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Diffusion sur le tore en “pointe-de-fleche”

Résumé : Le tore dit en “sagette” (ou encore “en pointe-de-fleche”) est un graphe de
diffusion que I'on définit sur la grille 6-valente comme graphe de Cayley. Un protocole 3-
port de diffusion wormhole est dérivé d’abord par construction, puis amélioré au moyen de
foréts arete-disjointes. Un protocole de diffusion store-and-forward est dérivé aprés-coup,
puis amélioré par 1’'usage conjoint d’un routage pipeline et d’arbres disjoints. Les couts sont
donnés en temps constant et en temps linéaire et comparés aux bornes inférieures.

Mots-clé : réseaux d’interconnexion, graphes de Cayley, grille hexavalente, communica-
tions globales, diffusion.
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1 Introduction

The choice of interconnection network topologies is a critical subject in the design of efficient
distributed memory parallel computers. Most of the performance limitations are due to the
performance of the communication system. Between extreme cases such as weakly connected
circular rings or strongly connected complete networks, a solution will result from a compro-
mise in order to satisfy, as it was mentioned by Hillis [13], a set of sometimes incompatible
requirements : small degree and small diameter, bounded degree and expandability, fault
tolerant connectivity and efficient layout, and so forth. Moreover it should be of obvious
interest for the routing system that the topology may provide symmetrical schemes for glo-
bal communications. A symmetrical scheme means that all nodes will behave in a similar
way and from this fact will arise a maximum simplicity in the design and processing of the
system communication kernel. More precisely, symmetry in the topology means that the
representative graph is provided with an algebraic group structure as it is the case for the
hypercube and some other families of Cayley graphs [1].

The “arrowhead torus” is a broadcast graph that we define on the 6-valent grid as a
Cayley graph. Compared with other more sophisticated interconnection topologies, the grid
— and its toroidal extension — has several important advantages such as its simplicity of
design and its bounded number of communication links for each processing node. That
feature gives a renewal of interest to this ancient topology which had been the first one to
be proposed for parallel computers and, in spite of a rather large diameter, returns up-to-
date [19, 16]. But the usual “orthogonal” grid in which a vertex has four neighbours (i.e.
north-south-east-west) is not unique. It can be shown that there exist exactly three types of
regular 2D grids, characterized by their valence (a crystallographic term also used for regular
graphs) : thus a regular grid can be either 3-valent (like in a beehive), 4-valent (the usual
grid) or 6-valent (for our concern). Note that for a p-valent grid, the highest symmetry is
obtained when p = 6 ; recall that symmetry is an important requirement for interconnection
networks, as mentioned above. The reader is referred to [9] for a 2D grid terminology.

Our proposal deals with a recursively scalable torus provided with a self-similar feature :
that means that broadcast behaves just like a fractal diffusion process. For a clear distinction
from other hexavalent topologies [7, 4], an accurate appellation is needed : we choose in the
sequel to name this peculiar one a ” 6-valent arrowhead torus”, or arrowhead for short. The
reason is highlighted in Fig.2b. We borrow the term from Mandelbrot who describes one
of the Sierpinski famous fractal constructions [15]. As a Cayley graph, the arrowhead torus
is generated from an abstract definition (or “presentation”) of a discrete group [10]. Given
a 3-fold set of generators corresponding with the three directions of lines in the infinite
6-valent grid, the torus is obtained by superimposing a cyclic relation in the presentation.

In order to avoid to throw the reader into confusion, it should be pointed out that the
arrowhead results from an isotropic configuration of the set of generators. As a matter of
fact, reversing any generator would yield a non-isotropic, diamond-shaped version of 6-valent
torus. The diamond is closely related to a more usual interconnection topology, the k-ary
2-cube [5]. Indeed the diamond seems no more than a skewed k-ary 2-cube with a peculiar
value of k and on which a diagonal direction of links would have been added. Nevertheless we
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4 Dominique Désérable

claim that, by construction, arrowhead and diamond belong to a same family and, moreover,
the fact that they are isomorphic is conjectured. The diamond will be presented elsewhere,
in a companion paper of reference [10].

We focus presently on the broadcast problem in the arrowhead. Broadcasting (also
referred as One-To-All) is the most usual type of global communication encountered in
interconnection networks. A message must be sent from one node, called the initiator, to
all other nodes in the network. Typically, there exist two species of routing modes : a store-
and-forward or packet-switched mode when the message must be stored by intermediate
nodes before being forwarded and a wormhole or circuit-switched mode when the source
must open a path until destination before sending the message entirely. There are minor
differences between wormbhole and circuit-switched modes, so our hypotheses will not make
distinction between them. For elements of terminology about routing modes the reader is
referred to [3, 6, 14, 21]. We adopt the conventional linear time statements defined in the
literature for a routage from a source to a destination at distance d : T'= d(8 + L) for a
store-and-forward routing and T = a + dd + Lt for a wormhole (or wormhole-like) routing,
where # and « stand for the respective start-up times, § stands for the circuit-switching
time, and 1/7 for the bandwidth of the communication link : 7 is thereby the time needed
to route a message of unit length, and L will be the length of the message m considered in
the sequel. We shall finally assume either a half or full-duplezx link capability and a general
k-port model (1 < k < A, with A = 6 for the arrowhead) according to the number of ports
simultaneously available. For a survey on modes and models of communication in networks,
the reader is referred to [11] and the references therein.

Section 2 gives an elementary description of the arrowhead. In Sect. 3, a wormhole broad-
casting protocol is derived first from the algebraic structure of the arrowhead, followed by
an improved scheme using edge-disjoint forests. In Sect. 4, a store-and-forward broadcasting
protocol is derived afterwards from the wormhole protocol, then improved by mixing pipe-
lining and arc-disjoint spanning trees. Our results may be compared with recent work on
the usual [17] (or unusual [18]) — 4-valent — torus. A comparison with existing results for
other 6-valent topologies falls beyond the scope of the present paper and should be examined
elsewhere.

2 The arrowhead 6-valent torus

Since we focus on the broadcast problem we restrict ourselves to an informal description. We
first describe briefly how the arrowhead is generated and display another hexagonal-shaped
representation. Then we give a recursive definition of the arrowhead and close the section
by setting the basic parameters required for the broadcast problem. The whole is stated
without proof, the reader is referred to [10] for detail.

INRIA
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Figure 1: a/ Cayley graph of the group G acting on the vertices of H
b/ The cosets of the factor group G/G1

2.1 Generating the arrowhead
2.1.1 General conventions

Although the construction has a combinatorial nature, the arrowhead arises from a metrical
definition of the (6-valent) lattice. For convenience, we adopt the orientation N-NW-SW-S-
SE-NE as shown in Fig.1. The lattice H = (V, E), composed of a set V' of vertices and a
set E of edges connecting pairs of vertices, is generated by three families of straight lines
with respective directions N-S, SW-NE and SE-NW. In addition we adopt an arbitrary
isotropic orientation for the lines, say S - N, NE — SW and NW — SE, or N-SW-
SE for short. Note that there exist altogether eight possible orientations, split up into
both types, say “isotropic” (such as N-SW-SE and S-NE-NW by a rotation of ) and
“anisotropic” (such as N-NE-NW plus five equivalent configurations by jn/3 (j = 1,...,5)
rotational symmetries). The above metric conventions lead to a Cayley representation [12]
for the lattice H in Fig. 1.a with the set of generators S = {s1, s2, s3}. The multiplication
on S defines a group GG acting on the vertices of H, with the set of relations

s18953 = € ; 515251_152_1 =¢ (1)

where e is the identity. Note that the second relation holds with any combination of elements
of S because G is abelian.
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2.1.2 Generating A,
We impose now the cyclic relation R,, defined by

S%n = 82n = Sgn =€ (2)
Consider the case n = 1 and let G be the set of elements of G that now equal e as a direct
consequence. It can be shown that Gy is a normal subgroup of GG of index 4 and that the
cosets, coloured in Fig. 1b, define the factor group

G/G1 = {G1,51G1, 52G1, s3G1 }. (3)

The graph of G/G; yields the morphology of the torus .A;. In the transformation, one arc
in the (oriented) Cayley graph is replaced by one edge. The torus A; = (V1, Ey) is thus a
2-graph with four vertices, relabelled in the set I = (0,1, 2,3) which denotes the respective
cosets of the factor group, and is readily 6-valent.

Roughly speaking there are three ways of generating the arrowhead A,, for any n:

1. Either directly by enumerating the cosets of the factor group induced by the relation
R,.

2. Recursively from a compound of A; by A, _;.
3. Or recursively from a compound of A, _1 by A;.

All lead to the normal subgroup G,, of index [G:G,] = 4™ and define the torus A, = (V,,, Ey)
by turning one arc in the Cayley graph into one edge in the torus as above. For n > 1, A,
is a regular I-graph. The tori are displayed in Fig.2.a for n = 0, 1, 2. Figure 2.b shows the
Sierpinski-like arrowhead A,, with n = 7 arranged from four 4, _; components according to
the second method. For clarity, only the metric distribution of the vertex set is drawn.

2.1.3 Hexagonal representation of the arrowhead

A holeless, hexagonal arrowhead is depicted in Fig. 2c. It results from an adequate folding
of the north, southwest, southeast holey “heads” of the original A4, . Schematically, the
“area” of A, is decomposable into nine equilateral triangles as depicted in the pictogram.
For simplicity, we call, T} say, such a “head”. This northern head is folded once, then
translated through the vector —2" - u; (u; stands here for the unit vector in the northern
direction, associated with the generator si), then folded once again to finally fit the U
area. Note that edges are not broken in the transformation. Metrically, the transformation
involves a reduction of the average length of “wrapped” edges. Finally, since both graphs
are equivalent, we call the transformed one the hexagonal or folded arrowhead A, or still
the arrowhead for short, if it is clear from context.

INRIA
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b/ A view of A7 as a compound of A; by Ag

¢/ Hexagonal representation of Az

Figure 2: a/ Detail of Ajg,
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2.2 Definition and basic properties
2.2.1 Dimensions

The arrowhead A, has N = 4™ vertices and 3 - 4™ edges.

2.2.2 Vertices

Let I = (0,1,2,3) be the ordered set of indices of V; in Fig.2a. The labelling scheme of V}
joined with one or the other recursive compound scheme provides a straightforward quater-
nary notation with words of n digits @, = ¢n—19n—2 - . -q190 for numbering the elements of

Va.

1. Assume first we compose A; by A,_1. Let *A,_; be the root, north, southwest
or southeast copy of A, _; respectively for i = 0,1,2 or 3. To any vertex labelled
Qn-1=0qn_2-..q190 in " A, _1 we assign the new word @, = iQ,_1 in A,.

2. Assume now we compose A,_1 by A;. A vertex labelled @, _1 in A, _1 is replaced by
the tetrad {Q, = Qn-11; i € I} in A,.

Both schemes are consistent in the sense that the notation will be the same whatever
compound alternative we choose. This combinatorial notation allows to bypass any metric
notation that would have been defined on the infinite grid. An illustration of the labelling
scheme is given in Fig.3 for A4s and Aj3. Let us now define in V}, the subset :

4V, = {x €V, : =0 (mod 4%)} 4)
for any k (0 < k < n). Clearly we have : | 4%V}, |= 4"=%. For the sequel it will be convenient

to partition V,, into :
n

V= 00 () @ v - e g

each of the n + 1 members being closely related to a normal subgroup of G as defined in
Sect. 2.1.

2.2.3 Edges
A recursive connecting scheme follows from the relations :
() =0 vn(da) = vy (4 v (@) (6)

where vy @ Vi — Vi defines the neighbour, in a given direction, of any u of V4 (clearly
Vi -Vl;l(u) = u). Thus we organize the connection from any element, z say, of 4V}, by
splitting E,, into three parts :

1. a N-SW-SE 3-fold connection : z is connected to the neighbours z + 1, z + 2, z + 3.

INRIA
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Figure 3: Labelling A, and A3

2. a S-NE-NW 3-fold reversed connection : z is therefore connected to the neighbours
one can yield from the above recurrence.

3. a 6-fold ring surrounding z : for example the SW-neighbour of the N-neighbour of z
is the NW-neighbour of z and so forth.

Hence E, is wholly defined since 4?~! 12-fold disjoint connections are thus achieved.

2.2.4 Edge-connectivity and diameter
The arrowhead A,, has an edge-connectivity A(A,) = 6 and a diameter
2 2
Dn:§[2"—1] or Dn:§[2"+1]—1 (7)

depending on whether n is even or odd.
Those definitions will close our informal presentation of the arrowhead torus.

3 Wormhole Broadcasting

Since A, is a Cayley graph, it is vertex-transitive, then without loss of generality we choose
the node 0 as initiator in the following. We first present a generic protocol which activates a
forest at each timestep, then we give an improved protocol by using two edge-disjoint forests.

3.1 Generic Protocol

The wormhole protocol is quite simple. Recall that a way to build 4, is to compose .4;
by A,_1. A generic broadcasting scheme, issued from the generation of A, , will follow the

RR n -~ 2827



10 Dominique Désérable

Figure 4: Wormhole “diffusion” : a snapshot

same recursive process. So, broadcasting in .4, must consist in : (i) routing the message
from the initiator to the centroid (say, a “descendant”) of any ¢ A,_1(i € I*;I* = I — {0})
if any : shortly we will sometimes say that the initiator “diffuses” (see the snapshot in Fig.
4) ; (ii) broadcasting in A, _1. The process readily leads to a wormhole protocol, expressed
according to the 4-ary notation of V,, as follows.

Lemma 1 At any timestep p (1 < p < n) there exists one forest, whose trees are rooted in
Wy p = 4" PTLV, informing the set 4" 7PV, — W, , of the message.
Proof Let ¢, ; be anul word of n —k digits. The proof is immediate, since with the above
scheme :

1. At step 1, the initiator €, o informs its triad : (gn_1n1) Vgn_1 € I*.

2. At step (p > 1), any informed node (¢n—1...¢n—pt+1énp-1) (Vk:gx € I) will inform
its triad : (gn-1...9n—pényp) Ygn_p € I*.

In other words the broadcast graph at step p is a forest composed of 4°~! balanced trees of
depth 27~P, a

Proposition 2 There exists a 3-port half-duplez wormhole protocol to broadcast in %log2 N
steps and whose time is

b, (An) = %(a + L7)logy N + (VN — 1)4. (8)

Proof First, the number of steps gives the cost in the constant time model. It is clear that
the whole broadcast is completed in n = log, N steps and uses n time-disjoint forests : let us
observe, in particular, that the initiator diffuses n times, by successive waves of decreasing

INRIA
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amplitude. In linear time now, let T}, be the time required to broadcast in any A, . Clearly :
T1 = a +J + L7 then assume by induction that :
Too1 = (n—1)(a+ L)+ (2771 = 1)6.
Remains to examine the first step, i.e., the initiator of A, must diffuse towards its descen-
dants. Observe that they are at distance 27~ !. Hence sequentially we have: a start-up,
27~1 switches to cut through, then the message to send. Therefore :
Tp=(a+2"" 8+ LT) +Tho1 = n(a+ LT) + (2" — 1)4. a

3.2 Improved Wormhole Broadcasting with Edge-disjoint Forests

Because the previous protocol broadcasts through no more than three ports, it can be
easily improved by using a sequence of edge-disjoint forests in opposite directions. Due to
the symmetry of the above broadcast pattern, it can be rotated through 7 : one forest
broadcasts along N-SW-SE directions as above, while the other will broadcast along S-NE-
NW directions simultaneously. We split the message m into two half submessages m; and
mso.

Lemma 3 At any timestep p (1 < p < n) there exist two edge-disjoint forests, whose
respective trees are rooted in W, ,, informing the set 4"~ PV, — W, , of both m; and my
submessages.

Proof If WTIW and W,;:p are the respective sources of both symmetric patterns, since

Wr;,o = W, o = {0} an inductive proof can readily show that the informed sets at step p
still coincide. Moreover, the shortest distance between two sources is 27 ~P*! that is twice
the depth of trees, consequently paths are necessarily edge-disjoint. a

Corollary 4 There exists a 6-port half-duplex wormhole protocol to broadcast in %log2 N
steps and whose time is
1 Lt
Ubir. (An) = 5o+ ) logy N + (VN = 1)3. (9)
O

Note that if in real cases § < «a is a realistic assumption, then the time needed to broadcast
long messages grows with log, N. The above result should be compared with the lower
bound given in [18] for a vertex-transitive graph G with degree A and diameter D :

L
“bp, (G) > max(a[logay; N, o + DS + KT) (10)
giving for the arrowhead :
2 Lt
“bp, (An) Zmax(,u~alog2N,a+5-§vN—|—F) (11)

with the constant factor y ~ 0.36 ; (we estimate besides that the diameter is close to % /N,
whether n is even or odd, according to (7)).

RR n~ 2827



12 Dominique Désérable

4 Store-and-Forward Broadcasting

The previous wormhole scheme is derived directly from the recursive structure of the arrow-
head, but it neither takes advantage of the fact that each node must receive a copy of the
broadcast message, nor allows pipelining. In the following, store-and-forward protocols are
derived from the generic wormhole scheme : the first one by a direct transformation of the
generic wormbhole protocol, the second one by using two edge-disjoint spanning trees and the
third one by mixing pipelining.

4.1 Derivation of the Generic Wormhole Protocol

Proposition 5 There exists a 3-port half-duplex store-and-forward protocol to broadcast in
(VN — 1) steps and whose time is :

oy, (An) = (VN = 1)(8 + L7). (12)

Proof Let T; be the constant time required to broadcast in any Ag. Clearly 77 = 1.
Assume we compose A; by A,_1 and, by induction, that a spanning tree broadcasts in
A, —1in time : 7,,_; = 27~ — 1. By symmetry, we can restrict ourselves to the northern
branch of A,. To achieve the complete broadcast, first we broadcast in %A, _q, then we
route from the northern leaf of °A,_; to the root of 'A,_1, finally we terminate the
broadcast in 'A,_;. Therefore, a spanning tree broadcasts in 4, in the constant time :
Th =2T,_1+1=2"—1. In linear time we have just to observe that the cost of one step

is (B4 L7). O

4.2 Improved Store-and-Forward Broadcasting with Edge-disjoint
Spanning Trees

Lemma 6 There exist two edge-time disjoint spanning trees whose depth is (VN — 1).

Proof Clearly we have two arc-disjoint spanning trees, since both opposite oriented pat-
terns N-SW-SE and S-NE-NW cannot overlap, and we can derive a straigthforward 6-port
full-duplex protocol from Proposition 5. More thoroughly, we can prove that a half-duplex
protocol remains valid with the same cost provided that the whole process is synchronized.
We decompose V,, into the subsets 4V,, and V,, — 4V}, and label the arcs of both spanning
trees in constant time. The root “shouts” the message m at step 1 by diffusing submessages
my and my through N-SW-SE and S-NE-NW respectively. Observe that a vertex of 4V,
receives at even steps then diffuses at odd steps whereas a vertex of V,, — 4V, receives at odd
steps then forwards -if needed- at even steps. Consequently, any edge carries at most two
distinct timestep numbers upon completion. a

INRIA
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Corollary 7 There exists a 6-port half-duplex store-and-forward protocol to broadcast in
(VN — 1) steps and whose time is :

Toa, (An) = (VR = 1)(3+ 50) (13)

O

4.3 Mixing Pipelining and Edge-disjoint Spanning Trees

The above result can still be improved for long messages by using the technique of pipelining
introduced by Saad and Schultz in [20]. The message is split into packets of equal size and
a critical size is computed in order to achieve an optimal cost. In particular, given a path of
length h between source and destination, packets are sent and forwarded one by one right

2
away, with a resulting time upon completion of : (\/(h -1)5+ \/LT) . Pipelining has
been generalized afterwards under link-bound model in which case h stands for the depth of

a spanning tree [2].

Corollary 8 There exists a 6-port full-duplex store-and-forward protocol whose time is:

Tbp, (An) = (W + @) (14)

Proof If h(p) is the maximum depth of p arc-disjoint spanning trees there exists a proto-
2

col for a link-bound broadcasting with time: ( (h(p) — 1)+ 4/ L]TT) . With pipelining we

should release the half-duplex capability of Corollary 7 because the spanning trees remain

arc-disjoint but cannot be edge-time disjoint any more. Setting p = 2 and h(p) = VN — 1
in the above formula gives the result. ad

The result of Corollary 8 should be compared with the lower bound given in [11] for a
regular graph G :

bp, (G) > D(B+ 1)+ (L - A) (15)

e

giving for the arrowhead :
r
6

with the same minor approximation for the diameter as in the wormhole case.

Thr(An) 2 SV (B +7)+ (L 6) (16)

5 Conclusion

This paper strengthens a first presentation of the “arrowhead torus”, a new interconnection
topology generated on the hexavalent grid [10]. Generic schemes for broadcasting have

RR n -~ 2827



14 Dominique Désérable

shown to be simple and efficient at once, running through a circuit-switched mode or a
packet-switching mode as well. From the organization of the paper, it must be clear that the
good behaviour the arrowhead has towards the broadcast problem results directly from the
symmetry of the algebraic structure whose it is provided as a Cayley graph. The question of
possible improvements of those algorithms is settled now as an open problem while relevant
schemes with regard to other types of global communications are investigated in a more
general framework.

Acknowledgments A flashback to a prior statement of the problem [8] reveals that the
RUMEUR Summer School” 92 held in Cargese (Corse) was undoubtedly fruitful to the

author.
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