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Abstract: There is mounting experimental evidence that network traffic processes exhibit
ubiquitous properties of self-similarity and long range dependence (LRD), i.e. of correlations
over a wide range of time scales. However, there is still considerable debate about how to model
such processes and about their impact on network and application performance. In this paper,
we argue that much recent modeling work has failed to consider the impact of two important
parameters, namely the finite range of time scales of interest in performance evaluation and
prediction problems, and the first-order statistics such as the marginal distribution of the
process.

We introduce and evaluate a model in which these parameters can be easily controlled. Specifi-
cally, our model is a modulated fluid traffic model in which the correlation function of the fluid
rate is asymptotically second-order self-similar with given Hurst parameter, then drops to zero
at a cutoff time lag. We develop a very efficient numerical procedure to evaluate the perfor-
mance of the single server queue fed with the above fluid input process. We use this procedure
to examine the fluid loss rate for a wide range of marginal distributions, Hurst parameters,
cutoff lags, and buffer sizes.

Our main results are as follows. First, we find that the amount of correlation that needs to be
taken into account for performance evaluation depends not only on the correlation structure
of the source traffic, but also on time scales specific to the system under study. For example,
the time scale associated to a queueing system is a function of the maximum buffer size. Thus
for finite buffer queues, we find that the impact on loss of the correlation in the arrival process
becomes nil beyond a time scale we refer to as the correlation horizon. Second, we find that
loss depends in a crucial way on the marginal distribution of the fluid rate process. Third, our
results suggest that reducing loss by buffering is hard. We advocate the use of source traffic
control and statistical multiplexing instead.
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Pertinence de la dépendance a longue portée dans le trafic
réseau

Résumé : Quel est 'impact pratique de la dépendance & longue portée observée dans le trafic
réseau?

Un grand nombre d’études récentes ont mis en évidence le fait que le trafic observé dans les
réseaux a des propriétés tres générales d’auto-similarité et de dépendance a longue portée.
Ces propriétés sont souvent résumées par la formule (un peu abrupte) “le trafic est fractal”.
Cependant, il n’existe pas encore de consensus général sur la meilleure facon de modéliser ces
propriétés, et sur leur impact pratique. Malheureusement, les travaux récents de modélisation
n’apportent pas de réponse satisfaisante a ces questions. Nous pensons en particulier qu’ils
ne prennent pas en compte deux parametres importants, qui sont d’une part les statistiques
de premier ordre comme les distributions marginales, et d’autre part le fait que les problemes
d’évaluation de performance ne font intervenir qu’un nombre fini d’échelles de temps.

Nous développons et évaluons dans ce papier un modele dans lequel ces parametres peuvent
étre facilement contrélés. Notre modele est un modele de type fluide modulé dans lequel la
fonction de corrélation du débit du fluide est asymptotiquement autosimilaire (de deuxiéme
ordre) pour un parametre de Hurst donné, mais tombe brutalement & zéro & une valeur de
coupure du décalage. Nous développons une procédure numérique efficace pour évaluer les
mesures de performance d’une file d’attente de taille finie alimentée par ce modele de trafic.
Nous utilisons cette procédure pour évaluer une mesure de performance intéressante, a savoir
le taux de perte, pour un grand nombre de distributions marginales, valeurs du parametre de
Hurst, valeurs du décalage de coupure, et tailles maximales de file.

Nos résultats sont les suivants. Premierement, la mesure de performance dépend non seulement
de la structure de corrélation du trafic fluide, mais également de 1’échelle temporelle propre au
systeme étudié. Dans le cas d’une file de taille finie, cette échelle temporelle dépend de la taille
maximale de la file. En pratique, pour une file de taille maximale finie, nous observons que
I'impact de la corrélation sur le taux de perte devient nul au dela d’une échelle temporelle que
nous appellons horizon de corrélation. Deuxiemement, le taux de perte dépend trés fortement
de la distribution marginale du processus fluide. Troisiemement, il est difficile de réduire les
pertes simplement en augmentant la taille de la file. Nous proposons plutot d’utiliser des
mécanismes de contrdle de trafic et de multiplexage statistique.

Mots-clé :  Dépendence a long terme, auto-similarité, files d’attente, pertinence
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1 Introduction

Experimental data obtained from the observation of systems is typically considered for modeling
purposes as a realization, or sample path, of an underlying stochastic process. In practice,
statistical analysis of the data proceeds with the additional hypotheses that the process is
stationary and ergodic. Such analysis has shown that many systems of interest in the physical
world exhibit a property of correlation over many different time scales, often referred to as long
range dependence (LRD) or long memory. Some of the better known examples of such systems
are found in hydrology [1|. However, the phenomenon of LRD occurs in many other systems
including chemical, astronomical, and biological systems (see |2| for references).

In spite of much statistical evidence, the existence of LRD has often been met with resistance or
at least puzzlement. This was caused in large part by the absence of physical explanations for
the observed phenomenon. Hydrologists for example wondered “By what sort of physical me-
chanism can the influence of, say, the mean temperature of this year at a particular geographic
location be transmitted over decades and centuries?” |[3|. Two approaches then are possible.
One approach is to argue that the LRD observed in the measurement data is a consequence of
inadequate hypotheses, in particular the stationarity hypothesis, made about the underlying
process that (it is assumed) did generate the data. For example, the superposition of a process
with short range dependence (SRD) and an appropriately chosen on/off trend [3] or a hyper-
bolically decreasing trend [4] is difficult to distinguish from a stationary process with LRD.
Another approach is to not worry about a physical explanation and to develop and use models
that do exhibit LRD, on the grounds that a model is good not because it explains a pheno-
menon correctly, but rather because it provides good prediction ability and it is numerically
and /or analytically tractable.

Unfortunately, it is not possible to tell with certainty whether or not a realization is stationary.
Therefore, the jury is still out on which of the above two approaches is “the right one”. Clearly,
it is better for a model to match more properties of the data. However, a model is a tool for
decision making. Thus, its quality depends on the quality of the decisions it leads to rather
than on its closeness to physical reality.

The situation in the area of communication systems in general, and computer networks in
particular, is no exception to that described above. Careful statistical analysis of data collected
over a wide variety of networks has provided ample evidence that network traffic processes
exhibit properties of self-similarity and LRD [5, 6, 7, 8,9, 10]. However, there is still considerable
debate about how to model such processes. Different approaches have been taken that parallel
those taken in other areas and described earlier. One approach has been to argue that the
observed LRD may be due to non-stationarity in the data caused by the superposition of level
shifts [11] or Dirac pulses [12] with short range dependent (SRD) stationary processes. Another
approach has been to use stochastic models (such as fractional Brownian motion [13], zero-rate
renewal processes [14] and various other point processes [15]) or deterministic models (such as
chaotic maps [16]) that exhibit the LRD observed in the experimental data. However, these
models are analytically difficult to handle. Furthermore, they do not provide much insight into
why they are meaningful on physical grounds. This explains in part that much modeling work
still relies on more traditional multi-state Markovian models (e.g. [17, 18]).

However, recent work has shown that the superposition of many on/off sources with heavy-tailed
on- and off-periods results in aggregate traffic with LRD [19, 20|. Furthermore, there is wides-
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pread evidence that human as well as computer sources of traffic do tend to behave as heavy
tailed on/off sources 21, 8, 19]. Thus, LRD in network traffic can be explained simply in terms
of the nature of the traffic generated by individual sources.

This intuitively appealing explanation suggests that LRD will remain a salient feature of net-
work traffic even as network characteristics such as bandwidth and topology evolve over time.
Thus, the fundamental question for both current and future networks is that of the practical im-
pact of LRD on network and application performance. Not surprisingly, much effort has focused
on trying to answer this question. The main result is that the performance of queueing systems
with LRD in the input or service processes can be radically different from the performance of
usual Markovian systems [22, 20].

However, we believe that not enough work has considered the impact of parameters other
than the correlation structure of the traffic. Consider for example the asymptotic behavior of
an infinite queue fed with three different arrival processes that all exhibit the LRD property.
First, if the arrival process is a fractional Brownian motion, then the queue length distribution
is Weibullian. Second, if the arrival process is a single on/off source with heavy-tailed on and off
periods, then the queue length distribution is hyperbolic. Third, if the arrival process is a single
on/off source in which the off periods only are heavy-tailed, then the queue length distribution
decays exponentially [20, 23]. Thus, processes with the same correlation structure can generate
vastly different queueing behavior. Therefore, it is important to consider parameters other than
the correlation of the input process for accurate performance prediction.

Two such parameters stand out, namely the marginal distribution of the arrival process, and the
finite range of time scales of interest in performance evaluation and prediction problems. The
main goal of this paper is to evaluate the impact of these parameters, as well as the correlation
structure of traffic sources, on network and application performance.

To achieve this goal, we develop a model in which all three parameters can be easily controlled.
Specifically, our model is a modulated fluid traffic model in which the correlation function
of the fluid rate is asymptotically second-order selfsimilar with given Hurst parameter, then
drops to zero at a cutoff time lag. We then consider the behavior of a finite-buffer queue
fed with the above fluid input process. We cannot describe this behavior with closed-form
analytic expressions. However, we develop a very efficient numerical procedure to evaluate
various performance measures. In this paper, the measure of interest is the fluid loss rate, i.e.
the amount of work lost because of buffer overflow to the amount of work arriving at the queue.

Our main results are as follows. First, we find that the amount of correlation that needs to be
taken into account for performance evaluation depends not only on the correlation structure of
the source traffic, but also on time scales specific to the system under study. For example, the
time scale associated to a queueing system is a function of the maximum buffer size. Thus for
finite buffer queues, we find that the impact on performance of the correlation in the arrival
process becomes nil beyond a time scale we refer to as the correlation horizon.

Second, we find that the loss rate depends in a crucial way on the buffer size, but more impor-
tantly on the marginal distribution. An obvious consequence is that the marginal distribution
must be taken into account for accurate loss prediction. Another consequence is that control-
ling the loss rate by increasing the buffer size is inefficient. Instead, statistical multiplexing and
source traffic control are two much more efficient ways to achieve high utilization while keeping
loss low. The rest of the paper is organized as follows. In Section 2, we describe the model

INRIA
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and the numerical solution procedure. In Section 3, we describe the behavior of the loss rate
as as function of system parameters. In Section 4, we discuss the implications of our results.
Section 5 concludes the paper.

2 Model Description

In this section, we describe our modulated fluid traffic model and the numerical procedure we
developed to evaluate the behavior of a finite buffer queue fed with this input traffic.

Recall that the goal of the model is to examine the impact on the performance measure of
interest of parameters such as time scales and the marginal distribution of the traffic process.
Thus, we need a traffic model in which these parameters can be controlled easily.

Specifically, the source traffic model is described by a random process {X;} which represents
the fluid rate at time . We assume that X, takes on a finite set of possible rates {1, ..., Aar}.
Furthermore, we assume that the fluid rate process is piecewise constant. Thus, the rate remains
constant over intervals the lengths of which are determined by arrivals of a stationary point
process {7, }. We denote X; = A(n) for 7,, < t < 7,41. The interarrival times 7T,, = 7,41 —7,, are
i.i.d. with survival function Pr{7, >t} = Fr(t). Furthermore, the constant fluid rate A(n) is
i.i.d. with distribution Pr{\(n) = \;} = m;. For i.i.d. random variables, we drop the subscript
if this does not lead to confusion. Note that this model can be specialized into the familiar
on/off source model with identically distributed on and off periods.

The rest of this section proceeds in three steps. In the first step, we derive the covariance
function of the fluid process {X;} in terms of the interarrival time distribution Fr(t), the rate
matrix A = diag(A1, ..., Ay), and the marginal distribution of the fluid rate IT = (7, ..., 7).
In the second step, we derive the occupancy distribution at time 7, of a queue fed with {X;}.
In the third step, we use this distribution to derive the performance measure of interest here,
namely the stationary fluid loss rate.

The covariance function of X (t) is defined by
#(t) = B[XoX,] — (E[X,])* (1)

where

M M
E[X()Xt] = Z Z )\i)\jPI{XO = Az’,Xt = AJ}

i=17=1

M

=1
M-1 M

+2 Z Z /\iAjPI'{X() = /\iaXt = AJ}
=1 j=i+1

The first term on the right-hand side of (2) corresponds to the case when the source rates at
time 0 and at time ¢ are identical. To compute this term, we have to account for the case when
0 and ¢ lie in different intervals and the case when they lie in the same interval. Let p(¢) denote
the probability that 0 and ¢ lie in the same interval, or equivalently, that there is no arrival in
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[0,¢]. Then,
M
SNPH{Xo =N, X, = \i} =
i=1
M
= [1 —p(t)] ZWQ/\Q p(t) Y- mAL
i=1

The second term of (2) corresponds to the case when the source rates at time 0 and at time ¢

are different. Thus, there must have been a rate change (i.e. an arrival) in this interval, which
implies that X; and X, are independent. Therefore, Pr{X, = \;, X; = \;} = mym;. Also,

M-1 M
E[Xo] Zﬂ', i Z?’('Z)\2 +2 Z Z ﬂ'iﬂ'j)\i)\j. (3)
i=1 j=i+1

Combining the above results yields

o(t) = p(t) Zl mA; + [1 = p(t)] Zl i ZWW
= p(t)IIA’1" +[1 — p(t)|TA’TT" — HAZHT
= p(H)TIA%(1 — 1) (4)

Furthermore, it follows from renewal theory that the probability p(¢) is equal to the probability
that the residual life 7,¢s of the interarrival time 7,, exceeds ¢, which is given by [24, p. 172]

Pr{ne 21y = [0, (5)

We now consider the special case when the interarrival time distribution Fr(t) is a truncated
Pareto distribution defined by

FT(i):{ <#)_a ift<T, (6)

0 otherwise

where 1 < a < 2. We refer to this distribution as truncated Pareto because Fp(t) is a Pareto
distribution with parameters # and « for 0 < ¢ < T,. We refer to the parameter T, as the cutoff
lag.

Since the length T), of an interval cannot exceed 7T, and since the rates in consecutive intervals
are independent, it follows that there is no correlation in the fluid rate process beyond lag T..

We now compute the covariance function ¢(t) for the above distribution. We have

)=+t (T.4o)—ot! .
Pr{r,.s >t} = (t;—)‘*+l—(TE+0+)—l+1 ift<T,
- 0 otherwise

(7)

Therefore

(o) o0 Tt o2 e < T,

o(t) = HA2(1 — H)T % { 0 g aFT_(T,+§) o+l ®)

INRIA
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We observe that ¢(t) behaves asymptotically as ¢+ when T, — oo. This implies that {X;} is
asymptotically second-order self-similar with Hurst parameter H such that —a+1 = —(2—2H),
ie. H = ?’_To‘ [6]. When T, is finite, the model behaves like an asymptotic second-order
self-similar model for t < T,, but the correlation drops to zero at lag T..

In summary, our source model allows us to control the marginal fluid distribution II, the
time-scale 7, over which the correlation structure matches that of an asymptotic second-order
self-similar model, and the Hurst parameter H.

We next examine the performance of a queue with constant service rate ¢ and a finite buffer
B fed with the above source model. This queueing model does not appear to be analytically
tractable. However, we have developed a very efficient numerical procedure to determine the
queue occupancy at the arrival instants 7,,. Although this queue occupancy is not equal to the
queue occupancy at a random point in time, it is sufficient to derive our chosen performance
metric, i.e. the long-term loss rate.

Let ), be the continuous random variable describing the queue occupancy at arrival instant
Tn, and let W, =T, x (A(n) — ¢). W, represents the difference between arriving and departing
work in interarrival interval n. Note that the {I¥,,} are i.i.d. because T,, and A(n) are i.i.d. and
jointly independent. The queue occupancy is recursively given by

Qui1 = max(0, min(B, Q, + W,)). (9)

(Xn, @n) is a two-dimensional Markov process because X, and X,, ; are independent. Assuming
ergodicity, (X, @,) converges to (X, Qo) as n — 0o. Our goal is to derive upper and lower
bounds of the stationary density fg(x) of the queue occupancy. For convenience of notation, we
assume that A\; < Ay < ... < Ap < e < Apy1 < Ao < ... < Ay. We exclude the trivial case
when one of the fluid rates is equal to ¢, in which case the queue occupancy does not change.

The probability density of W, is given by

fw(w) = imdFT (/\ = ) (10)

i — C

From (9), we can compute the density of @, given the densities of @, and W. Let U, =
Q. +W,. Then
fu.(x) = fo.(x) * fw(z) (11)
where * denotes convolution. Then
fu. (@) + [[2 fu. (y)dyld(z)+
foui (@) = /5 fo.(y)dyld(z — B) if z € [0, B] (12)
0 otherwise
where §(.) is a Dirac impulse.

We know that fq,.,(z) = fg.(x) in steady state. Furthermore, @),, converges to this distribution
as n — o0o. Our numerical solution relies on computing an approximation of the stationary
queue occupancy distribution by discretizing (12).

We define two discrete random variables @, and Q4 in the following way. Let d = B/N be
the quantization interval size, where B is the buffer size and N a positive integer. Let

Ql n — dLQn/dJ

Qun = d[Qu/d] (13)
RR n°2830
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such that Pr{Q;, > 2z} < Pr{Q, > 2z} < Pr{Q@4, > x}. We denote their densities by

an(i) = Pr{Qu.=1id},i=0,...,N
(i) = Pr{Qn,=1id},i=0,...,N. (14)

The random variable U, is quantized in the same way. Furthermore, we define the following
vector

w(i) = Pr{W € [id, (i + 1)d)} (15)

Then (11) can be written as a discrete convolution for both the upper and the lower bound
N
(i) = Y aa()wi— )
j=0

Unn(i) = ;)Qh,n(j)w(i_j_l)' (16)

Deriving the discrete version of (12) is then straightforward.

A simple sample path argument shows that the queue occupancy at 7, for an initially full
queue is larger than or equal to the queue occupancy at 7, for an initially empty queue.
Therefore, initializing ;o and gno to an empty and full queue, respectively, and iterating (16)
will always yield a lower and an upper bound on the limiting queue occupancy. We have
found that in this approach, the upper and lower bounds converge rapidly to the limiting
occupancy (a graphical illustration of this is shown below in Figure 1). Nevertheless, it is
possible to improve the efficiency of the procedure by using a fast Fourier transform (FFT)
with appropriate zero-padding [25].

We can now derive a numerical procedure to compute the long-term stationary loss rate, defined
as the ratio of work lost to work arriving, from the stationary queue occupancy at arrival
instants. This is done as follows. The random variable W; = (W — (B — @))" represents the
amount of work lost in an interarrival interval. The loss rate [ is then

_ EW]
= XE[T] (17)
with B
EWi] = [ fo(@E[W - (B-Q)|Q =alda (18)
and
EWQ=1] = /Ooo Fyyjg=x(y)dy =
- [ B (BT,
/0 {i:Tco(A§)>B—m}7r g ( Ai — ¢ ) Y
A B—= —oa+1
= il 77— — Tt 19
a—1 {i:TCG(A§)>B—z} " (9()‘1' - C)) (19)

We can compute an upper and lower bound on [/ using the upper and lower bounds on the
queue occupancy derived above. We obtain

A3, a()EWIQ = q.(5)]
NE[T]

d 0 0 ()EW|Q = ¢ (i)]

<1< )2
== \E[T]

(20)
INRIA
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We have found that the above iterative procedure is quite efficient in terms of computational
complexity and that it yields tight lower and upper bounds with a reasonable number of itera-
tions. This is illustrated in Figure 1 which shows the upper and lower bounds for the queue
occupancy after 5, 10, and 30 iterations in a typical case when the queue has been discretized
using 100 bins (i.e., d = B/100).

o 5 iterations
10 T
o
el ’
10‘4 L L L L L i L L i
0 10 20 30 40 .50 . 60 70 80 90 100
10 iterations
0
10 T T T
10'4 L L L L L L L I L
0 10 20 30 40 . 50, 60 70 80 90 100
30 iterations
0
10 T T T T
107 i&%%m i
10’4 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 1: The upper and lower bounds on the arrival instant queue occupancy after 5, 10, and
30 iterations.

The efficiency can be explained in part by the fact that in each iteration of (16), we “jump”
from one arrival epoch to the next one without having to consider the details of the queueing
behavior during the entire interval.

3 Numerical Results

In this section, we present results of numerical experiments we have conducted using the model
and the analysis technique described above. The goal of these experiments is to evaluate the
impact on performance of various parameters of the model.

The performance metric we consider is the loss rate, i.e. the ratio of work lost due to buffer
overflow to total work arriving at the server. Other performance metrics would be of interest
as well. However, the loss rate is a very natural metric for finite buffer queues. Furthermore,
it relates to the tail distribution of the queue occupancy, which is the metric considered in
most of the analyses pertaining to infinite buffer queues!. We also note that the loss rate has
tremendous impact on both application performance (e.g. on the quality of the audio or video
delivered from a source to a destination) and network performance (e.g. on the number of
retransmissions required to achieve reliable communication).

!The overflow probability for a infinite buffer queue is an upper bound to the loss rate of the corresponding
finite buffer queue.

RR n~2830
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The parameters of interest here are the buffer size B (or rather the normalized buffer size,
which is equal to the actual buffer size divided by the service rate c), the cutoff lag T,, and the
marginal fluid rate distribution II. We let these parameters vary within ranges consistent with
practical networking situations. We use normalized buffer sizes of up to a few seconds. These
values are typical of currently available switches. For example, the Fore ATM 200BX /1000
switch has a per-port buffer of 13312 cells. Since the slowest available link on this switch is a
1.5 Mb/s T1 link, the maximum delay in the buffer is equal to 3.3 s. Higher link speeds would
yield correspondingly smaller delays.

We use marginal distributions of fluid rates obtained from traces of various traffic sources. In
this paper, we consider two traces. The first trace has been generated by JPEG-encoding an
NTSC TV channel (MTV) for one hour. The trace has been recorded on June 11, 1995, 14:59
EST. It includes 107892 frames, with a mean rate of 9.5222 Mb/s. The second trace is based
on the August 1989 “purple-cable” Ethernet trace collected at Bellcore [6]. Each trace element
is a rate averaged over a 10 ms interval.

Both traces have been found to exhibit long-range dependence (refer to [6] for a detailed analysis
of the Bellcore trace). This is visible in Figure 2, which shows the variance-time plot of the
MTYV trace. Estimations of the Hurst parameter from the variance-time plot (which has been
shown to be a relatively poor estimator [26]) yield Hyry & 0.83. The Hurst parameter for the
Bellcore trace is 0.9, compatible with the findings in [6].

o Variance-time plot for the MTV trace
10 T T T

variance

10’1 L I . I
10 10 10 10 10
frames

Figure 2: The variance-time plot of the MTV trace.

There still remains to match the marginal rate distribution of the traces to the fluid rate vector
IT. Figure 3 shows the marginal fluid rate distributions for both traces.  Recall that the
traces represent the amount of work arriving within constant-length time intervals (33ms for
the MTV trace, 10ms for the Bellcore trace). Thus, the marginal distribution vectors IT and the
rate matrices A are simply obtained from a constant bin-size histogram of the traces. We set
the number of bins to 50 in all experiments. We determine 6 in (6) as follows. We first compute
the average number of consecutive samples in the trace that fall within the same histogram

INRIA
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- MTV trace: marginal density
10 T T T

107 L L L L L
1 2 3 4 5 6 7

bits/frames x 10°
Bellcore trace: marginal density

L L L L L L
0 2000 4000 6000 8000 10000 12000 14000
bytes/10ms

Figure 3: The marginal distributions of the MTV and the Bellcore traces.

bin. We then set 6 such that the mean interval duration is equal to this value. We find from
the trace data that the mean epoch durations are quite short, specifically about 80ms for the
MTYV trace and 15ms for the Bellcore traces.

We have now completed the description of the setup for our numerical experiments. We next
describe the experiments proper.

We have carried out three sets of experiments. In each set, we examine our chosen performance
metric (i.e. the loss rate) as a function of two of the four parameters B, II, H, and T.. In
the first set, we consider the impact of the buffer size and the cutoff lag on the loss rate. In
the second set, we consider the impact of the Hurst parameter and the marginal distribution
on the loss rate. In the third set, we consider the impact of the buffer size and the marginal
distribution on the loss rate.

In the first set of experiments, we examine the impact of buffer size (or rather normalized
buffer size) and cutoff lag on the loss rate. Figure 4 shows the loss rate for the MTV trace
with a utilization equal to 0.8. Figure 5 shows the loss rate for the Bellcore trace with a
utilization equal to 0.4. For clarity of presentation, the figures only show the upper bound for
loss computed from (20). However, the discretization interval has been chosen small enough
that the upper and lower bounds are essentially indistinguishable except for loss rates smaller
than 1010,

The figures bring out two important results. First, we observe that there exists a correlation
horizon (CH) for each buffer size, such that the loss rate is not affected if the cutoff lag increases
beyond CH. An important consequence of this is that it is sufficient for a model to take into
account correlation up to this correlation horizon to accurately predict loss.

Second, we observe that the rate at which the loss rate decreases as the buffer size increases
depends on the value of the cutoff lag. For small cutoff lags, the decrease is approximately
exponential. However, as the cutoff lag increases, the rate of decrease actually decreases. This
is an illustration of the “buffer ineffectiveness” phenomenon also reported elsewhere (e.g. [27]),
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Loss rate as a function of normalized buffer size and cutoff time (MTV, util=0.8)

log10(loss rate)

20

norm. buffer size [s] cutoff [s]

Figure 4: The loss rate predicted by the model for the MTV trace as a function of normalized
buffer size and cutoff time, at utilization 0.8.

Loss rate as a function of normalized buffer size and cutoff time (BC, util=0.4)

log10(loss rate)

15 4

norm. buffer size [s] cutoff [s]
Figure 5: The loss rate predicted by the model for the Bellcore trace as a function of normalized
buffer size and cutoff time, at utilization 0.4.

whereby increasing buffer sizes beyond a certain value only slightly decreases loss rates. Note
that this phenomenon is not unexpected, since an input process with non negligible correlation
over long lags generates occasional bursts of traffic that cannot be absorbed even by very large
buffers. In such a case, decreasing the loss rate should be done by lowering the utilization or
by statistically multiplexing several streams [28].

Recall that the cutoff lag T, eliminates correlation in the input fluid process beyond a lag equal
to T.. Thus, its impact is similar to that of the “external shuffling” procedure described in [22].
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In this procedure, a time series representing a realization of a process is divided up into blocks
and the blocks are shuffled. However, the structure of the time series inside a block remains
unchanged. Thus, external shuffling removes correlation from the series beyond a lag equal to
the length of a block.

It is natural to compare the numerical results to those obtained by external shuffling of the
input traces. We have carried out this comparison for both the MTV and the Bellcore traces.
Figures 6 and 7 show the loss rate as a function of buffer size for different values of the shuffle
block size (which is referred to as “cutoff” in the figures). We observe that the loss predicted
by the model is very close to that obtained with shuffling and simulation for the MTV trace.
The agreement is not so good with the Bellcore trace. The discrepancy is probably due to the
fact that the residence time distribution for the fluid rates is not matched well enough in our
model for this trace. The main results, however, namely the existence of a correlation horizon
and the buffer ineffectiveness phenomenon for large values of the cutoff lag, still hold in both
figures.

Shuffle loss rate as a function of normalized buffer size and cutoff time (MTV, util=0.8)

log10(loss rate)

20

norm. buffer size [s] cutoff [s]

Figure 6: The loss rate obtained with shuffling for the MTV trace as a function of normalized
buffer size and cutoff lag, at utilization 0.8.

In the second set of experiments, we examine the impact of the marginal distribution and the
Hurst parameter on the loss rate. To do this, we examine two transformations of the marginal
distribution, namely a scaling and a convolution transformation. The first transformation
scales the density of the marginal distribution by a constant factor «, while keeping the mean
A = [IA1T constant. Thus, we simply replace )\; with A = X + a()\; — A). Figure 8 shows the
loss rate for H in the range (0.5,1.0) and « in the range (0.5,1.5). The normalized buffer size
is set to 1 s. The cutoff lag is set to 100 s. Referring to Figure 4, we note that this cutoff lag
is considerably larger than the CH.

The second transformation convolves the original distribution n times and renormalizes it to
the original mean. Note that this transformation amounts to considering the superposition of n

RR n~2830



Matthias Grossgiauser Jean-Cnrysostome HLoLot

Shuffle loss rate as a function of normalized buffer size and cutoff time (BC, util=0.4)

log10(loss rate)

15

norm. buffer size [s] cutoff [s]

Figure 7: The loss rate obtained with shuffling for the Bellcore trace as a function of normalized
buffer size and cutoff lag, at utilization 0.4.

Loss rate as a function of Hurst parameter and marginal scaling (MTV, util=0.8)

log10(loss rate)
&

Hurst 05 05

marginal scaling factor

Figure 8: The loss rate predicted by the model for the MTV trace as a function of the Hurst
parameter and the marginal distribution scaling, at utilization 0.8.

of the original streams, where the buffer size and the service rate per stream are kept constant.
Figure 9 shows the loss rate for H in the range [0.55,0.95] and n in the range 1,...,5.

The figures bring out a very interesting result, namely that the impact of the transformations
on the loss rate is much greater than that of the Hurst parameter. For example, we observe in
Figures 8 and 9 that changing o from 1.0 to 0.5 or superposing 3 streams decreases the loss
rate by about 3 orders of magnitude. In contrast, changing the value of H has much less of an
impact on the loss rate.
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Loss rate as a function of Hurst parameter and number of superposed streams

log10(loss rate)

Hurst
Number of streams

Figure 9: The loss rate predicted by the model for the MTV trace as a function of the Hurst
parameter and the marginal distribution obtained by n convolutions of the original marginal
distribution, at utilization 0.8.

This result is confirmed in our third set of experiments, in which we examine the impact of
the marginal distribution and the normalized buffer size on the loss rate. Figures 10 and 11
show that small changes in the marginal scaling factor again yield dramatic changes in the loss
rate, more so than changes in the buffer size would do. For example, reducing the width of the
marginal distribution by a factor of two (from o =1 to o = 0.5) decreases the loss rate more
than increasing the buffer size even up to 5 s (which is an extremely large value in practice).

Loss rate as a function of normalized buffer size and marginal scaling (MTV, util=0.8)

log10(loss rate)

5 05 marginal scaling factor

norm. buffer size [s]

Figure 10: The loss rate for the MTV trace as a function of normalized buffer size and marginal
scaling factor for a utilization of 0.8.
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Loss rate as a function of normalized buffer size and marginal scaling (Bellcore, util=0.4)

log10(loss rate)

5 05 marginal scaling factor

norm. buffer size [s]

Figure 11: The loss rate for the Bellcore trace as a function of normalized buffer size and
marginal scaling factor for a utilization of 0.4.

The consequences of this are threefold.

The first consequence relates to modeling. Clearly, the marginal distribution is a crucial pa-
rameter and it must be taken into account for accurate loss prediction. This is in agreement
with results obtained by others using analytic approaches regarding the impact of the marginal
distribution on the tail of the queue occupancy in infinite buffers (e.g [23]).

The second consequence relates to multiplexing. Our result above, namely that superposing
even a moderate number of streams sharply decreases the loss rate, indicates that statistical
multiplexing is an efficient mechanism (more so than buffering) to achieve high utilization while
keeping loss low.

The third consequence relates to traffic control. Indeed, source traffic control mechanisms can
be thought of as modifying the scaling of the marginal distribution. Our result then indicates
that such control mechanisms (which we expect would typically be feedback-based) are effective
for loss control with LRD sources.

4 Discussion

We start this section by summarizing the key findings from Section 3. These are

- There exists a correlation horizon (CH) such that the loss rate is not affected if the cutoff
lag increases beyond CH. Thus, CH separates relevant and irrelevant correlation with
respect to the loss rate.

- Large buffers are helpful to significantly reduce the loss rate only for short-range de-
pendent traffic; for long-range dependent traffic, increasing the buffer size has little im-
pact.

INRIA



Un the nvetevance of Long-nange Lepenaence tn iNetwork 1rajfic L/

- The marginal scaling factor has considerable impact on the loss rate, even more so than
the Hurst parameter or the buffer size.

- Adjusting the marginal scaling factor by statistical multiplexing several streams or by
using source traffic control mechanisms is a very efficient way of reducing loss while
keeping utilization high.

Two seemingly contradictory conclusions have usually been drawn in the literature from experi-
ments with long-range dependent traffic. On the one hand, mathematical analysis of queueing
systems with LRD input shows that the queue occupancy exhibits an asymptotic behavior very
much different from that observed with Markov sources [13, 11|. This behavior has also been
confirmed through simulation [22|. On the other hand, the literature on Markov modeling
reports good performance prediction for finite buffer systems even when input traffic streams
are correlated over many time-scales [29, 30, 31|. However, the contradiction is only apparent.
Indeed, the existence of a finite buffer queue sets a limit on the memory of the system. This is
because the buffer “forgets” about the past as soon as it is either empty or full ( this is referred
to as the resetting effect in [30]). We refer to the length of the time interval having an impact
on the current system state as the implicit time scale of the system. Note that the implicit time
scale of an infinite buffer is infinite, because the buffer can accumulate an arbitrary amount
of information about the past. It becomes clear that analyzing finite or infinite queues in the
presence of long-memory input processes leads to the seemingly contradictory results mentioned
above. While in the infinite queue, correlation on all time-scales has an impact on performance,
only the correlation up to the implicit system time scale has an effect in the finite buffer queue.
This fits exactly our observation in Section 3 of the existence of the correlation horizon CH.

We next describe a simple way to estimate CH in terms of the various system parameters. The
estimation procedure is based on the resetting argument mentioned earlier, i.e. we assume that
when the buffer becomes empty or full, information about the past is lost. Then, we take the
correlation horizon estimate Tcy to be the time interval for which the probability that the
buffer empties or overflows at least once is close to one.

We make the assumption that the correlation horizon is much longer than the average inter-
arrival time p. If the converse were true, then the buffer would either empty or overflow with
very high probability within a single interarrival interval. This would mean that the utilization
is close to zero, or that the loss rate is extremely high.

Let I', = X7, W, denote the sum of the excess work in n consecutive intervals, and © =
> r T, denote the sum of the lengths of the n intervals. Now assume we are looking at the
queue at an arrival instant 7, and that the queue occupancy at that moment is equal to Q).
Note that the probability of either emptying or overflowing the buffer at some point during the
next n intervals is bounded below by Pr{@ + T, < 0} + Pr{@Q + T > B}. We wish to find n
such that the probability p = 1 — Pr{@Q + T, < 0} — Pr{Q + ' > B} of no reset occurring
during n intervals is very small.

Given our assumption that Tog > u, we look for n large. Then, the central limit theorem
says that for large values of n, @) 4+ I, is approximately normally distributed with mean @ +
nu(X — ¢) and variance noZo%, where y is the average interval length, ) is the average rate,
o2 is the variance of the interarrival time, and 0% is the variance of the marginal distribution.
Furthermore, © is approximately normally distributed as well, with mean nyu and variance no?.
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As we do not explicitly know the distribution of (), we find an upper bound on p by setting the
mean of the normal distribution to B/2, which corresponds to selecting the value of @ that is
least likely to result in a reset during the next n intervals. With this assumption, the upper
bound on p becomes p < erf(ﬁ), where erf(.) denotes the error function. Let us now
choose Ty such that the probability that n intervals fit into Ty is high, i.e. Tog = n(u+pBor),
where (3 is a small constant (e.g. 3 = 2 results in this probability being ~ 0.9.) Then we may

write Tcy as

Teon (u+ Bor) (21)

B 2v/ 200 erf ™ (p)
The above estimate provides valuable insight into the impact on CH of the various parameters
of the model. For example, we note that Ty scales linearly with the buffer size, and that it
is proportional to the inverse of the standard deviation of the marginal distribution. This is
intuitively not surprising. Indeed, increasing the buffer size by a factor a implies that (the
input rate being constant) it takes « times longer to overflow or empty the buffer, and thus to
reach a resetting point. On the other hand, scaling the marginal distribution by a factor « has
exactly the opposite impact (refer to Figure 8 and the discussion there). Finally, we observe
that, as or increases, Ty converges to a limiting value that depends only on the buffer size
and on the width of the marginal distribution. This is in agreement with the “flattening out”
of the loss rate with increasing cutoff lag observed in Figures 4 to 7. This behavior of Toy
illustrates the above-mentioned implicit time-scale of the system.

5 Conclusion

We have focussed in this paper on a particular instance of performance prediction relying on
traffic modeling, where the performance metric has been defined as the long-term loss rate.
We have then shown that the relevant correlation is limited to a time-scale smaller than the
correlation horizon. This might seem to support the claim that only models with limited
memory (up to CH) make sense, and hence that self-similar models have no place in cases like
these. This means instead that for this type of performance problem, we may choose any model
among all the available models as long as it captures the correlation structure up to CH. The
choice can be based on analytic tractability, on ease of parameter identification from traces,
etc. Markov models are one possible choice since they can capture correlations up to some
given value CH. And indeed, as we mentioned earlier, several studies have used Markov models
for performance prediction with finite buffers and found them to work well.

However, we would like to stress that the amount of correlation that must be taken into ac-
count in a model also depends on the performance metric of interest in the model. We next
illustrate this with a simple example. Assume that we would like to compare the performance
of closed-loop (ARQ) and open-loop (FEC) error control schemes for reliable point-to-point
communications. Let us try to guess the relevant time-scales of this problem. AR(Q) schemes
perform well when losses are bursty because they can accumulate information about the loss
of the whole burst and request retransmission of the whole block in one go. FEC schemes
perform well when losses are spread out over time because they can correct errors of the type
“among n packets, k£ < kn.x < n have been lost”. The probability that k& exceeds kp,.x is smaller
for independent losses than for correlated losses. This suggests that extending the time-scale
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of the correlation structure of the packet arrival process in a model of error control schemes
amounts to increasing the advantage of ARQ over FEC. Therefore, it seems necessary for this
problem to make an effort to correctly model the arrival and loss processes over a wide range
of time-scales. Thus, a parsimonious self-similar model would be appropriate in this case.

Parsimonious models of self-similar processes capture the behavior of these processes over all
time-scales using a small number of parameters. They appear to be particularly well suited
in a number of different cases. First, in cases like that described above for the ARQ/FEC
evaluation when the system under study does not have a clearly bounded time-scale. Second,
in cases when we wish to generate traces that match LRD behavior observed in actual networks.
Since we do not want to restrict the use of these traces to a specific modeling task, then we
cannot make any assumptions about the relevance of the model parameters. Thus, traces
should be derived from a self-similar traffic model. Of course, our results in Section 3 show
that trace generation based on self-similar model (or any other model for that matter) should
also take into account statistics such as the marginal distribution if we want to achieve accurate
performance prediction.
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