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Distributions de poids des translatés des codes
BCH 3-correcteurs
On coset weight distributions of the
3-error-correcting BCH-codes*

Pascale Charpin ! Victor Zinoviev *

Résumé

Il s’agit d’une étude sur les distributions de poids des translatés des codes BCH 3-correcteurs,
BCH au sens strict binaires et primitifs. Notre principal résultat est que ’ensemble des
distributions de poids est connue dés que I’on connait les distributions de poids des translatés
de poids minimum quatre du code étendu. Nous mettons en évidence plusieurs propriétés
intéressantes des translatés optimaux, dits orphelins. Nous donnons une description des
classes des cosets equivalents sous les permutations affines. Toutes ces propriétés induisent
des simplifications pour le calcul effectif des polynomes des poids. Nos résultats numériques
montrent que le nombre des distributions de poids des translatés augmente avec la longueur
des codes - alors que la distance duale reste constante.

Abstract

We study the coset weight distributions of the 3-error-correcting binary narrow-sense BCH-
codes and of its extension, whose lengths are respectively 2™ —1 and 2™, m odd. We prove
that all weight distributions are known as soon as those of the cosets of minimum weight 4 of
the extended code are known. We point out that properties of the cosets which are orphans
yield interesting properties on the other cosets. We describe the classes of cosets which
are equivalent under the affine permutations. At the end we produce significant numerical
results, proving that the number of distinct weight distributions of cosets increases with the
length of the codes. )

Keywords: BCH-codes, uniformly packed codes, coset, coset weight distribu-
tion, orphan, affine permutation,
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On coset weight distributions of the
3-error-correcting BCH-codes

1 Introduction

This paper is initiated by the papers of Camion-Courteau-Montpetit [6],[7] and Charpin
[9],[10]. Charpin showed in [10] that there are eight distinct weight distributions of cosets of
2-error-correcting binary primitive BCH codes of length 2™ — 1, m even, and of length 2™
for the extended such codes. For the length 2™ —1, m odd, it is well known [3]{20] that there
are four such distinct weight distributions. We examine here the coset weight distributions
of the 3-error-correcting binary narrow-sense BCH codes of length 2™ — 1 with m odd, also
extended or not. The results of this paper were announced in [11].

We denote by B the 3-error-correcting BCH-code and by B its extension. For length
32 the cosets weight distribution of B was given by Camion-Courteau-Montpetit [7]; this
code is in fact the self-dual Reed-Muller code [32,16,8] and there are eight distinct weight
distributions for its cosets. Our main result is: the number of weight distributions of cosets
of B (respectively, of B) increases with the value of m. Of course, we suppose that this
property holds also when m is even, although we do not study this case here. At any rate,
we prove that the codes B gives us an example of an infinite class of codes whose dual
distance is constant while the number of distinct lines in the distance matrix increases with

the length.

In Section 2, we present the fundamental equations which give as solutions the coefficients
of the distance matrices of B and B. Throughout the equations (A.7) and (E.t), what is
‘easy and what is hard appear clearly and the next sections are in fact a precise explanation
of both aspects.

We begin in Section 3 with the easy cases. They are globally the cosets of weight 1, 2,
3 and 5. We don’t know all about the cosets of B of weight 3 and 5, but we prove that
any unsolved problem about these cosets is an unsolved problem about the cosets of B of
weight 4 and 6. We consider these last cases as the hard cases. In Section 4 we study the
action of affine permutations on cosets of B. It is natural to do that, because it is well-
known that the code B is invariant under these permutations. We characterize the classes of
equivalent cosets by their syndromes and we give some properties about the cosets of weight
4. The cosets of weight 4 and 6 are studied in Section 5. We point out the significant role
of the cosets of B which are orphans, taking here the terminology of [5]. In Section 6 we
summarize our results showing clearly that our problem is reduced to the study of the weight
distributions of cosets of B of weight 4. By using the classification of Section 4, we were able
to compute the full weight distribution for length 128. That is given by Table 5 in Section
6. We found twelve distinct weight distributions for the cosets of B. Moreover we found at
- least eighteen distinct weight distributions for the length 512. At the end we give several
conjectures.

The distance and the weight are the Hamming distance and the Hamming weight. The
weight of any codeword z is denoted by wt(z), and the distance between any two codewords



z and y is denoted by d(z,y). Denote by K the Galois field of order 2. Let C be any
binary code of length n. Recall that the covering radius of C, generally denoted by p, is the
following distance:

p = max rcmn{d(:z: c)}.

Let D=2z +C be acoset of C. The weight of the coset D is the minimum weight of
the codewords of D. A leader of D is the codeword of D of minimum weight.

2 The fundamental equations

Let C be any code of length n over K and let p be its covering radius. We will say that such

a code is uniformly packed, in the sense of [3], if there exist rational numbers ao, ..., a,
such that for any v € K"

iak filv) = 1, (1)

where fi(v) is the number of codewords at distance k from v . Let B denote here the 3-error-
correcting primitive binary BCH-code of length n = 2™ — 1 | where m is odd, and let B+
denote as usual the dual code of B. The minimal distance of B is d = 7. It was shown by
Kasami [17] that the external distance of B - i.e. the number of non-zero weights in Bt -

s = 5 (see also[19], page 669). According to well-known result due to Delsarte [12] we have
the following unequality for the covering radius of B : p < 5. But on the another hand, we
know from the result of Gorenstein-Peterson-Zierler [14] that for these codes p > 5. Hence
we have p = 5 for the code B. Note that this result was obtained by Helleseth [15], who
proved even more: all binary 3-error-correcting BCH codes have covering radius 5 ( essential
steps in this result also belong to Assmus-Mattson [1] and Van der Horst-Berger [16]). Now
we use the following result from the paper of Bassalygo-Zinoviev ([4], Theorem 1): the code
C is an uniformly packed code ( in sense of [3]) if and only if the covering radius p of C
is equal to the external distance s : p = s . Therefore B is a uniformly packed code in
sense of [3]. Note that Goethals and van Tilborg [13] have previously showed that the code
B is an uniformly packed code of order j = 2 (see [13]). From this last paper we have the
following parameters a; for the code B:

Qo = Q) = 1,
az = a3 = —120/(n = 1)(n = 7), (2)
ag =a5=120/(n - 1)(n-1T) .

Now let B be the 3-error-correcting primitive binary extended BCH-code of length N = 2™ |
where m is odd; B is obtained from B by overall parity check. Assume that the position we
add to the codewords of B is always the first position of B. The minimal distance of Bis
d = 8, of course. Now we can use the following result ( Theorem 2 in [4] ): an extension of
a binary uniformly packed code with parameters a;, 1 € [0, p], is a uniformly packed code, if
and only if the parameters a; satisfy:

ap_z,' = ap_g,'_l y 2‘—‘0,1,,[(/)— 1)/2]

3



where [a] denotes the integer part of a. Applying this to the code B, the condition above
becomes: as = ay4, az = az and a; = ap. So we deduce from (2) that the code Bis uniformly
packed with covering radius 6. Note that the external distance of the code B (resp. of B)
is equal to its covering radius. Then, by applying the general result of ASSMUS and PLESS,
the weight distribution of cosets of weight 5 in B are uniquely determined as are the weight
distributions of cosets of weight 5 and 6 in B (2, Corollary 1-2].

From now on, the notation for the parameters of codes B and B will be as follows :
we will use the same symbols for both codes, but for B all the corresponding symbols will
.have a hat. The parameters @; of the code B are connected with the parameters «;. This
connection is given by [4, Theorem 2]. That is:

ap—Qi = Qp-2i, 1= 0’ 17 e a[p/2]
and, for i = 0,1,...,[(p + 1)/2],
Qp-2i41 = ((p+1 =200 + (n—p+2i)a, 242 )/(n+ 1),

where, by convention, a_; = a,41 = ap42 = 0. We have

Go=& =1, &z = 2(N — 68)/N(N — 8),
&3 = —120/(N —2)(N — 8), &g = 120/N(N —2), (3)
&s = —@s, & = T20/N(N — 2)(N — 8) .

Recall that N = 2™ denotes here the length of the code B.

Let D be any coset of B. Recall that the weight of D is the minimum weight of the
codewords of D. Since the covering radius of B is 5, the weight ¢ of B is in the range [0, 3].
We will denote by u; ; the number of codewords of weight j in such a coset of weight ::

pij=card{r €D |wt(z)=7}.

Similarly we will denote by i;; the number of codewords of weight j in a coset of B of weight
i, 1 € [0,6).
For a coset D with weight distribution
Hidy Hii41s---y Hin
we denote by A;(z) the weight polynomial of D:
Adz) = 3 pig 2", (4)
k=1

To write out a general expression for the polynomial A;(z) we need some results from
[3] which we give, for simplicity, only for the binary case. First denote by P,(n,€) the
Krawtchouk polynomial of degree u:

Pun,§) = 3 <—1>"-f‘(”‘.5)( ¢ ) ,

J u-—=

4



where

b = B! ’

for any real a. Lloyd’s type theorem for the uniformly packed codes asserts (Theorem 1
in [3]) that the existence of a uniformly packed code C of length n with the parameters
ai,t=0,1,...,p, implies that the Lloyd polynomial L,(n,¢),

(a) a(a—-1)...(a—b+1)

Ln€) = 3 o P(n,£),

1=0

has p distinct integer roots between 0 and n. Denote by &; the i-th root of L,(n,¢), where
t=0,1,...,p. Now suppose that D is an arbitrary coset of C' of weight ¢ with the weight
polynomial A(z) of type (4). We want to know the weight distribution of D (or, in other
words, to know the coefficients of A,(z)).

Theorem 2 in [3] gives us the following result: the weight polynomial A;(z) of a coset (of
weight i) of a uniformly packed code C, with the roots &; of the Lloyd polynomial L,(n,£),
might be written in the following general form.:

C|(1 n
JYRRCILE:
p
+ D cii(l+z)" (1 -2)%
j=1

where |C| is the cardinality of the code C and c;; are constants depending on the initial
known coefficients of Ai(z) and therefore determined by solving the corresponding system
of linear equations. So to know the weight polynomial A;(z) of C' we have to know any p
numbers u;; for j € [0,n] enough to find the unknown values c; ; from the corresponding
equations. :

Now we return to our BCH-codes B and B. The determination of the coset weight
distribution of B is reduced to the resolution of the following equations, considered separately.
In other words, if we consider the weight distribution of the coset of weight i, then we use
the equation (A.7) :

(A-l) o pg = 1,

(A2) oppo2 + asprs =1,

(A3) o3 pss + a4 p3a + 05 p3s = 1,
(A4) Q4 fgg + Qs fgs = 1,

(A5) Qs lss = 1 ,

where the numbers a; are given above by (2). These equations are obtained from (1) for
each weight 7 € [1,5] for the case when the vector v is a zero vector. Each equation (A.7)
corresponds to the weight distributions of cosets of minimum weight ¢, implying y;; = 0 for
J < t. Moreover, since the minimum weight of B is 7, the sum of two weights in a given
coset cannot be less than 7.



Now consider the corresponding equations for the code B. By definition of the extension,
a coset of B has either only even weights or only odd weights. Therefore, in the same manner
we obtained the equations (A.i), we obtain from (1) the equations (E.i) corresponding to
the weights ¢ € [1,6] of the cosets of B :

(El) a ﬁl,l =1,
(E2) agjlae + Qs fize = 1,
(E3) aajias + @s fas = 1,
(E .4) G4 fag + Q6 flapg = 1,
(E.5) aspss = 1,
(E6) as ﬁ6,6 =1,

From the results of Kasami [17] and Bassalygo-Zinoviev [4] we have all the roots £ of the
Lloyd polynomial L¢(NV,&) for the code B ( these roots are exactly the values of nonzero
weights in the dual code B*):

& = N/2 — V2N, & = N/2 — \/N/2,
& = N/2, & = N/2 + \/N/2,

-

£s = N/2 + V2N, & = N.

Note that the five roots of the Lloyd polynomial Ls(n,£) for the code B are the first five

roots {A,-,iAE [1,5], of Le(N,€). This is so because the all-one vector, which corresponds to
the root &g, cannot belong to the code B*.

Now we give some definitions and notation which we will use in the next sections.
Let v€ K", v =(vy,..., vs). The support of v is:

supp(v) ={ €| v #0} .

Note that the Hamming weight wt(v) of v is equal to the cardinality of the support of v.

We will use here the terminology of [5), where special cosets, so called orphans, are
introduced.

Definition 1 Let C be an arbitrary linear code C of length n and let D be a coset of C of
weight . Let D' be the coset
D'=D + oW
where- v\ denotes a binary vector with exactly one nonzero position at the j-th coordinate.
If the weight of D' is ¢t — 1, then D' is said to be a child of D.
If the weight of D' is 1 + 1, then D’ is said to be a parent of D.

The coset D is said to be an orphan if and only if it has no parent. In other words, an
orphan of C s a coset D with the following property:

U supp(v)={1,...,n }.

v is a leader of D



Notation: From now on let us denote by D (respectively by '13) the full set of the cosets of B
(respectively of B) We will denote by D; (respectively by ﬁ,) the subset of D (respectively
of D) which consists of all the cosets of weight 1.

The number of cosets of B will be denoted by T and the number of such cosets of minimum
weight ¢ will be denoted by I'(z). Similarly, for the extended code B, a notation is as follows:

I' = |D] and T() = |Di.

3 Cosets weight distribution: the easy cases
Since the dimension of both codes B and B is 2™ — 3m — 1, m > 5, we obtain obviously
I=2" and [ =2+,

The weight distribution of B is known, due to KASAMI who gave in [17] the weight dis-
tribution of the dual of B. In fact we use here the table given in [19, p. 669]; it is the
weight distribution of B+. As we need also the weight distribution of B, we give the weight
distribution of the dual code in Table 1.

Weights Number of codewords
0 1
gm-1 + 2(m+1)/2 2m—3(2m _ 1)(2m—1 _ 1)/3
2m-1 4 2m-1)/2 2n-i(2m —1)(5.2m71 +4)/3
2m-1 (2™ —1)(5.2*m 1 4 7.2m-2(2m"1 — 1) 4+ 2™+2 1 6)/3
2m 1

Table 1: The weight distribution of the dual of the binary 3-error-correcting extended
BCH-code of length 2™, m odd.

Remark : Recall that a tactical configuration T(n,w, ¥, () is a set of binary vectors of length
n and weight w such that any ¢, 1 < ¢ < w, positions are simultaneously occupied by ones
in precisely 3 vectors of T'(n,w,¢,8). If B =1 a configuration T'(n,w,¥,1) is called a Steiner
system and is denoted by S(n,w,¥). .

Let B be the set of codewords of weight 7 in B and Bg be the set of codewords of weight
8in B. Using equations (1), for arbitrary vectors v of weights 2 and 3, we have immediately:
the set Bg is a tactical configuration T(N,8,3,3) and the set B is a tactical configuration
T(n,7,2,8), where

1 —a3 (N —2)(N -38)

B = i 150 + 1. (5)

This result can be also deduced from Theorem 3 in [4].




3.1 Cosets of minimum weights 1, 2 and 3

Since the minimum distance of codes B and B are respectively 7 and 8, any coset of weight
¢, 1 <1 < 3, has only one codeword of weight :. So the number of such cosets of weight i is

exactly the number of codewords of weight : in the ambient space. That is for cosets of B
and B

F1)=n, T(2)=n(n-1)/2 and T'(3) =n(n-1)(n-2)/6 (6)
F1)=~N, T(2)=N(N-1)/2 and T(3)=N(N -1)(N -2)/6 . (7)
The condition g;; = 1, for ¢ € [1, 3], gives us immediately the solution of the corresponding

equations (E£.1). We then obtain the values of [i; 6 and i3 5. Similarly the condition g;; =1,
for ¢ € [1,2], gives us immediately the solution of the corresponding equations (A.1). We can
then obtain the value of y;5. Note that u;s and ji3s are also given by the Remark above.
These results can be summarized as follows:

Proposition 1 There is only one coset weights distribution for the cosets of B of weight 1
and 2. The number of codewords of weight 5 in the coset of weight 2 is: p,5 = S (see (5).

There is only one coset weights distribution for the cosets of B of weight 1, 2 and 3. The
number of codewords of weight 6 in the coset of weight 2 is

. 1-a& (N —2)(N?—10N +136)
Fae = e 720 ‘

The number of codewords of weight 5 in the coset of weight 3 is: jizs = [ (see (5)).

Finally, we cannot describe the set D; of cosets of B of weight 3; we only know its cardinality.
Moreover, according to (2), by using (A.2) and (A.3) we can state the following relation :

M3a + p3s = pas, (8)

where uz5 is known to be equal to 8. Note also that u;s = jizs. Hence we can conclude
that to describe Dj is equivalent to describing Ds. Indeed, a coset of D3 can be seen as a
shortened coset of D, with '

P34 = Haq—1.

Such a coset of Dy must have a leader which has 0 in its first position (this position is the
parity check position of B. We will explain in Section 4 that any coset of Dy is equivalent
to such a coset.

3.2 Cosets of minimum weight 5

All cosets of Ds have the same weight distribution - it is immediate from (A.5)(see also [1]).
However we are not able to give the cardinality of Ds; we only can say that it is equal to the
cardinality of Dg.



B T

Proposition 2 There is only one weight distribution for the cosets of Ds. Any coset of Ds
is an orphan and it contains

hes = 1 (n—=1(n-T)

(0 53 B 120

codewords of weight 5. Moreover the cardinality of Ds is equal to the number of cosets of B
of weight 6: ~ '
I'(5) = I'(6) .

Proof: The value ps 5 follows from (A.5). From Definition 1, we know that an orphan is a
coset without parent. Since the covering radius of B is 5, it is clear that any coset G € Ds is
an orphan. Now for any coset H € Ds, we obtain a coset G € Ds by deleting one position
of H. We always delete the first position, which corresponds to the overall parity checking
position of B. Two such cosets G and G’ are distinct, as soon as we got two distinct cosets
H and H’. Actually this correspondence is one-to-one: by definition of the extension, two
distinct cosets of D5 cannot give the same extension. So I'(5) = ['(6) . O

Now for '55, equations (E.z) involve a full description. Moreover we will end this section
by explaining some links between D5 and D;,.
Proposition 3 There are ~
I'(5) = N(N-1)(5N +8)/6

distinct cosets of B of weight 5. All of these cosets have the same weight distribution and
each of them contains
fiss = (N —2)(N —8)/120 (9)

vectors of weight 5. Note that fiss = pss. '

Proof : All cosets of minimum weight 3 have the same weight polynomial. We know from
(E.3) that the number of the codewords of weight 5 in the coset of minimum weight 3 is:

ﬁ3,5 = IB )

where (3 is defined in (5). From the equation (E.5) we have fiss = 1/as. Taking into
account the value of as in (3) we obtain (9). Now the total number of binary vectors of
length N and weight 5 is:
N
T = ,
(5)

T =T(5) fiss + [(3) fias -
Then we can compute ['(5) using the value of T'(3) given by the equation (7). a

and we have



Proposition 4 Let G € Ds, let F be a child of G, that is
F = G+v(j), FEﬁ‘;

for some j € {1,..., N}, and let k;(G) denote the weight of the j-th column of the
binary matriz formed by the leaders of G. Then the weight distribution of F is defined by
Paa = ki(G), where k;(G) < N/4.

Proof . Consider the j-th column of the matrix formed by all the leaders of G. So we have
k;(G) vectors u,, s = 1,...,k;(G), which have "1” at j-th position. Then the coset F' has
weight 4 and the k;(G) vectors

u, + o) s = l,...,k(G),

are the only vectors in F that have weight 4. Hence such a coset F' is not an orphan, since
it has some parent. That gives the inequality at the statement, completing the proof. ]

Note that any F € ﬁ4, which is not an orphan, is a child of some coset of Ds. In this
section we have proved that each unsolved problem on cosets of B can be seen as an unsolved
problem on cosets of B. We will see in Section 5 that the general problem we treat here is
reduced to the determination of the weight distribution of cosets of D4 - more precisely to the
determination of the possible values of jis4. The proposition above suggests an equivalent
point of view: we know all about the weight distribution of cosets of Ds, but we do not
know, for such a coset, how much leaders have one given position in its support.

4 Equivalent cosets

At the end of this paper we will give numerical results on the coset weight distributions of
the code B, for m = 7 and m = 9. We obtain these results with the aid of a computer;
however, the computation was possible because of some properties on the equivalent cosets.
In this section we want to present these properties and their corollaries.

Let K and G be respectively the fields of order 2 and of order N. Since we treat primitive
binary codes, we can consider extended codes as K-subspaces in the group algebra of the
additive group of G. This representation is more convenient when we want to describe the
permutations on cosets which conserve the code B. So in this section, the ambient space is
the group algebra A = K[{G,+}] and a codeword is a formal sum:

r= Z :L‘ng, .’Bg < K
9€G

Recall that the code B is invariant under the affine permutations on G. That means that
any permutation

Uu,u:ngXg — Zng“”", u#0,ueG,veG,
9€G 9€G

10



is an automorphism of the code B [18]. Therefore, for any coset D = z + B, we have
obviously 0,,(D) = 0,,(z) + B. Let us define, for any integer s € [0, N — 1}, the mapping
és(z),
9s: A = G, ¢,(z) = Z reg’ , (10)
9€G

where, by convention, ¢o(z) = Y eq T,
Definition 2 The extended 3-error-correcting BCH-code B is the following subspace of A:
B={z|¢2(z)=0, se{0}ud)ud@)uc()},

where cl(t) is the cyclotomic coset of 2 (mod n) containing t and m > 5. So the dimension
of B equals N ~3m —1, where N=2™ andn=N —1.

Definition 3 There are 23™*1 cosets of B. Each coset z + B is uniquely defined by its
so-called syndrome:

S(z) = ( ¢o(z), d1(z), 83(z), ¢s(z) ) .

When ¢o(z) = 0, all weights of the coset are even and we will say that the coset is even;
otherwise all weights of the coset are odd and we will say that the coset is odd.

We will see that our problem is in fact the determination of the weight distributions of
the cosets of B of weight 4. Moreover the odd cosets can be studied simply from the even
cosets. For this reason we study now even equivalent cosets. Recall that we denote by D
the set of all cosets of B.

Lemma 1 Let us define the following subsets ofﬁ :

Bi={c+B|do(c) =0 and () #0}, (11)
Bo={z+B)| ¢o(z)=0 and ¢1(z)=0)}, (12)
By={z+B | ¢o(z) = $1(z) = ¢s(x) =0 } . (13)

Then By s contained in the Reed-Muller code R(m — 1,m) of order m — 1 and not contained
in R(m — 2,m); By is contained in R(m — 2,m); B; is contained in the extended 2-error
correcting BCH-code.

Proof: Recall the definition of the Reed-Muller code of length N and order r, denoted by
R(r,m). For any t € [0,n] let us define the 2-weight of ¢ to be w(t) = 375! t;, where

m—1 i
t = > 2
1=0

is the binary expansion of t. Let I, be the set of integers from [0, n] such that wo(t) <m—r.
The code R(r,m) is the set of codewords z satisfying ¢.(x) = 0, for all t € I.. We have :
I,y ={0} and I,,_, = {0} Ucl(1). The extended 2-error correcting BCH-code is the set of
codewords satisfying ¢,(z) = 0, for ¢t in {0} U cl(1) U cl(3). O

11



Lemma 2 Let u and v be in G, where u # 0. Consider a coset = + B whose syndrome is
S(z) = (0,8,v,)) . Then the syndrome of the coset oy,(z)+ B is as follows:

S(0uo()) = (0, ué, u’y, u®r), (14)
and
S(01.(z)) = (0, & v+ 6v2+ 8%, A+ vt +6%). (15)

Proof: For any codeword z =} ;g T,X?, we have:

$1(0uo(z)) = Z zy(“!])t Z‘t‘ﬁt(z)'
9€G
Thereby (14) follows immediately. Now ¢,(0y.(z)) = ¢:(X"z). So, for t = 1,3 and 5, we

obtain:

$i(X°z) = S z,(g+v) = di(z) + v wi(z) = da(x) = §, ' (16)

9€G
$3(X*z) = Y x4(g+v)° = da(z) + 021 (z) + v(di(2))? = v + v® + 2w,  (17)
9€G
$5(X"z) = 3 z,(9+v)° = gs(2) + v'i(2) + v(¢r(2))* = A+ 6v* + 8%, (18)
9€G ‘
where the sums are computed modulo 2. Then we obtain (15), completing the proof. @)

Let us define an equivalence relation A on the set D of the cosets of B. Let u and v be
any elements in G, where u # 0; for any Dy € D and any D; € D:

D\AD, & 3 u, v ,u#0, suchthat D, =o0,,(D,). (19)

From now on, D, is equivalent to D, means that D,AD,. For a given D, we are interested
in the number of cosets D; such that DAD,. Moreover we want to characterize explicitely
the cosets D; by its syndromes. We study here even cosets; hence the syndrome of D will
always be of the form (0,6,~, ) and the weight of such a coset should be 2, 4 or 6.

Since m is odd then 3 (respectively 5) and 2™ — 1 are relatively prime. Hence it follows
from (14) that there are always N — 1 distinct cosets o, 0(D), u € G*. Suppose that § = 0,
meaning D € B;. It follows from (15) that o,,(D) =D, for any v. In this case the coset
D is an orphan, because each coordinate position is covered by at least one leader of D
(see Definition 1). The weight of D could be 4 or 6. When it is 4 the supports of two
leaders cannot intersect, proving that the number of leaders is N/4. Since B; is contained in
R(m — 2,m), the support of any codeword of weight 4 is an affine subspace of dimension 2.
As there are (N — 1)(/N — 2)/6 linear subspaces of dimension 2, there are the same number
of cosets of weight 4 in B;. On the other hand, there are N2 cosets in B,, implying that the
number of cosets of weight 6 in B; is

N*— (N=1)(N=2)/6—1=(N—1)(5N +8)/6 .

Moreover, by definition, B is composed of N — 1 cosets of weight 6, if we except B itself.
So we have proved:

12



Proposition 5 Let D € B,. Then D is an orphan and
card { Dy | DAD, } =card { oyo(D) |u€ G " }=N-1.

When the weight of D is 4, D has N/4 leaders.

There are (N — 2)/6 non equivalent cosets of weight 4 and (5N + 8)/6 non equivalent
cosets of weight 6 in B,.

There is only one coset D of weight 6 in Ba, up to equivalence. The cosets of B; are
ouo(D) ,u = oF, whose syndromes are (0,0,0,a*) (a denotes here a primitive element of

G = GF(2™)).

Suppose now that § # 0 - i.e. we consider cosets D in B;. It becomes from (15) that D
is invariant under a permutation o , if and only if

§v2°+ 6% =0 and 6vi+6'v=0.

The mapping v —  év? 4 §%v is linear; its kernel has dimension 1. Hence it takes
exactly 2™~! distinct values. Since m is odd, we obtain the same result for the mapping
v — Sv*+ 6% . In both cases the kernel is {0,6}; so, by applying o, ,, we obtain exactly
2m-1 different syndromes. Suppose that the weight of D is 4. Whenever D contains the
codewords a whose support is { a1, a3, a3, aq } , it contains also the word X®a whose
support is { a1 + 6, az + 6, a3+ 6, as + 6 } . These codewords do not intersect. Indeed the
equalities a; = a; + 6 and a3 = a4+ é would imply 2?___1 a; = 0, meaning that D is contained
in R(m — 2,m) (i.e. § =0). So we have proved:

Proposition 6 The set B, contains N} (N — 1) elements. For any D € B, we have:
card { D, | DAD, } = N(N -1)/2.

So there are 2N classes of non equivalent cosets in B,.

The permutation o, leaves a coset D with the syndrome (0, 6,,A) invariant if and only
ifv=24. Therefore, when the weight of D is 4, the number of leaders in D is even: whenever
D contains a word a, it contains also the word X%a, which cannot be equal to a.

There are N(N —1)/2 distinct codewords of weight, 2 and each coset of weight 2 contains
only one codeword of weight 2. All cosets of weight 2 are in B;, because the minimum weight
of R(m — 2,m) is 4. Since the group of the o,, is doubly transitive, they are equivalent.
The syndromes can be calculated from the formulae of Lemma 2.

Proposition 7 The cosets of weight 2 are in By. The corresponding syndromes are of the
form
(0, u, WP +uv® +u?, 4 uwt+utv), ueG\{0}, veG.

These cosets are the 0, ,(D) where D is the coset whose leader is 1+ X and whose syndrome
is (0,1,1,1) .

Note that the coset o, (D) is equal to the coset o, (D) if and only if v’ = vor v’ = v+u.
This gives us N(N — 1)/2 different cosets of weight 2.
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5 Cosets weight distribution: the hard cases

5.1 Cosets of minimum weight 4

We begin by giving the results we have on cosets of weight 4 of B - the elements of D,.
Moreover we claim that the weight distributions of cosets of D4 can be precisely obtained
from those of the cosets of Dj.

Proposition 8 Let F be any coset of Dy. The weight distribution of F is uniquely defined
by the value py4 4 where uy4 is an even number in the interval

2 < pas < (n+1)/4 — 2.

Moreover
(n=1)(n-=17)
120 '

The coset F' can be seen as a shortened coset of ﬁ., with parameter fiy 4 = pq4.

Baa + Mas = Pss =

Proof: From the equation (A.4) and the equality a4 = a5 (see (2)) we have for an arbitrary

coset F' of weight 4 :

(n—1)(n—7)
120 '

Extending F we obtain clearly a coset of weight 4 of B, which has as set of leaders the set of
leaders of F. So p4,4 is even according to Proposition 6. Of course, F' cannot be an orphan,
since n is an odd number, implying p44 < n/4 and therefore p44 < (n+1)/4 — 1
(because (n +1)/4 — 1 is odd also). a

1
Paa T pas = ‘c; =

Proposition 9 Let F be any coset of weight 4 of B -ie. F€ Dy. The weight distribution
of F is uniquely defined by the value fiy 4, where fiy 4 is an even number in the interval

2 < jlaa < N/4.

Proof: Suppose that F' is an arbitrary coset of B of weight 4 : F € D,. Since every weight
of F' is even we obtain from the formula (E.4) the value fis¢:

- 1 — Qyfigq

Papg = —=—— . (20)

Qg

Therefore the weight distribution of F' is uniquely determined from the value fi4 4. Now note
that two leaders of F' have disjoint supports, since the minimum weight of B is 8. Hence
t4,4 < N/4 . From Proposition 6 we have that the number g 4 is always even. a

~ It is clear that any coset F € ﬁ4 with fi4 4 leaders has N — 414 4 different parents from
Ds. As we already know from Proposition 5 there are at least (N — 1)(N — 2)/6 cosets in
D4 with weight distribution

fisa = N/4 and figs = N(N — 8)(N — 32)/720 . (21)
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These cosets have no parent; they are orphans. There are N different cosets in D5 which are
- generated by any such orphan. They are the N children of the orphan. Can two different
orphans R and R' give the same children 7 If yes, that implies that the distance between
these two cosets is 2 — i.e. that the set of codewords

R+R ={z+2 |z€R z€eR}

has minimum weight 2. So, if the set above has minimum weight 4 there is a contradiction.
Particularly, if the orphans R and R’ are in the RM-code of order m — 2, the set of the
children of R and the set of the children of R’ do not intersect. In this way, we obtain at
least N(N —1)(N — 2)/6 cosets of weight 3. In accordance with (7), we have:

Proposition 10 Any coset in Ds is a child of some orphan of B of weight 4, which is
contained in the RM-code of order m — 2.

5.2 Cosets of minimum weight 6

At the end, we have to study the cosets of De. It is the same situation we had for cosets of
Ds. Although we know the weight distribution of such cosets, we cannot give the cardinality
of De. However we can give a property analogous to those stated in Proposition 10.

Proposition 11 All cosets of B of weight 6, have the same weight distribution. Such a
coset is an orphan and it contains

fss = N(N—2)(N —8)/720 , (22)

codewords of weight 6.

Proof : 1t is clear that the equation (E.6) has only one solution (it can be deduced also from
[1]). That is figs = 1/as. We deduce (22) from the formula (3) which gives the value of ag .
Then all cosets in Dg have the same weight distribution. Such cosets are orphans, since the
covering radius of B is 6. a

Now take F € De and consider its children. They are cosets G € ﬁs, such that
G =F + o
for some ¢ € {1, N]. So if we denote

supp(G) = U supp(v)

v is a leader of G

then we have for such a child of F

supp(G) € {1,...,N} \ {i}.
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Proposition 12 Let G be any coset from Ds. Then G is not an orphan, and there is
i € [1,N], and a coset F € B, (i.e. a coset of weight 6, which belongs to Reed-Muller code
R(m — 2,m)) such that G is a child of F, with G = F + v"¥). Moreover we have

supp(G) = {1,...,N }\ {:}.

Proof: Let F and F' be two arbitrary cosets from Ds. Using the same idea we used for the
proof of Proposition 10, we can say: if F + F’' has minimum weight 4, then the set of the
children of F and the set of the children of F' do not intersect. That is particularly true
when we consider cosets in B,.

From Proposition 5 we know that there are (N — 1)(5N + 8)/6 distinct cosets of weight
6 in B,. Each such a coset has exactly N children because any coset of weight 6 is an
orphan. Since all children of such cosets are distinct, we obtain N(N —1)(5N 4 8)/6 distinct
cosets of weight 5. But from Proposition 3, we know that this is exactly the number I‘(5)
of different cosets of weight 5. Therefore, any coset G from Ds is a child of some coset F
from Ds. We have G = F + v for some i. Clearly, a leader of the coset G cannot have the
position ¢ in its support. So G is not an orphan and we have supp(G) C { 1,...,N }\ {i}.
Suppose now that there is another position j which is not covered by supp(G). Then there
is a contradiction with the fact that any coset of Ds is an orphan. Indeed, we can suppose
that j = 0, because of the invariance of cosets of B under affine permutations. With this
hypothesis, shortening G we obtain a coset of B of weight 5 which is not an orphan, because
¢-th position is not covered by the nonzero posmon of its leaders. According to Proposition
2 we have a contradiction. 0o

6 Summary of results

In this section we summarize the results we have about the weight distribution of the cosets
of the code B and of its extension. These results are explained in Sections 3, 4 and 5. In
Table 2, the values we know for the number of cosets of a given weight are presented. We give
the distance matrices of B and B, in Table 3 and 4. Let C be a code with the dual distance
t. Recall that the distance matrix of C is the u x (¢t + 1) matrix containing the ¢ + 1 first
coeflicients of the u distinct weight distributions of cosets of C. The weight distributions of
the cosets of C' can be fully calculated from these elements [12].

In Table 2, it appears clearly that the knowledge of 4 involves the knowledge of any
['(¢) implying the knowledge of any I'(z), since we know the total number of cosets. The
coefficients of the distance matrix of B (see Table 3) only depend on those of the distance
matrix of B (see Table 4). Morever we have proved that all coefficients of the distance matrix
of B are known as soon as the possible values of fi4 4 are known (see Proposition 9).

Therefore we conclude: the problem of the weight distribution of the cosets of the 3-error-
correcting BCH-codes, extended or not (i.e. B or B), is reduced to the problem of the weight
distribution of the cosets of wezght 4 of B, which are not in the Reed-Muller code of order
m — 2. A
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L I(:) | () |
1 n N
2 n(n — 1)/2 N(N -1)/2
3[n(n-1)(n-2)/6 N(N-1)(N-2)/6
4 ? (N=-1)(N-2)/6 + «
5 = I'(6) N(N —-1)(5N +8)/6
6 0 ? :

Table 2: The number T'(z) of cosets of B of weight i and the number I'(2) of cosets of B of
weight i. We denote by « the number of cosets of B of weight 4 which are not in R(m —2,m).

012 3 4 5

100] 0 0 0

010] O 0 0

001/ 0 0 (n—1)(n = 7)/120 + 1
000 1 Haa—1 Pas — fiaa +1
000/ 1

000 0 |g4ga<(n—-T)/4 fiss — [ia,a
000]---

000]| 0 0 1 (n=1)n-1)/120

Table 3: The distance matrix of the code B of length n, n = 2™ — 1, m odd.

7 Numerical results and conjectures

For length 128, we have computed the cosets weight distribution of B. We give in Table 5
the distance matrix and the number of cosets for each weight. Note that in this case, we
obtain twelve distinct weight distributions, while we had eight weight distributions for length
32. So we conjecture that the number of weight distributions increases with the length. We
will make precise our conjecture later. Now we want to explain how Table 5 was completed.

e The number of cosets and the corresponding lines of the distance matrix are known
for cosets of weight 1, 2, 3 or 5 for any length (see Sections 3 and 5.3).

e So it remains to determine the number of cosets of weight 4 or 6 and the weight
distributions of the cosets of weight 4. For the computation of weight distributions
we only need to determine the number of leaders. We use the definition of cosets by
syndrome (see Definition 3).

e We know the number of cosets of weight 4 or 6 contained in By, i.e. in R(m — 2,m)
(see Proposition 5). There are 127 x 21 cosets of weight 4 and 127 x 108 cosets
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0123 4 5 6

1000 0 0 0

0100 0 0 0

0010 0 0 (N — 2)(N? = 10N + 136)/720
0001 0 (N = 2)(N —8)/120 + 1 0

0000 figq < (N -8)/4 0 © a6

0000 0

0000 N/4 0 N(N — 8)(N — 32)/720
0000 0 (N = 2)(N —8)/120 0

0000 0 0 N(N —2)(N —8)/720

Table 4: The distance matrix of the code B of length N, N = 2™, m odd.

of weight 6. Such a coset of weight 4 has 32 leaders; it is an orphan. Our numerical
results prove that all orphans of weight 4 are in B,.

e From now on we study the cosets of weight 4 or 6 contained in B;, i.e. in R(m —
1,m)\R(m — 2,m). There are 127 x 2!* cosets in B;, whose 127 x 64 have weight
2. So there remain 127 x 16320 cosets of weight 4 or 6. Actually we have computed
the syndrome of any codeword of weight 4 which is not in R(m — 2,m). Taking into
account the results of Section 4 it is sufficient to consider the syndromes

(0,1,0,A) and (0,1,1, A) , \€GF(128).

Indeed they define 1284127 cosets of weight 4 or 6, the syndrome (0,1, 1,1) corresponds
to a coset of weight 2. From Proposition 6 each of these cosets has 127 x 64 equivalent
cosets; then we obtain

127 x 64 x (128 + 127) = 127 x 16320

distinct cosets, and it is exactly the number of cosets of weight 4 or 6 in B,. So we
need to examine a few codewords of weight 4; the number of such codewords of the
same syndrome is the number of leaders.

o We found that 127 x 192 syndromes correspond to cosets of weight 6; by adding
the number of such cosets in Bz, we obtain the total number of cosets of weight 6.
There remain 127 x 16128 cosets of weight 4 in B,. The number of leaders is even, in
accordance with Proposition 6. This number takes all even value in the range [2,10].

By using Table 3 and Table 5, it is very easy to compute the distance matrix of the code
B (of length 127). We also easily obtain the number of cosets of B of weight i, i € [0, 5], by
using Table 2. It is more complicated if we want to compute to number of cosets of weight
3 or 4, for each weight distribution. We proceed as follows:

o Let z(i) be the number of cosets of B of weight 4 such that jisq = 7,1 < N/4.
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Win Number of cosets Number of words
of weight:

0123 4 5 6
0 1 1000 0 0 O
1 128 01000 O 0
2 127 x 64 = 8128 0010 0 0 2667
3 127 x 2688 = 341376 0001 0 127 O
1 127 x 1792 = 227584 0000 2 0 2648
1 127 x 6272 = 796544 0000 4 0 2608
4 127 x 5376 = 682752 0000 6 0 2568
1 127 x 2240 = 284480 0000 8 0 2528
1 127 x 448 = 56896 0000 10 0 2488
4 127 x 21 = 2667 0000 32 0 2048
5 | 127 x13824=1755648 | 0 0 0 0 O 126 O
6 127 x 300 = 38100 0000 O O 268

Table 5: The distance matrix of the 3-error-correcting extended BCH-code of length 128;
Wnin 1s the minimum weight of the coset.

o Then z(7) = 127 x 64 x y(i), where y(7) is the number of non equivalent cosets, in the
sense of (19); we can'suppose that the y(¢) cosets have position 0 in their support.

e Let F' be such a coset. The cardinality of its support is 4. Consider the 64 cosets
o1,,(F). Among these cosets 2 have position 0 in their support and 64 — 2: have not.

e So we obtain from F: 127 x 2i cosets of weight 3 of B and 127 x (64 — 21) cosets of
weight 4 of B. Multiplying these numbers by y(i), we obtain the number of cosets of
weight 3 and 4 whose weight distributions are defined by fiq 4 = .

e From the 127 x 21 orphans of weight 4, we obtain the same number of cosets of B of
weight 3. They correspond to one and only one weight distribution.

Recall that, for length 32, all cosets of weight 4 have the same weight distribution with
fieq = 2. It is because in this case the code B is exactly the Reed-Muller code of order 2.
Any coset of weight 4 is a coset of the RM-code of minimum weight 8. Since the supports
of these codewords of weight 8 are the affine subspaces of K® of dimension 3, it is clear that
such a coset cannot contain more than two words of weight 4.

For length 128, we have found six different weight distributions for the cosets of weight 4.
For length 512, we made a random exploration of cosets of weight 4. Our numerical results
allow us to state this conjecture:

Conjecture 1: Let B be the extended 3-error-correcting BCH-code of length 512. There
are twelve different weight distributions for the cosets of B of weight 4. These distributions
are determined by the number fig 4 of codewords of weight 4. This number is :
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1. Jisq = 128 for the orphans contained in the RM-code of order 7 (we did not find other
cosets corresponding to this value).

2. a4 =1, for all even integer 7 in the range [12,32].

So we have shown that the situation is here completely different from those we had for
the 2-error-correcting BCH-codes. In both cases the external distance is a constant, not
depending on the length. The number of weight distributions of cosets is constant, for any
length, for the 2-error-correcting BCH-codes. And that is true not only when m is odd (and
codes are completely regular) but when m is even too[10, 20]. For the 3-error-correcting
BCH-codes, we strongly conjecture that this number increases with the length. When m is
odd these codes are uniformly packed and we point out this property for m = 5,7 and 9.
Moreover we are able to propose general conjectures:

Conjecture 2: Let B be the extended 3-error-correcting BCH-code of length N, m odd.
Then any coset of B of weight 4, which is an orphan, is contained in the RM-code of order
m— 2.

Conjecture 3: Denote by G the Galois field of order 2™, m odd. For any (A, B), where
A and B are any elements in G, let us denote by £(A, B), the following system of three
equations, with four variables, on G:

W+X+Y+2Z =1
W34+ X34+Y34+2% = A
W3+ X°+Y54+2Z° = B.

Let N(A, B) be the number of solutions of £(A, B) satisfying X #Y # Z # W. Con-
sider the (A, B) such that N'(A, B) is not zero and recall that N (A, B) is always even
(see Proposition 6). Then, there ezist two even integers depending on m, say £, and u,,
b < um < 2™72, such that

{n < N(A,B) L up, .

Moreover, for any even value i in the range [€m,u,,], there is an (A, B) such that

N(A,B) =i.
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