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Analyse spectrale d’algorithmes de Résidus
Corrigés pour les équations hyperboliques

Résumé : Dans ce rapport, on propose des variantes de l’algorithme des
Résidus Corrigés précédemment analysé pour les équations hyperboliques en
[1] [2]. On identifie des préconditionneurs potentiellement plus efficaces d’une
classe de schémas d’approximation partiellement décentrée du second ordre
contenant un schéma du troisieme ordre; ces préconditionneurs sont construits
en moyennant l'opérateur décentré d’ordre un a ’opérateur centré. On montre
également qu’on peut résoudre les équations implicites par relaxation; on pro-
pose pour cela un algorithme itératif a 3 sous-pas.

Mots-clé : Equations hyperboliques, approximations décentrées, algorithme
des Résidus Corrigés, valeurs propres, rayon spectral, préconditionneurs opti-
mMaux.
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4 M.C. Ciccoli & J.A. Désidéri

1 Introduction — Model Problem

The two major steps in the numerical solution of a time-dependent problem go-
verned by a (set of) partial-differential equation(s) (PDE) are the definition of
an appropriate (consistent) spatial approximation scheme and the construction
of an efficient and/or accurate algorithm to integrate forward in time the set
of discrete equations. The two steps are evidently linked; in the linear case for
example, when the solution algorithm is meant to be a pseudo-time-integration
iteration, its election is usually strongly guided by the spectral properties of
the approximation scheme, whose identification, for at least a simple model
problem, is thus essential.

In this theoretical study, we have in mind future applications to inviscid
gas dynamics. There, a standard approach to solve steady problems consists
in integrating the Euler equations forward in time until the solution reaches
the steady state. Thus, the time integration is used somewhat artificially to
construct an iterative solution method and it is important to assess its perfor-
mance with respect to cost-efficiency.

For the purpose of making a linear analysis of different potential schemes,
we are here considering, after many others and following particularly the ana-
lysis of [1] [2], the quarter-plane pure-advection problem :

utcu, =0 (¢>0) (ze€l0,1];t>0)
u(z,0) = u’(z) (1)
u(0,t) = const.

This simple PDE contains only one partial derivative with respect to « in the
quantity

A(u) = cu, (2)
Because such operator A involves only one wavespeed ¢ which is assumed
positive, upwind differences are constructed as backward differences. Thus,
identifying in our notation finite-difference operators with their matrix analogs,
the operator A is here chosen to be approximated over a uniform mesh by a

second-order finite-difference operator of the following form
1 1
B _

By =0 = 5 |[(1= )65 + 67| (3)

INRIA



Analysis of Defect-Correction Algorithms 5

where

5¢ = Trid (—% 0, %) (4)

is the central-difference operator,
1 3
6 = Pentad (5, -2, 3 0, 0) (5)

is the second-order fully-upwind operator, and § is a parameter controlling
the degree of upwinding in this approximation. In particular, for 5 = 1/2, one
gets a Fromm-type “half-upwind” differencing scheme, and for 3 = 1/3, the
3rd-order accurate upwind-biased scheme.

For the solution of (1), one may use an implicit time integration scheme
(known to be unconditionally stable) such as :

1+ At Ap(u)] (u" ™ — u") = — At By(u") (6)

in which Aj(u), to satisfy the consistency condition, should be the Jacobian
of an approximation As(u) of Bg(u). More generally, it is some appropriate
preconditioner controlling the stability when large timesteps are used. In the
linear context, the operator Ay and its Jacobian Aj admit the same matrix
representation, and we consider in this article the following particular choice
which generalizes that of [1] [2] :

1

Ao =37

[(1—0) 6, +05] (7)
where §; is the first-order upwind-difference operator which is one-sided (since
c>0):

d; = Trid (—1,1,0)

and # is a parameter to be optimized.
We would like to first give some justification of the present choice of precon-
ditioner Ap. In (future) practical applications to nonlinear hyperbolic systems

involving wavespeeds of different signs, upwind schemes rely on local linea-
rization and diagonalization by means for example, of flux or flux-difference

RR n2831



6 M.C. Ciccoli & J.A. Désidéri

splitting. Even well mastered today for the case of the Euler equations (see e.g.
[3] [4]), these operations remain delicate and costly. In fact, in usual implemen-
tations, the right-hand side (RHS) of (6) is computed by direct discretization
of the quantity A(u) and the matrix Bgs is not calculated. Inversely, the ma-
trix structure of the preconditioner appearing on the left-hand side is actually
computed. This is one reason why the simple first-order accurate difference
operator alone (6 = 0) is very often preferred to the exact Jacobian of the RHS
in the construction of the preconditioner, since this does not modify the conver-
ged (or steady-state) solution. Another advantage of using Ay = d; is that the
matrix is (marginally) diagonally dominant. Thus, in that particular case, (6)
can be solved by classical relaxation. The disadvantage of this simplification
is that quadratic convergence of Newton’s method is lost when infinite times-
teps are employed; in addition the convergence is then pathological for 5 =0
(central-differencing of RHS) or 1 (fully-upwind differencing of RHS) [1] [2].
The more general form of preconditioner adopted in (7) reflects our attempt
to make it closer to the operator in the RHS by approaching more accurately
a second-order operator without actually forming the matrix associated with
the second-order upwind scheme. In addition, in the slightly more representa-
tive case where the sign of ¢ would change, the first-order upwind-difference
operator would not be uniformly one-sided. Thus in that case, the introduc-
tion of central differencing in (7) would not complicate the already-tridiagonal
preconditioning matrix.

When infinite timesteps can be used stably, the implicit algorithm becomes
Ag Un+1 = Ag u" — Blg u”. (8)

In this form, the iteration is identified to a particular version of the De-
fect-Correction algorithm [5]. For § = 0, this algorithm has been thoroughly
investigated in [1] [2]. A major result of that analysis is that the spectral radius
of the corresponding iterative algorithm is independent of the mesh size Az
and of the upwinding parameter 3, and is equal to 1/2. The aim of the present
contribution is to present an analysis of the cases corresponding to 6 # 0 and
thus investigate possible variants of the basic Defect Correction algorithm. For
this, we introduce the amplification matrix G' for which

u"t = Gu"+b (9)

INRIA



Analysis of Defect-Correction Algorithms 7

for some constant vector b that accounts for the known right-boundary value
of u. One has :

G=1-A;'"By=1-[1-0) 5l+eag]’l (1 8)65 + BoY] (10)

Let {gm} (m : mode index) denote the eigenvalues of matrix G, and p the
spectral radius so that

p=max | gm |, (11)

in which
Im =1— A (12)

where ), is the generic eigenvalue of the following generalized eigenproblem :

{la=8)0¢ +poY] —=A[(1=0)6 +0565]} u=0 (13)

The identification of the best preconditioner in our formulation relies on the
solution of the above generalized eigenproblem. The formal solution to this
problem is given in the next section and the sensitivity of the iteration conver-
gence rate assessed. Next, we examine how the preconditioned set of discrete
equations can itself be solved iteratively by using an appropriate “annihilation”
strategy. Finally, a numerical study of the spectral radius corresponding to an
analogous two-dimensional model problem is presented.

2 One-Dimensional Analysis

2.1 Eigenvalues

For the one-dimensional model problem, the spectrum of eigenvalues of matrix
G has been calculated formally for 6 # 0 (see appendix A.1). If N denotes the
number of points of the discretization, w,, = mn /N, and

33— \/1+8ﬂ—4ﬂsin2wm(1—ﬁ)

Orm :
2 + Bsinw,,

RR n2831



8 M.C. Ciccoli & J.A. Désidéri

(m=1,..,N — 1), these eigenvalues are given by :

=By + 2icoswp v/ =0
Im = (2 — 9)2
if 0 <0 <86, and
=By +2coswnVon

if 8, <0 < 1, where :

B, =—(2-0)(1—-28—-10) + 280 cos* w,
6m = —(B2sin®w,, + 28)6% + 630 — 45(1 — )

Fig. 1 and 2 illustrate this result for several values of # in the case where
N = 30, 8 = 1/3. (A verification of these formulae was made by direct
numerical computation of the eigenvalues using a library routine.)

2.2 Spectral radius

The spectral radius of the amplification matrix is the parameter that controls
the algorithm convergence rate. The optimum preconditioner is associated
with the minimum spectral radius.

Firstly, in order to optimize 6 for a fixed value of § = 1/3, the values of the
spectral radius p for N =9 and for different values of # have been collected in
the following table :

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 10.8| 09

0.473 | 0.447 | 0.418 | 0.387 | 0.353 | 0.315 | 0.618 | 0.995 | 1.4 | 1.88

2.5

Table 1: Spectral radius depending on 6§ (N =9, f=1/3)

In this case where N is finite, the spectral radius achieves one minimum visibly
attained for a certain 6 between 0.5 and 0.7.

INRIA
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Analysis of Defect-Correction Algorithms 11

Secondly, in the following table, the values of the spectral radius correspon-
ding to different numbers of discretization points are given for a fixed value of
f=1/3and § =1/2:

N 4 9 19 29
p | 0.2484 | 0.3155 | 0.3293 | 0.3316

Table 2: Spectral radius depending on the number of points
(B=1/3,0=1/2)

We observe that the spectral radius rapidly reaches a limit value as N increases.
Thus, in the remaining of this section, we only consider the “limit spectral
radius” (as N — oo) which is calculated in Appendix A.2. Given [ and 6, the
maximum eigenvalue modulus in the subset of eigenvalues for which 6 > 8, is
given by :

—(2-0)(1—0)+48+2/B(48 —2(2 - 0)(1 - 0))
(2-0)

and the maximum eigenvalue modulus in the subset of eigenvalues for which
6 < 0,, is instead :

pz(ﬂ,é’):{ JA—02+43(8+0-1)/(2-0) HB+0-1>0

pl(IB’ 0) =

(1-0)/(2-10) ifg+60-1<0
Of course, the (limit) spectral radius p(f, ) is the following maximum :
p(ﬂae) :max{pl(ﬁag)apQ(/Bae)} (14)

In particular, for # = 0, as expected, one gets p(/3,0) = 1/2. To illustrate this
result, the variation of the spectral radius p with # is plotted on Fig. 3 for
f=1/3 and g =1/2.

2.3 Optimal preconditioner

Our aim is to identify, for a given (3, the best preconditioner A,. Refering to
Appendix A.3, the optimal # that minimizes the spectral radius of G is :

_3- 1187
=T

0*(8)

RR n2831
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Figure 3: Spectral radius depending on 0 (8 =1/3 and 8 =1/2)
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Figure 4: Optimal 6 (*) and optimal spectral radius (p*) depending on

and the corresponding spectral radius is :

p(8) = p(B,0°(8)) = %

On Fig. 4, the optimal # (6*) and spectral radius (p*) is plotted versus 5. We
observe that for # = 0, the best preconditioner is obtained for § = 1. This
is not surprising, since the present formulation permits the central difference
operator to be preconditioned by itself and this is trivially optimal (p = 0).
For # = 1, the optimal preconditioner is obtained for § = 0, which means
that the second-order upwind difference operator is optimally preconditioned
by the first-order upwind difference operator, which is less intuitive. For g =
1/3, 1/2, 2/3 the following optimal values have been found :

RR n2831
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Figure 5: Spectrum of G for # =1/3 and 6 = §*

3] 1/3 | 12 | 2/3 |
6* 1 0.5425 | 0.3819 | 0.2417
p* 10.3138 | 0.3819 | 0.4313

Table 3: Optimal 6 and optimal spectral radius depending on 3

In the most interesting case 3 = 1/3, the spectral radius decreases from 1/2
(obtained with 6 = 0) to 0.3138 when the optimal preconditioner is used. In
the case § = 1/2, it decreases from 1/2 to 0.3819. Therefore, in both cases,
the convergence of the algorithm is somewhat accelerated by the use of the
optimal preconditioner.

The spectrum of G corresponding to § = 1/3 and 6 = 6* is plotted on
Fig. 5. Note that in general (for any (), if # = 6*(f), the nonzero eigenva-
lues of G are situated in the complex plane on the circle of center Cqg = —(3 +

482/ (1448 + /T+8B) and radius Rg = 8 (3 — VI +88) / (1 +48+ VT +8B).
Note that the parameters # and p converge rapidly to their limits as the

number of discretization points /N increases, as shown on Figs. 6 and 7 for 6
and p respectively. For example, for N = 29 the relative difference between the

INRIA
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Figure 6: Optimal § depending on the number of points; = 1/3

optimal value for finite N and the limit 6* is near 4 10~* and correspondingly
for the spectral radius near 5 1073.

2.4 Convergence acceleration

Examining again Fig. 5, it is remarkable that the subset of the spectrum made
of the nonzero eigenvalues of the amplification matrix G is very localized, and
in the neighborhood of a real number. In such a case, after application of
the basic iteration to remove the error components along the eigendirections
associated to zero eigenvalues, the iteration can easily be accelerated by over
(or under) relaxation which can be viewed as a particular case of application of
an eigenmode annihilation technique (see for example [6]). Without changing
the fixed point, the iteration is then replaced by :

" = (I —7A) u" + b (15)

in which the matrix A is defined as A = I — (G, and the number 7 is the
relaxation parameter (or pseudo-timestep). Since, the eigenvalues of A are

RR n2831
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Figure 7: Optimal spectral radius depending on the number of points; 3 = 1/3

situated on a circle of center Cy =1—Cq =1+ —43%/ (1 +408+ 1+ 85)
and radius R4 = R¢ (given above), i.e. a small number, it is natural to pick :

which is a real number.

As a result, the spectral radius of the new iteration is given by :

FB) =, max 1= /O (a7
where {\,,} (m =1,.., N — 1) are the known eigenvalues of A. One has :
1= An/Cal = (1= (C+ RacoS Wy +iRasin wy,) /Cal = %
A
B(3 —/T+8P)
_ 1+48+V1+8p _ B(3 —+/1+8p)
145 45 1458+ (1+8)v/1+88
1+48++1+38

INRIA
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Thus

£(8) = — 28— vIx5)
1+58+(1+08)V1+83
For example, for 3 = 1/3, the reduction factor is f(1/3) ~ 0.07. This

implies that only 5 iterations are sufficient to reduce the error of 6 orders of
magnitude.

3 Solution of the Preconditioned Implicit Equa-
tions

After optimizing the global iteration (or pseudo-temporal integration) that
yields the sequence {u"}, we now turn to the question of how is the linear
system solved at a given iteration. The system to be solved is :

Agv=yg
where : v = u"™ and g = (49 — Bg) u™.
One possibility is to solve by a multigrid technique as in |7] which is ef-
ficient but complex in applications other than model problems. Alternately,
we propose here to solve the system by relaxation, using again but in a more

general form, a strategy of eigenmode annihilation. Here, the eigenvalues of
Ay are situated on a segment in the complex plane :

A =1—0+1i4/6(2—0)cos wn,

(see Fig. 8). Following [6], two complex conjugate pseudo-timesteps 7,7 are
selected such that their inverses are representative of the above spectrum,

namely :
-1
= (1—eir,/9(2—9)z’)

where r € [0,1]. Then, without changing the fixed point, an iterative cycle
made of two substeps is constructed :

fu(a+1) — (I — TA@) U(O‘) + Tg

V@2 = (I —7Ap) vt +7g

RR n2831
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The two substeps being conjugate to one another, it is easy to show that the
resulting cycle can be implemented as a predictor-corrector sequence using real
arithmetics only [6].

As a result of the above definitions, one application of the cycle has the ef-
fect of reducing the error component along the mth-eigenmode of the following

factor :
Gulr) = (1= A1 =) = E 0B O

where ,, = cos w,,. To simplify the analysis, 7, is replaced by a parameter
7 varying continuously in the interval [0,1] and g, (r) by :
, (r* =162 - 6)
g (Ta 7) = — N\2 2 _ .
(1-0)2+17r20(2—-10)

Optimality is achieved by solving the following min-max problem :

min max |g' (r, )|

r€(0,1] v€[0,1]
whose solution is given by :
1 ) 1—292
x_ d N~  “im
r V2 an 9 (") 1+ 2w?

where w = (1 — 0) /1/0(2 — 0), yielding the following reduction factor :

1—-2y]  cos2w
1+2w? 14 2w?

! !
o a% 9l = |91 =

Thus, in the limit N — oo, the spectral radius of the annihilation cycle tends
to :

1 1-(1-0)
142w 14 (1-6)2

py(0)

and the cost-equivalent spectral radius per iteration is
24(0) = Jh(0) = | =1 =0)
2 2 14 (1-6)2

RR n2831



20 M.C. Ciccoli & J.A. Désidéri

(the unit of cost being one Jacobi-type iteration). We observe that it suffices
that 0 < 6 < 1 to ensure iterative convergence since then

0<py(0) <1
In particular, one can let 8 = 6*(3) so that :

) = 1—-484+1+8p
P 34— T+ 8

For f =1/3, we get : p5(0*) ~ 0.65. In this example, 20 cycles (or 40 equi-
valent Jacobi-type iterations) are sufficient to reduce the iterative error in the
solution of the linear system to 4 orders of magnitude. Thus, this algorithm
provides us with a way to solve the linear system but its convergence rate is
rather mediocre.

!

One way to improve it consists in using a larger number of annihilation
parameters. For instance, to better annihilate the spectrum of Ay which lies
on a segment, one can form a cycle with 3 pseudo-timesteps. For this, the
inverse of the midpoint of the segment can be added to 7 and 7. This midpoint,
C =1-—0, is a real number and therefore, the additional substep is a simple
over-relaxation. For the new cycle, the reduction factor associated with a given
mode m is :

In(r") =1 =7An)(1 = TAm)(1 = An/C)

1—2v2 1—0+1iy/0(2—0)ym
—__“m[q_
1+ 2w? 1-10

_1—27% (/02 —0)
T1xom2 {129 ™

The maximum value of |g/,(r*)| (m =1, N —1) is reached again for m = 1 and
the spectral radius of the annihilation cycle becomes :

Co 1= (1-6)2/0(2-0)
) =T a e 1-0

INRIA
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while the cost-equivalent spectral radius per iteration is :

. 1—(1-6)24/0(2—0)
p3(9):(1+(1—9)2 1-9 )

1/3

Note that p4(6) < p5(0), VO < 1. For instance, for § = 1/3 and 6 = 6*(1/3),
we get p5(0) ~ 0.34 while p}(0) ~ 0.65 and p§(6) ~ 0.7 while pf(0) ~ 0.8. This
reduction of the spectral radius allows us to compute only 8 cycles instead of
20 previously (or 24 equivalent Jacobi-type iterations instead of 40 previously).

Of course, even more complicated annihilation algorithms such as those
proposed in [6] or [8] could be devised to improve the efficiency of the solution
of the linear system.

4 Two-Dimensional Analysis

In order to investigate some of the effects of the spatial dimensionality, we
consider in this section the following two-dimensional linear hyperbolic model
problem :

U+ Cptly ety =0 (e >0, ¢,>0) ((z,y)€[0,1] x[0,1]; t>0)

u(z,y,0) = u’(z,y)

u(0,y,t) = u(zx,0,t) = const.

(18)

The mesh is assumed to be uniform, the number of discretization points along
the coordinates axes are denoted N, and N,, and one lets : v, = ¢,/Ax and
vy = ¢y/Ay. The stencils of the first-order, second-order central and upwind
(here backward) operators write :

0 0
=V Vatvy O0|=|—-ve ve+rv, 0
—Vy Uy
Dy
(520 =l -v, 0 1
—.

RR n2831
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0
1 0
& ==v. —dv, 3Wwa+v,) 0 0
2
—4uv,
Uy
Thus, the stencil of the preconditioner is :

6

0 0
g=-onrof=|(5-1)n  @-Dwrw)  Gu

¢

whereas for the (partially-upwind) second-order difference operator :

0
(1= By
55 = (1-8)65+ 367 = % Bv, —(1+38)v, 3Bw.+v,) (L—-Pv. O

—(1+30)y,

Bry

We have not been able to express the formal solution to the generalized
eigenvalue problem in this two-dimensional case. Instead, a numerical study
of the eigenvalues has been conducted whose results are presented here.

Several observations can be made on the 2D case compared with the 1D
case. For all B and 0, we first observe that

pzD(ﬂ, 9) > P1D(ﬁa 9)

This is because the 2D spectrum always contains the 1D spectrum.

INRIA
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The 2D spectrum of G corresponding to a 9 X 9 points discretization is
plotted on Figs. 9, 10 and 11 for = 1/3 and for several values of 6.

It is when v, = v, that dimensionality has the greatest effect. In this case,
for N, = Ny, pap(5,0) = p1p(5,0) for certain values of § and 6, as illustrated
on Fig. 12 for N, = N, =9 and f =1/3,1/2 and 2/3. For 8 =1/3, pap = pip
for 0.3 < 6 < 0.8 and for f =1/2 or = 2/3, pop = p1p for 6 < 0.8. But
the more important consequence is that, in this case, the optimal # and the
spectral radius are the same as in 1D.

If now v, = v, but N, # N,, the 1D and 2D optimal discrete § and spectral
radii differ, as shown in the following table for § = 1/3, N, = 9 and different
values of N, :

N, 9 | 19 | 29 |
0" | 0.5456 | 0.5444 | 0.5442
p* [ 0.298 | 0.304 | 0.305

Table 4: 2D optimal 6 and spectral radius versus N, (N, =9; v, = 1)

The trend of variation of 6* and p* as N, increases indicates that these
parameters admit limits, but no calculations with larger values of IV, were
made to confirm this. One can observe in the following table that for N, # N,,
the optimal values of the parameters are always between those associated with
the N, x N, and N, x N, discretizations :

| Nox Ny | 9x9 | 9x29 [ 29x29 |
0* 0.5456 [ 0.5442 [ 0.5428
o 0.298 | 0.305 | 0.3123

Table 5: 2D optimal 8 and spectral radius
for different domain discretizations (v, = 1)

Therefore the limit optimal values of the parameters (as N, — 00), are also
the 1D theoretical limits.

RR n2831
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Figure 9: Spectrum of matrix G for #=1/3 and 0 < 6 <
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Figure 12: Comparison of the 1D and 2D spectral radii depending on 6; g =
1/3,1/2,2/3
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In the case where v, # v, 0" and p* are not the same as in 1D, but their
limits (as N, x N, — 00) are observed to be the same, as indicated by the
following table made for v, = 100y, :

| Nox N, | 9x9 | 29x9 | 9x29 [ 29x29 |

0 0.5444 | 0.5413 | 0.5442 | 0.5426
P 0.2983 | 0.3131 | 0.2985 | 0.3142

Table 6: 2D optimal 8 and spectral radius
for different domain discretizations (v, = 100v,)

We observe from the following table that the variation of the discrete opti-
mal values as the ratio v, /v, varies (assuming N, = N,) is not regular; howe-
ver, the trend indicates that the quantities reach limits that are the same as
those obtained with v, = v, and also the same as in the 1D case for N, = N, :

[v./v,| 1 ] 100 | 1000 | 10000 | 100000 |

0 0.5456 | 0.5444 | 0.5452 | 0.5455 | 0.5456
o 0.2978 | 0.2983 | 0.2981 | 0.2979 | 0.2978

Table 7: 2D optimal 8 and spectral radius
for different mesh aspect ratios v, /v, (N, = N, =9)

In all the cases we have described, the 2D limit optimal discrete values as the
number of unknowns increases, are the same as the 1D discrete values.

The overall conclusion of this numerical identification of the spectrum of
the amplification matrix GG is that the optimal preconditioner identified in the
one-dimensional case is optimal or close to optimal in the two-dimensional case
also, so long as the number of degrees of freedom is large, or the mesh aspect
ratios v, and v, very different in magnitude (v, /v, > 1 or < 1).

5 Conclusions

Preconditioners for a family of second-order (and one third-order) partially
upwind approximations of hyperbolic equations, similar to those commonly
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employed in the discretization of the Euler equations have been proposed and
their efficiency evaluated formally in the cases of pure-advection linear model
problems. In addition, iterative algorithms have been proposed for the solu-
tion of the implicit system to be solved at a given (pseudo-timestep) iteration.
Techniques of eigenmode annihilation have been shown to be potentially effi-
cient to accelerate these algorithms also.

The results have been somewhat extended to the two-dimensional case by
solving numerically the generalized eigenvalue problem. Basically, the precon-
ditioners identified in the one-dimensional case remain potentially efficient in
the case of two dimensions.

Several possible sequels of this study can be considered. The next step in
our investigations will be to conduct experiments on nontrivial hyperbolic pro-
blems such as the solution of the Euler equations. Possibly more efficient algo-
rithms could be constructed to solve the linear system. The one-dimensional
analysis could also be extended to another type of preconditioners or to hi-
gher-order discretizations or to parabolic equations.
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A Eigenvalues of the amplification matrix in the
1D case

The eigenvalues are calculated in the way introduced in [2] and [1].

A.1 Eigenvalues

The amplification operator G of the defect correction iteration is given by
-1
G=T-A'By=T—-[1-0)6,+005] [(1-8)o5+pdY].

The eigenvalues A and corresponding eigenfunctions u, of G satisfy the rela-
tion :
Bﬁ Uy = (1 — )\)Ag U

that is :
[(1— 88+ BoY]ur = (1 N [(1— 0) 6, + 055 un
Substituting

in the above equation gives :
B2+ (=38 — 1)~ + 3 + (1 = B! =
0\ . 0.
2(1—=2) ((—1 + 5) w4+ (1—-0) + E,uﬁ_l
or :

(1—=8—(1=X0)p*+ (36— 2(1— A)(1 —0)) >+
(—B8+1)+(1-N2—0)p+B=0

The solutions of this equation are y = 1 (corresponding to A = 0) and 1, po
roots of the following 2nd-order equation for y :

1=-B-0=-XN0p*+28+22-1+1 =) p—B8=0 (19)

pu, prz €@, iy # pig and |pg| = sl give pp = e, w # 0 ().
From (19), we can write :

i fly = _/B :,u2€2iw
2o —a-xng ™
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Denote z € @ such that :

2 _ﬁ —2iw 2 —2iw
= =z
M= 10" ‘
i1 and pp write : .
= Ze—zw’ Uy = 2o

From (19), we can also write :

28— 2A+1—(1—\)
1-8—(1- N0

P14 e =22z cosw =

which yields :
2B =20 +1—-(1-A)0

°T 20 —-p8—(1—A)f)cosw

Thus, z verifies :

, [-28-22+1—(1-X0]"

—p
21 —-8—(1—A)f)cosw - 1-p—-(1-X)6

This equation gives us the following condition on A :
(=28 — 22+ 1— (1= XN)0)’ =48cos’ w(—1+ B+ (1 — \)b)

Let us note
v=1-—-)\

v has to verify :
(=1 =28+v(2-10))* = —4Bcos* w(l — B — vh)
in other terms :
(2—0)%% - (2(2 —0)(1+28) + 456 cosZw) v+ (1426)2 +48(1—B) cos’ w = 0
The discriminant of this equation is :

A =16cos?w (—4ﬂ + 432 + 680 — 2362 — 20 sin? w)
=16cos’w X 6

RR n2831
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where

§ = —(B%sin’w + 28)62 + 650 — 45(1 — B)

0 being given, the sign of § has to be identified depending on 6. Define :
©(B,0) = —(6%sin’* w + 28)6° + 680 — 453(1 — 3)
We notice that

#(8,0) = —4B(1 - B) < 0
2(B,1) = B(4 - sinw) > 0

Let us solve :
0(B,0) = 0 < (B*sin’* w + 20)0*> — 680 + 43(1 — ) = 0
The discriminant is :
D =44 + (32 — 16sin’ w) 3% 4+ 164*sin’ w > 0

The roots 0; and 0, are :

B 3—\/1+8ﬂ—4ﬂ sin®w(1 — B)

b, — 3+\/1+8ﬂ—4ﬂsin2w(1—ﬁ)
2 + fsin®w N

r? 2 + Bsin®w

1

Remark that :
0< 91 < 1, 92 >1

Thus, if 0 < 6 < 0y, then § < 0 and

2(2 — 6)(1 + 2B) + 4660 cos® w £ 4i coswy/—§
2(2— 6)?

UV =

whereas, if ; < 0 < 1, then § > 0 and

2(2 — 0)(1 + 2p8) + 436 cos’w £ 4coswVé
2(2 — §)?

V=
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As a result, the eigenvalues {g,,} of G are defined by :

(2—-0)(1—28—0) — 286 cos® wp, + 2i coS W/ —0m
" 207

if0<6 <60, and

it ,, <0

and m =

(2—-0)(1—28—10) — 280 cos® Wy, + 2 oS Wm0,
" 26y

< 1, where

Wm =mm /N
o 3— \/1+8ﬁ—4ﬁsin2wm(1—ﬂ)
"o 2 + Bsin® wy,
6m = —(B%sin® w,, + 28)0% + 630 — 43(1 — )

1,.,N—1.

A.2 Spectral radius

For a given 6, let K be the index such that :

01 = 91\[,1 < 02 = QN,Q... < HK = QN,K <f< 9K+1 = GNfol < ... < 0]\7/2

Then, form=1,., Kandm=N—-K,...,. N — 1,

and

whereas,

RR n2831

(2—0)(1—28—10) — 280 cos® Wy, + 2 cos w0,
9m = (2 — 9)2

‘(2 —0)(1—28—6) — 266 cos? w,, + 2coswm\/(5m‘
|gm|_ (2_9)2
form=K+1,.,.N—-K -1,

_(2-6)(1—28—0) — 260 cos® wn + 21 €08 WV =0
gm = (2 - 0)
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and instead

on| = \/((2 —60)(1 =20 —0) — 260 cos? wy)? + 4 cos? Wy (—6m)
Il = 20y

\/(1—0)2+4ﬂsin2wm(5+0—1)
2—06

Let us put :
pl(ﬂaa) :maX{‘gm‘ ;me {1a2a---aK}U{N_KaN_K_l_l:---aN_l}}

and
o2(5,0) = masc{|gnl ; m € {K +1,K +2,..,N— K —1}}
To determine p;(8,60), let us denote ¢ the function :
o: (-1,1) - R
t o (2-6)(1—28—6) — 2608
+2ty/—(B2(1 — £2) + 2B3)62 + 680 — 45(1 — B)

$(—1) = (2—0)(1—28—10) — 280 — 2,/—286% + 630 — 43(1 — B)
=(2-0)1-0) 48— 2\/B(4B - 2(2 - 0)(1 - 0)),

6(1) = (2-0)(1-6)—48+2,/8(48—2(2-6)(1-90))
Remark that 45 — 2(2 — 0)(1 — 6) > 0. Thus (2 —6)(1 — 0) — 48 < 0 and
o(—1) < 0.
Now observe that :
0<(2-0)%(1-0)?,
1662 —86(2—0)(1 —0) < 166> —8B(2—0)(1 — 0) + (2 — 6)*(1 — 6)?,
A48 —2(2—-0)(1 —0)) <1653* —8B(2 - O)(1 — 0) + (2 — 0)*(1 — )%,
2/B (48 —2(2 - 0)(1—0)) <48 — (2—0)(1 - 0).

Therefore, ¢(1) is negative.
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Denote D(t) = —(8%*(1 — t*) + 26)0* + 630 — 43(1 — 3). The derivative of
¢ is expressed by

2ﬂ292t2

¢ (t) = —486t + 24/ D(t) +
(t) (t) m

¢'(t) has the same sign as —280t\/D(t) + D(t) + B*6*t> = (y/D(t) — 56t)>.
¢'(t) is therefore positive. Thus, the maximum of |¢(¢)| is attained at t = —1.
This implies that

p1(8,0) =gy

‘(2 —0)(1—28—60)—280cos* wy_1 + 2cos wN,l\/(SN,l‘
(2-10)°

—(2 — 9)(1 — 2/6 - 9) + QﬁQCOSZ WN_1 — 2COSLL)N_1 6N_1
(2-10)

On the other hand, the maximum of {|gx41|, ..., |gv—r—1|} is attained at N/2
iff+60—-1>0and at K+ 1if 4+ 60 —1 < 0. Consequently :

VL= 0)2 +4Bsin® wy (B +60 — 1)

ifB+0—1>0
P(5:0) = Ja 9)2+4ﬂ2‘_29 (B+0-1)
— SN wW -
2_0“1 f8+0—-1<0

A.3 Optimal 6
Observe that :

—(2-0)(1-0)+45+2/B(48-2(2-0)(1 - 0))

:01(/8’ 9) - (2 . 9)2
and : 1—g
Pz(ﬁag) < m

if 3+6—1<0, and

NP e
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if+6—-1>0.
Note that if 5+60 —1 <0, pi(8,0) is defined if

0>0,=

3~ /1480~ 4psin’ w (1 - B)

2+ ﬁsin2 W1

and, in this case,

pZ(ﬁa 9) S pl(ﬁa 9)

Therefore, the minimum spectral radius is achieved by letting

and

9§91=

B+O-1<0
3—\/1+8ﬂ—4ﬂsin2w1(1—ﬁ) N 3—V1+85
2+ Bsin’® wy B 2

We verify that 6; < 1 —  which implies that :

p<1

4p? < 4P

1+48+4p*<1+8p3

14+28< 1484

— 1
ﬂ <1-8
2

Consequently,

p(ﬂa 0) = p2(ﬂa 0) =

¢a—0y+45$ﬁwﬂﬂ+9_1)N1_g

2—0
1-0
From now on, we assume p(3,6) = — and 6, =
op(B,0) -1
o —@2-o "
Thus, the optimal spectral radius is obtained for
3—+vV1+8
o(p) = 2T

~ 50

3—V1+83
2

. Then :
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and is equal to

RR n2831

1-0" 1+86—1
p(0) = plB.0") = = = e
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B Eigenvalues of the preconditioner in the 1D
case

We first calculate the eigenvalues of Ay :
Aguy = duy, <— [(1—9)(51+9520]U)\:)\U>\

Substituting again (uA)j = 47 in the above equation gives :

0\ .0 .
(—1 + 5) W+ (=0 + ot = A

which simplifies to the following 2nd-order equation for y :

gu2+(1—6—)\)u—1+§=0 (20)

(A, ;) = (0,1) is one solution of this equation. For A # 0, the simultaneous
conditions

M1, K2 Ewa /'1’174”2’ ‘/"[’1‘:|/’L2|
hold when .
po = me*™ (w0 [r])

From (20), we can write :

0—2 i
pipy = —5— = pe’
2—0 _,.
2 _ — 2w
:ul_ 9 €
2_9—iw 2_92w
=1 e =1
/‘Ll 9 7 /’LZ 9
2= 2(—1+6+\)
p1 + o = 21 i —

Finally, we obtain the following eigenvalues of the matrix Ay :

A=1-0+1i/0(2—6)cosw
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so that
A?=1-6(2—-0)sin’*w

Consequently, the eigenvalues of the preconditioner A, D are :

1—-0—1i4/0(2—0)cosw
A=
1-0(2-0) sin’w

These eigenvalues are situated on the circle of center

1

“=31-9

and radius 1

=51-9
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