction

This paper presents an algorithm to detect a sophisticated pattern (called diamond necklace)
in a labeled directed acyclic graph. The problem solved by this algorithm originated from
the detection of properties of distributed computations in our current effort to design and
implement a facility for debugging distributed programs [9]. These programs are composed
of a finite set of processes cooperating by the only means of message passing. From an initial
state a process produces a sequence of process states according to its program text. In the
context of the debugging of distributed programs, a distributed execution is usually modeled
as a partially ordered set of process states [7]. Informally, process state s; precedes ss if both
have been produced by the same process with s; first, or if s; has been produced by some
process before it sent a message to another process and the receiver process produced ss
after receiving this message; this causal precedence relation is nothing else than Lamport’s
“happened before” relation expressed on process states [12]. A directed path of process
states starting from an initial process state is usually called a control flow.

We designed and implemented several distributed algorithms that on-the-fly detect pro-
perties on control flows of distributed computations [10, 5, 4]. Basically a property is defined
as a language on an alphabet of predicates (a predicate being a boolean expression in which
appear variables of a single process); a pattern is a word of this language. If a local state
satisfies a given predicate, it inherits its label: so words can be associated with each control
flow. Finally a control flow satisfies a property if one of its words belongs to the language
defining the property, i.e., if it matches some pattern. Such an approach has been formalized
in [1]. These properties are fundamentally sequential in the sense they consider each control
flow separately.

Sequential properties are not powerful enough to express patterns which are on several
control flows. An example of such a property is the following one: “there is a process state s;
satisfying a predicate P; causally preceding a process state sy satisfying a predicate Py and
all paths of process states starting at s; and ending at s satisfy some sequential property”.
A logic able to express such non-sequential properties has been introduced in [6].

Here we abstract from distributed executions and consider labeled directed acyclic graphs.
We first define (Section 2) a general type of patterns (diamond necklace) for labeled dags
which includes as particular cases sequential and non-sequential patterns useful in distribu-
ted debugging, and then (Section 3) we present an algorithm to detect these patterns. In
order to be adaptable to on-the-fly distributed detection in the context of distributed debug-
ging, it is required that the algorithm visits the nodes of the dag according to a topological
sort strategy.

So this paper solves a new problem (to our knowledge), namely deciding if a labeled dag
includes some specific pattern, that we met in designing and implementing a distributed
debugging facility.

RR n 2838

4 M. Hurfin, M. Raynal

2 Diamond Necklaces

2.1 Labeled Dags

Let G = (V, E) be a finite dag with n vertices. Notations v , v , v;, v are used to represent
elements of V. Let v; and v; be two vertices of V'; P(v;, v;) is the set of all the paths in G
from v; to vj.

Plvi,vj) = {(v}, 0%, v) | (v =) A (v = vj) A (Vi, 1 < i < u, (o8, 0 F) € E)}

In order to facilitate the explanation of the algorithm we suppose that G has a source
vertex and a sink vertex denoted v; and v,, respectively. By definition:

P(vi,v1) =0
A
P(vn,vi) =0
Yv; €V, A
vitvy <= Pvr,v) #0
A
vi vy, <= P(vi,vn) #0

Let X be a finite set of [labels: ¥ = {aj,as,---,a;}. The set of all strings over the
alphabet X is denoted by ¥*. A is a labeling function that maps edges of G to sets of labels.
If (vi,v;) € E, A(vs, vj) denotes the set of labels associated with the edge (v;, v;). We assume
the “empty” label € is implicitly associated with every edge for which the labeling function
defines no label. G* denotes the dag G with labeling A.!

For each pair of vertices (v;, v;) of the graph, £(v;, v;) represents the set of words defined
by considering all possible labeling of all paths starting at v; and ending at v;. More formally:

E(vi, vj)

{a1a2-~-au I |E| (01102’..,’vu’vu+1) S p(viavj): VZ, 1§ ? <u, a E/\('Ui;'vi+1)}

Let R* be the name of a property defined as a set of words (language £(R*)) on the
alphabet X.

2.2 The Primitive Pattern SOME

Let v; and v; be two vertices of G and RF be a property. The pair (vi,v;) satisfies the
pattern SOME(RF) if there is a path from v; to vj such that at least one of the labelings of
the path is a word of £(R¥). More formally:

(vi,05) | SOME(RE) = L{viu) 0 L(R) # 0
IWe assign labels to each arc of the graph rather than to each vertex. When the goal is to detect

properties of distributed computations, each vertex represents a local state and, in that case, the labels of
all the predicates satisfied by a local state v are assigned to all incoming arcs of vertex v.

INRIA

Ot

Detecting Diamond Necklaces in Labeled Dags

2.8 The Primitive Pattern ALL

The pair (v;,v;) satisfies the pattern ALL(R*) if all labelings of all paths from v; to v;
belong to £(R*). More formally:?

(,vj) B ALLR) = (Plovy) # 0) A (Llui,vy) © L(RD))

2.4 The General Pattern

This pattern is an alternating sequence of primitive patterns SOME and ALL. An ALL
pattern reminds of a diamond and two consecutive diamonds are connected by a link, i.e., a
pattern SOME, the whole pattern forming a necklace of diamonds. The alternating sequence
is denoted R' R? R® ... R™.

A sequence of m + 1 vertices (v!,v? v3 v? ... v™ v™+l) is a solution of the general
pattern (i.e., (vl,v?,v3 v, .- o™ o™t | R R?Z R3 ... R™), if these vertices satisfy
the following constraints:

o (v = v) A (v = w,)
o Vik 1 < 2k+1 < m, (v %+2) = SOME(R%*+!)
e Vk 2 < 2k < m, (v 2+ &= ALL(R?)

<

<

<
3

2k—1 v 2542

ALL(R?) ALL(R?*) ALL(R™)

SOME(RY) SOME(R®) SOME(R2*1) SOME(R2¥) SOME(R™2) SOME(R™)

Figure 1: A diamond necklace pattern

2This condition can also be expressed as follow: (P(vi,v;) # 8) A (L(vi,v;) N (* - L(RF) = 0)

RR n 2838

6 M. Hurfin, M. Raynal

Figure 1 gives a pictorial representation of a diamond necklace. A line from v**~1 to v?*

represents a path satisfying a pattern SOME, and a diamond-shaped plane figure represents
a diamond starting at v?* and terminating at v?*+1.

The following prefix notation will be used in what follows. Let us consider the subgraph
of G whose v; and v* are the source and the sink vertices (i.e., all maximal paths of this
subgraph start at v; and terminate at v*). If (v}, 02 ... v*) &= R! R? ... R*~! then we
say the sequence (v!,v?,--- v¥) is a solution of the prefix R! R% ... R*¥~! of the pattern.

3 A Detection Algorithm

3.1 Regular Properties

For the sake of simplicity, in what follows, we consider only properties R* whose corres-
ponding languages £(R*) are regular [8]. Moreover, these properties are sufficient to solve
practical problems encountered in distributed debugging.

Let A (1 < k < m) be the finite automaton recognizing £(RF). Formally, an
automaton is a tuple A* = (Q*, %, 6% ¢k, F¥), where Q is a finite set of states (¢* is one of
these states), X is a finite alphabet (equal to the set of { labels associated with vertices of
the graph), ¢ is the initial state, F’* is the set of final states and d* its transition function
mapping QF x X to 29",

All automata A%* (2 < 2k < m) are supposed to be deterministic and complete;
automata A%*+1 (1 < 2k+1 < m) can be non-deterministic.

3.2 Visiting the Graph

The algorithm proposed in this paper visits the vertices of GG, starting from v;. When it
visits a new vertex v, it computes information necessary to detect the property (i.e., the
diamond necklace). The traversal is done in the following manner: a vertex v is visited after
all its predecessors (all vertices v; such that P(v;, v) # 0); i.e. the visit is done according to
a topological sort strategy. 3

Without such a visit requirement, we could envisage to detect occurrences of the general
pattern with the whole labeled dag to our disposal. In such a case, a naive solution would
consists in examining all the possible sequence of m — 1 vertices {v?2,---,v™}, candidates to

__21) candidates sets. For each automaton R*,

the intersection of the language £(v*, v**1) with the language £(R¥) (respt. language %* —
L(RF)) must be non-empty (respt. empty). Classical techniques (product of automata [11])
can be applied to realize these tests. The time complexity of this approach O(n™) will be

be a solution. In the worth case, there are (;

3This visit strategy is particularly interesting in the context of on-the-fly detection of properties of
distributed executions. Actually, in that case, the partially ordered set of local states is generated on-the-fly
by the execution itself: due to this visit strategy of the vertices (local states) of the graph, the detection
algorithm can be easily superimposed [2] on such an execution.

INRIA

Detecting Diamond Necklaces in Labeled Dags 7

compared with the time complexity of the algorithm presented in this paper which is also
polynomial .#

3.3 Detecting (vi,v) E SOME(RF)

To facilitate the understanding of the general algorithm (Section 3.5), we first present simpler
algorithms which constitute building blocks of the general one.

A variable state(v, k) is associated with each vertex v; its definition is the following one:

states(v,k) = { ¢8| FJw € L(v1,v) such that ¢&¥ € §*(¢f, w) }

By visiting the vertices of G, starting from vy and using the traversal strategy ex-
plained above, the value of states(v, k) is computed as indicated by Figure 2 (Initially:
states(vi, k) = {qk}).

It follows that answering to the question “(vi,v) | SOM E(RF)” is equivalent to test
the following predicate:

¢k € states(v,k) : ¢& € F*

begin
states(v, k) = 0;
foreach wv, such that ((v,,v) € E):
foreach ¢f € states(v,, k) :
foreach a € A(vp,v) :
states(v, k) = states(v,k) U {3%(¢%, a)};
endfor
endfor
endfor
end

Figure 2: Visit of a vertex v # vy

3.4 Detecting (vi,v) &= ALL(R")

The previous discussion about the computation of states(v, k) is still valid. Only the pre-
dicate to decide “(vi,v) [ALL(RF)” has to be defined. As indicated we constraint
all the automata recognizing a language whose property appears in an ALL pattern to be
deterministic. With such a constraint the decision test becomes:

Y ¢& € states(v,k) : ¢ € F*

4Therefore, this algorithm can also be used to detect efficiently diamond necklaces in dags such as the
lattice of global states of distributed computations which may be constructed at a designated process [3].

RR n 2838

8 M. Hurfin, M. Raynal

3.5 Detecting Diamond Necklace Patterns

Determine the set of solutions (v, v?, .- v™ v™*+l) requires to analyze all the words as-
sociated with all possible labelings of all the paths. This demands to keep information
related to word analyses and to launch the next automaton each time a prefix of the pattern
has been recognized. As indicated previously, it is supposed that vertices of G are visited
according to the strategy explained in Section 3.2, vy being the first vertex visited.

Launching automata

When v is visited, if (v!,v?, - -, vk, v) is solution of the prefix R' R? ... R?* then a copy
of the automaton .42*+! has to be launched in order to start the search for a vertex v such
that (v,v') | SOME(R*+1).

Similarly, if (v!,v2, .-, v?*+1) is solution of the prefix Rt R? ... RZ*! then a copy
of AZ+2 has to be launched to search for a vertex v such that (v,v') | ALL(R?%+2),

Data structure to record past word analyses

As an automaton A* can be launched from any vertex, the data structure states(v, k) has
to be enriched to record the vertices in which copies of A* have been started. An array of
m variables start_states is associated with each vertex v; start_states(v, k) is a set of pairs
(vi, ¢¥) whose first component is a vertex of G and second component is a state of Q. Its
semantics is the following one:

a copy of A* has been started in v;
(vi,q¥) € start_states(v, k) <= A
Jw € L(vi,v) such that ¢* € §%(¢F, w)

These data structures keep a record of all the word analyses done in the past of the
vertex v that is currently visited.

The algorithm

The procedure described in Figure 3 specify the set of actions executed when a vertex v is
visited. Two tasks have to be done.

1. All the copies of all the automata previously launched, in the past of v, have to progress
in word recognition (lines 1-5).
If (vp,v) € E and start_states(vp, k) # O then copies of A* have been previously
launched. From (v;,¢¥) € start_states(v,,k), we conclude first that a copy of A* has
been launched in v; and second that there is at least one word w € L(v;,vp) such
that ¢f € d%(¢%,w). So the algorithm makes this copy of .A* progress according to
labelings of the edge (v,,v).

INRIA

Detecting Diamond Necklaces in Labeled Dags 9

Procedure Visit (v : vertex);
begin
/* Recognition */
if (v = v1) then
start_states(vi,1) = { (v1,q8) };
for £ :=2 to m:
start_states(vi, k) = 0
endfor
else
/* v is not the least vertex of G */
/* All predecessor of v have been already visited */
for £k :=1 to m:

(1) start_states(v, k) = 0
(2) foreach wv, such that ((v,,v) € E):
(3) foreach (vi,q%) € start_states(vp, k) :
4) foreach a € A(vp,v) :
(5) start_states(v, k) = start_states(v,k) U {(vi,6%(¢%,a))};
endfor
endfor
endfor
endfor
endif

/* Launching a copy of the automaton A*+! */
for k:=1 to m—1:
if (k mod 2 = 0) then

(6) if (3 v; such that: (V (vi,q%) € start_states(v,k) : ¢& € F*)) then
/* A pattern ALL has been recognized: (v;,v) = ALL(RF)*/
(7) start_states(v, k + 1) = start_states(v,k+ 1) U {(v, q§+1)};
endif
else
(8) if (3 (vi,¢*) € start_states(v, k) such that: ¢* € F*) then
/* A pattern SOME has been recognized: (v;,v) | SOM E(RF) */
9) start_states(v, k + 1) = start_states(v,k+ 1) U {(v, qé“)};
endif
endif
endfor

if (v = wv,) then
output_solutions(m + 1, vy,);
endif
(10) /* If interested by only one solution, call the procedure reduction (See Section 3.6) */
end

Figure 3: General algorithm

RR n 2838

10 M. Hurfin, M. Raynal

It is important to note that all the copies of the automata previously launched continue
their analysis till the vertex v, is visited. This is necessary as we do not known in
advance if a partial solution will give rise to a solution.

2. When a prefix of the general pattern has been recognized, a new copy of the next
automaton has to be launched (lines 6-9).

If there is an automaton A* such that a copy of .A* has been launched in some v; and
(vi,v) | ALL(R*) (when k is an even number), or (v;,v) | SOM E(R*) (when k

is an odd number), then a copy of the automaton A**! has to be launched from v.

The set of all the solutions is obtained with the procedure described in Figure 4 by calling
output_solutions(m + 1, v,). If the whole pattern has not been recognized at the end of the
computation, it is also possible to find out the longest prefix of the diamond necklace for
which partial solution exist.

It is important to note that actions executed when visiting a vertex v only depend on
values of variables start_states of v’s immediate predecessors (This allows to adapt the
algorithm to an on the fly detection when used in debugging distributed applications ®).

It is also important to note that if we are only interested in the simpler problem which
consists in deciding if an a priori given set of m + 1 vertices is a solution, then the data
structures and the algorithm can be greatly simplified.

3.6 Deciding if there exists a solution

The previous algorithm finds all the solutions, i.e., all sets of vertices (v!,v?, ... v™ v™+1)
satisfying the pattern in G*. If we are only interested in knowing if there is a solution, the
contents of variables start_states(v, k) can be reduced in the following way. The procedure
reduction (line 10) decreases the size of variables start_states. This procedure does the
following actions. At the end of the visit of vertex v, a pair (v;, ") belonging to the set
start_states(v, k) is suppressed if one of the two following predicates is true.

1. Predicate P1:
k is an odd number and there exists another pair (vj, ¢%) in start_states(v, k).

From (v;,q%) € start_states(v, k), we deduce that there exists at least one word wl
such that wl € L(v;,v) and ¢& € §%(gf, w1). Similarly, we conclude that there exists
also a word w2 such that w2 € L(vj,v) and ¢& € &%(qf,w2). Therefore, if there
exists a word w3 such that F* N §%(¢¥, w3) # 0 then we can conclude that both
words wl.w3 and w2.w3 belong to L£(RF). So, if we are not interested in computing

5 [5] presents such an algorithm which detects on the fly the simple primitive pattern:
(vi,vn) E SOME(R;). In that case, there is only one pair of vertices that can be a solution; mo-
reover this pair is defined a priori. For this very simple pattern, variables needed for the detection reduce to
a boolean array whose size is equal to the number of states of the corresponding automaton. Each process
of the distributed application which is debugged, manages a copy of this array and each application message
piggybacks the value of the sender process array. In the general case, every process has to manage an array
start_states[l..m] and messages have to carry the value of this array.

INRIA

Detecting Diamond Necklaces in Labeled Dags

11

Solution: array[l..m+ 1] of vertex;

Procedure output_solutions (k : integer; v : vertex);
begin
Solution[k] = wv;
if (k = 1) then
print(Solution);
else
if (k mod 2 = 0) then
/* Continue with all v; such that (v;,v) | ALL(RF) */

output_solutions(k — 1, v;);
endfor
else

/* Continue with all v; such that (v;,v) | SOME(RF) */

output_solutions(k — 1,v;);
endfor
endif
endif

end

foreach v; such that: (V (v;,q%) € start_states(v,k) : ¢& € F¥))

foreach v; such that: (3 (v;,q%) € start_states(v,k) : ¢& € F*))

Figure 4: Enumerating the set of solutions

all solutions, it is sufficient to indicate that ¢¥ is a state in which a copy of automaton

AP arrived after the vertex v has been visited.

2. Predicate P2:

k is an even number, £(R*) is a suffix language and there exists another pair (vj,qg)

in start_states(v, k) such that there is path from v; to v; (i.e. P(v;,v;) # 0).

For each word w3 € L(vj,v), there exists at least one word wl € L(v;,v) such that

wl = w2.w3l.

If £(R*) is a suffix language, Vw € ¥* wl.w € L(R*) = w3.w € L(R*). Therefore, if
) E ALL(R*) = (vj,v) & ALL(R*).

It follows that only (vj, qz‘) has to be memorized if we are not interested in computing

’

v is a vertex such that P (v, 'UI) # (then (v;, v

all solutions ©.

1In [10], a particular simple kind of diamond necklaces called atomic sequences is defined. The language
associated to each diamond contains all the words built with all the symbols of an alphabet except those
containing a particular forbidden symbol. Such a language is a suffix language. Consequently, the second

reduction rule explained above can by applied in this particular case.

RR n~2838

12 M. Hurfin, M. Raynal

3.7 Complexity

During an on-the-fly detection and when one try to find all the solutions, the storage com-
plexity of this algorithm is O(m.n?.r) where m is the number of automata (z.e., the length
of the diamond necklace), n is the number of vertices in the graph and r is the maximal
number of states of an automaton (i.e. r = maz{rf | 1 < k < m} with »* =| Q* |). Note
that automaton .A! is launched only once when vertex v; is visited. Therefore, the size of
the structure start_states(v,1) is bounded by r! whereas the size of start_states(v, k) is
bounded by (p,.7* + 1) if 2 < k < m (where p, is the number of immediate predecessors of
vertex v).

Let t5(a) =| 6*(¢*,a) | and let t* = maz{maz{ti(a) | a € B} | ¢*¢ € Q*}. Note that
t" = 1 if automaton A* is deterministic. Let ¢t = maz{t*|1 < k < m}. Assume that
elements (v;, ¢%) of start_states(v, k) are sorted according to the first component. The time
complexity of the general algorithm is

O(m.n3.rt.l)

where [is the number of labels in . If k& > 2, computation of the set start_states(v,k)
requires less than p2.7% 1% .l insertions of elements.

The time complexity of this algorithm is cubic whereas the complexity of the naive
approach described in Section 3.2 is O(n™). Note that, when m = 1, the naive approach
consists in determining the product of two automata.

When the two reduction rules are applied, the size of the structure start_states(v,k)
is bounded by (s.r*) where s is the width of the partial order (i.e., the size of the largest
antichain). In the dag corresponding to the execution of a distributed application, the value
of s is bounded by the number of processes observed during the debugging activity. In this
case, the storage and time complexities of the algorithm also decrease .

4 Conclusion

The problem tackled in this paper originated from the debugging of distributed applications.
Execution of such an application can be modeled as a partially ordered set of process states.
The debugging of control flows (sequences of process states) of these executions is based on
the satisfaction of predicates by process states. A process state that satisfies a predicate
inherits its label. It follows that, in this context, a distributed execution is a labeled directed
acyclic graph. Debug or determine if control flows of a distributed execution satisfies some
property amounts to test if the labeled acyclic graph includes some pattern defined on
predicate labels.

This paper first introduced a general pattern (called diamond necklace) which includes
classical patterns encountered in distributed debugging. Then an algorithm detecting such
patterns in a labeled acyclic graph has been presented. To be easily adapted to an on-the-fly
detection of the pattern in distributed executions, the algorithm has been based on a visit
of the nodes of the graph according to a topological sort. Its time complexity is polynomial.

INRIA

Detecting Diamond Necklaces in Labeled Dags 13

Acknowledgments

The authors would like to thank Didier Caucal and Jean-Xavier Rampon whose comments
greatly improved both the content and the presentation of the paper.

References

[1]

[10]

[11]

[12]

0. Babaoglu, E. Fromentin, and M. Raynal: “A Unified Framework for the Specification and
Run-time Detection of Dynamic Properties in Distributed Computations”, The Journal of
Systems and Software, special issue on Soft. Eng. for Distributed Computing, To appear 1996.

L. Bougé, and N. Francez: “A compositional approach to superimposition”, In Proc. of the 15"
ACM SIGACT-SIGPLAN Symposium on Principle of Programming Languages, pp. 240-249,
San Diego, California, January 1988.

R. Cooper, and K. Marzullo: “Consistent Detection of Global Predicates”, In Proc. of the
ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 163-173, Santa Cruz, Cali-
fornia, May 1991.

E. Fromentin, C. Jard, G. Jourdan, and M. Raynal: “On-the-fly Analysis of Distributed
Computations”, Information Processing Letters 54, pp. 267-274, 1995.

E. Fromentin, M. Raynal, V.K. Garg, and A.l. Tomlinson: “On the fly testing of regular pat-
terns in distributed computations”, In Proc. of the the 23"¢ Int. Conf. on Parallel Processing,
pp. 73-76, St. Charles, 1L, August 1994.

V.K. Garg, A.l. Tomlinson, E. Fromentin, and M. Raynal: “Expressing and Detecting General
Control Flow Properties of Distributed Computations”, In Proc. of the 7th IEEFE Symposium
on Parallel and Distributed Processing, pp. 432-438, San-Antonio (USA), October 1995.

V.K. Garg and B. Waldecker: “Detection of Unstable Predicates in Distributed Programs”, In
Proc. of the 12th Int. Conf. on Foundations of Software Technology and Theoretical Computer
Science, Springer Verlag, LNCS 652, pp. 253-264, New Delhi, India, December 1992.

M.A. Harrison: “Introduction to Formal Language Theory”, Addison-Wesley series in compu-
ter science, 1978.

M. Hurfin, N. Plouzeau, and M. Raynal: “A Debugging Tool for Estelle Distributed Programs”,
Journal of Computer Communications, 28(5), pp. 328-333, May 1993.

M. Hurfin, N. Plouzeau, and M. Raynal: “Detecting atomic sequences of predicates in distribu-
ted computations”, In Proc. ACM workshop on Parallel and Distributed Debugging, pp. 32-42,
San Diego, May 1993. (Reprinted in SIGPLAN Notices, Dec. 1993).

J.E. Hopcroft and J.D. Ullman: “Introduction to Automata Theory, Languages, and Compu-
tation”, Addison-Weslay Publishing Company, 418 pages, 1979.

L. Lamport: “Time, clocks and the ordering of events in a distributed system”, Communica-
tions of the ACM, 21(7), pp. 558-565, July 1978.

RR n 2838

/<

Unité€ de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité€ de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité€ de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

