
HAL Id: inria-00073877
https://hal.inria.fr/inria-00073877

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Load Balancing in Hierarchical Parallel
Database Systems

Luc Bouganim, Daniela Florescu, Patrick Valduriez

To cite this version:
Luc Bouganim, Daniela Florescu, Patrick Valduriez. Dynamic Load Balancing in Hierarchical Parallel
Database Systems. [Research Report] RR-2815, INRIA. 1996. �inria-00073877�

https://hal.inria.fr/inria-00073877
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Load Balancing in Hierarchical
Parallel Database Systems

Luc Bouganim, Daniela Florescu, Patrick Valduriez

N
�

2815
March 1996

PROGRAMME 1

Dynamic Load Balancing in Hierarchical Parallel Database
Systems

Luc Bouganim
�����

, Daniela Florescu
���

, Patrick Valduriez
���

Programme 1 — Architectures parallèles, bases de données, réseaux et systèmes distribués
Projet Rodin

Rapport de recherche n
�
2815 — March 1996 — 21 pages

Abstract: We consider the execution of multi-join queries in a hierarchical parallel system, i.e.,
a shared-nothing system whose nodes are shared-memory multiprocessors. In this context, load
balancing must be addressed at two levels, locally among the processors of each shared-memory
node and globally among all nodes. In this paper, we propose a dynamic execution model that
maximizes local load balancing within shared-memory nodes and minimizes the need for load
sharing across nodes. This is obtained by allowing each processor to execute any operator that
can be processed locally, thereby taking full advantage of inter- and intra-operator parallelism. We
conducted a performance evaluation using an implementation on a 72-processor KSR1 computer.
The experiments with many queries and large relations show very good speedup results, even with
highly skewed data. We show that, in shared-memory, our execution model performs as well as a
dedicated model and can scale up very well to deal with multiple nodes.

Key-words: Databases

(Résumé : tsvp)

This work has been done in the Groupement d’Intérêt Economique Dyade (joint R&D venture between Bull and Inria) and
has been partially supported by the Commission of European Communities under Esprit project IDEA.

�
Bull Grenoble, France���
E-mail:

�
Firstname.Lastname � @inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

Téléphone : (33 1) 39 63 55 11 – Télécopie : (33 1) 39 63 53 30

Dynamic Load Balancing in Hierarchical Parallel Database
Systems

Résumé : Nous considérons l’exécution de requêtes complexes dans une architecture parallèle
hiérarchique, consistant d’un ensemble de noeuds multiprocesseurs à mémoire partagée, reliés par
un réseau rapide. Dans ce contexte, l’équilibrage de charge doit être effectué à deux niveaux,
localement entre les processeurs de chaque noeud à mémoire partagée puis globalement entre les
differents noeuds. Dans ce papier, nous proposons un modèle d’exécution dynamique qui maximise
l’équilibrage locale de charge et minimise ainsi le besoin de répartitionnement du travail entre les
noeuds. Cela est obtenu en permettant à chaque processeur d’un noeud d’exécuter n’importe quelle
opération pouvant être traitée localement, tirant ainsi parti du parallélisme inter et intra-opération
présent dans les requêtes complexes. Nous effectuons une évaluation de performances en utilisant une
implémentation de notre modèle sur une machine KSR1 comprenant 72 processeurs. Les mesures
effectuées sur un ensemble de requêtes mettant en jeu de grandes relations montrent de très bon
gains (speed-up), même dans le cas de mauvaises répartitions des données. Nous montrons que notre
modèle se comporte, sur un noeud à mémoire partagée, aussi bien que des modèles dédiées et prend
en compte efficacement plusieurs noeuds.

Mots-clé : Bases de données

Dynamic Load Balancing in Hierarchical Parallel Database Systems 3

1 Introduction

Parallel system designers have long opposed shared-memory versus shared-nothing architectures.
Shared-memory provides flexibility and performance for a restricted number of processors while
shared-nothing can scale up to high-end configurations [DeWitt92, Valduriez93]. To combine their
respective benefits, hierarchical parallel systems consisting of shared-memory multiprocessors inter-
connected by a high-speed network [Graefe93] are gaining much interest. As an evidence, symmetric
multiprocessors (SMP), e.g., Sequent, are moving to scalable cluster architectures, while massively
parallel processors (MPP), e.g., NCR’s Teradata, are evolving to use shared-memory nodes. Another
example is Bull’s PowerCluster which is a cluster of PowerPC-based SMP nodes jointly developed
with IBM.

In this paper, we consider the execution of multi-join queries in hierarchical parallel database
systems. Such queries are getting increasingly important as parallel database systems are gaining
wider use for decision support (e.g., data warehouse applications). The objective of parallel query
processing is to reduce query response time as much as possible by distributing the query load among
multiple processors. The major barrier to this objective is poor load balancing, i.e., some processors
are overloaded while some others remain idle. As the response time of a set of parallel activities is
that of the longest one, this can severely degrade performance.

There are two dimensions for parallelizing multi-join queries: horizontally (i.e., intra-operator
parallelism) by distributing each operator among several processors, and vertically (i.e., inter-operator
pipelined or independent parallelism) by distributing all operators of the query among several
processors. Solutions for load balancing typically focus on one dimension on a given architecture
(shared-memory, shared-disk, or shared-nothing).

In shared-nothing, intra-operator parallelism is based on relation partitioning [Boral90, Apers92,
DeWitt90]. Skewed data distributions which are quite frequent in practice (see [Walton91] for
a taxonomy) can yield poor intra-operator load balancing. This problem has been addressed by
developing specific join algorithms that handle different kinds of skew [Kitsuregawa90, DeWitt92,
Shatdal93, Berg92] based on dynamic data redistribution.

With inter-operator parallelism, distributing the query’s operators among all processors can also
yield poor load balancing. Much research has been dedicated to inter-operator load balancing in
shared-nothing [Garofalakis96, Mehta95, Rahm95] which is done statically during optimization or
dynamically just before execution.

The potential reasons for poor load balancing in shared-nothing and different solutions are studied
in [Wilshut95]. First, the degree of parallelism and the allocation of processors to operators, decided
in the parallel optimization phase, are based on a possibly inaccurate cost model. Second, the choice
of the degree of parallelism is subject to discretization errors because both processors and operators
are discrete entities. Finally, the processors associated with the latest operators in a pipeline chain
may remain idle a significant time. This is called the pipeline delay problem. These problems stem
from the fixed association between data, operators and processors which is inherent to distributed
architectures.

In shared-disk[Pirahesh90], there is more flexibility since all processors have equal access to
disks. Thus, intra-operator parallelism does not require static relation partitioning which can be
performed dynamically [Davis92, Lu91]. Inter-operator parallelism is also less constrained since any

RR n � 2815

4 L. Bouganim, D.Florescu, P. Valduriez

processor can be allocated to any operator. Load balancing for independent parallelism is addressed
in [Hsiao94] while only pipeline parallelism is considered in [Lo93].

Shared-memory offers even more flexibility since all processors have equal access to memory and
disks. The solutions to load balancing [Shekita93, Hong92, Murphy91] can be much more dynamic
(i.e., at run-time) since redistributing the load incurs low cost. With the self-balancing process model
proposed in [Shekita93], each processor reads tuples from I/O buffers and performs the joins along
the pipeline chain using synchronous pipelining (procedure calls) as in [Hong92].

DBS3 [Bergsten91, Dageville94] has pioneered the use of an execution model based on relation
partitioning (as in shared-nothing) for shared-memory.This model reduces processor interference and
shows excellent load balancing for intra-operator parallelism [Bouganim96]. However, inter-operator
load balancing was not addressed.

To our knowledge, no work has addressed the problem of load balancing in hierarchical systems.
In this context, load balancing is more difficult because it must be addressed at two levels, locally
among the processors of each shared-memory node and globally among all nodes. None of the
previous approaches can be easily extended to deal with this problem. Load balancing strategies for
shared-nothing would have their inherent problems worsening (e.g., complexity and inaccuracy of
the cost model) and would not take advantage of the flexibility of shared-memory. On the other hand,
adapting of the solutions for shared-memory would incur high communication overhead.

In this paper, we propose an execution model for hierarchical systems which dynamically per-
forms intra and inter-operator load balancing. The basic, new idea is that the query work is de-
composed in self-contained units of sequential processing, each of which can be processed by any
processor. Intuitively, a processor can ‘migrate horizontally and vertically along the query work’.
The main advantage is to reduce to the minimum the communication overhead inherent to inter-node
load balancing by maximizing intra and inter-operator load balancing within shared-memory nodes.
To validate the model and study its performance, we did an implementation on a 72-processor KSR1
computer1.

The paper is organized as follows. Section 2 gives a number of assumptions regarding the
execution system and states the problem more precisely. Section 3 presents the basic concepts
underlying our model and its load balancing strategy. Section 4 completes the description of our
execution model with its main implementation techniques. Section 5 gives a performance evaluation
of our model, with comparison with two other load balancing strategies, using our implementation
on the KSR1 computer. Section 6 concludes.

2 Problem Formulation

A parallel execution model relies on assumptions regarding the target execution system and parallel
query optimization decisions. Assuming a hierarchical architecture changes the parallelization deci-
sions made by the query optimizer [Srivastava93]. In this section, we make precise our assumptions
regarding the execution system and the parallel execution plans. These assumptions will also help
making the problem statement and presenting the execution model.

2.1 Execution System

We consider a shared-nothing parallel database system with several shared-memory multiprocessor
nodes, or SM-nodes for short (see Figure 1). Each SM-node has several processors, several disk
units and a memory shared by all processors. Inter-node communication is done via message-passing
while inter-processor communication within a node is done more efficiently via shared-memory.
This architecture is fairly general and can include either limited numbers of powerful SM-nodes
(e.g., 4 nodes, each having 16 processors) or higher numbers of less powerful SM-nodes (e.g., 16

1Although Kendal Square Research Inc. is gone, our KSR1 computer is still up and running thanks to Inria’s ackers.

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 5

Interconnection network

Memory

Lo
ca

l B
us

SM-node

CPU

....
Disk

CPUDisk

CPUDisk

Memory

Lo
ca

l B
us

SM-node

CPUDisk

CPUDisk

CPUDisk

Memory

Lo
ca

l B
us

SM-node

CPUDisk

CPUDisk

CPUDisk

Figure 1: Hierarchical Architecture

nodes, each having 4 processors) for an equivalent CPU power and disk capacity. We are primarily
interested in the first alternative which is exemplified by the recent SMP cluster architectures.

Relations are horizontally partitioned across nodes, and within each node across disks. The degree
of partitioning of a relation is a function of the size and heat of the relation [Copeland88]. Relation
partitioning is based on a hash function applied to some attribute. The home of a relation is simply
the set of SM-nodes which store its partitions.

As in many other papers, we consider only parallel hash join methods since they generally
offer superior performance [Valduriez84, Schneider89]. Hash joins provide two opportunities for
parallelism: (i) several joins can be pipelined (inter-operator parallelism); and (ii) each join can be
done in parallel on partitioned relations (intra-operator parallelism). Both relations involved in the
join are fragmented in the same number of buckets, according to the same hash function applied to
the join attribute. Then, the parallel hash join proceeds in two phases: build and probe. First, the
buckets of the building relation are scanned in parallel and a hash table is built for each bucket.
Second, the buckets of the probing relation are scanned in parallel, probing the corresponding hash
table and producing result tuples.

2.2 Parallel Execution Plans

The result of parallel query optimization is a parallel execution plan that consists of an operator tree
with operator scheduling and allocation of computing resources to operators. Different shapes of
join tree can be considered: left-deep, right-deep, segmented right-deep, zigzag [Ziane93] or bushy.
Bushy trees are the most appealing because they offer the best opportunities to minimize the size
of intermediate results [Shekita93] and to exploit all kinds of parallelism [Lanzelotte93]. Thus, we
concentrate on the execution of bushy trees in this paper.

The operator tree results from the “macro-expansion” of the join tree [Hassan94]. Nodes represent
atomics operators that implement relational algebra and edges represent dataflow. In order to exhibit
pipelined parallelism, two kinds of edges are distinguished: blocking and pipelinable. A blocking
edge indicates that the data is entirely produced before it can be consumed. Thus, an operator with a
blocking input must wait for the entire operand to be materialized before it can start. A pipelinable
edge indicates that data can be consumed “one-tuple-at-a-time”. So the consumer can start as soon
as one input tuple has been produced.

Let us consider an operator tree that uses hash join. Three operators are needed: scan to read each
base relation, build and probe. The build operator produces a blocking output, i.e., the hash table,
while probe produces a pipelinable output, i.e., the result tuples. Thus, for a hash join operator, there
is always a blocking edge between build and probe, i.e., a blocking constraint between operators.
An operator tree does not enforce constraints between two operators that have no data dependency.

RR n � 2815

6 L. Bouganim, D.Florescu, P. Valduriez

R S T U

Scan 4

Scan 3

Scan 1

Scan 2

Build 3

Build 1

Build 2

Probe 2

Probe 3

Probe 1

home(Scan1) = Node A
home(Build1, Probe1, Scan2, Scan3) = Node B

Join tree

home(Scan 4) = Node C
home (Build3, Build2, Probe2, Probe3) = Nodes B,C

Operator homes

Hash constraints : Build1<Probe1, Build2<Probe2, Build3<Probe3
Heuristic 1: Build1<Scan2, Build2<Scan4, Build3<Scan4
Heuristic 2: Build3<Scan3

Operator Scheduling

Operator Tree

Blocking edge
Pipelinable edge
Pipeline chain

Figure 2: A join tree and a parallel execution plan

But the concurrent execution of two independent operators can yield poor sharing of the available
resources (memory, disk, processor). To optimize resource sharing among operators, the optimizer
may decide to add new blocking constraints in order to make their execution sequential. Thus,
operator scheduling as decided by the optimizer reflects the optimization constraints as well as the
constraints implied by the hash join method. It is expressed by a partial order on the set of operators
of the tree where

�
1 �

�
2 states that operator

�
2 cannot be started before the end of

�
1.

An operator tree can be decomposed as a set of maximum pipeline chains, i.e., chains with highest
numbers of pipelined operators, also called fragments [Shekita93] or tasks [Hong92]. For simplicity,
we assume that each pipeline chain can be entirely executed in memory. Otherwise the optimizer
should add new blocking edges between the operators of the pipeline chain, using new operators
(e.g. store). Considering this case would make the discussion unnecessarily longer.

A typical parallel optimization decision is the allocation of processors to operators. In shared-
memory, this decision reduces to the optimal number of processors since each processor has equal
access to disk and memory. In shared-nothing, processor allocation is highly dependent on data
location and is typically done by a fixed association between processors and operators. A hierarchical
architecture topology introduces a new dimension to the processor allocation problem. In this case,
it is more important to decide the set of SM-nodes where an operator is executed, which we call
operator home, rather than the set of participating processors. Thus, the parallel execution plan
provides operator homes that respect the following obvious constraints: (i) the home of a scan
operator is that of the scanned relation; and (ii) the build and probe operators of the same join have
necessarily the same home.

Figure 2 shows a bushy tree involving 4 relations and a possible parallel execution plan which
consists of an operator tree adorned with operator scheduling and operator home information. In
addition to the blocking constraints implied by the hash join algorithm, the given scheduling specifies
constraints corresponding to two possible heuristics: (i) the execution of a pipeline chain is started
only when all the hash tables are ready; and (ii) pipeline chains are executed one-at-a-time. Such
a parallel execution plan is the input to our execution model and the optimization and scheduling
decisions, supposed to be good, are strictly followed.

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 7

2.3 Problem Statement

Based on the above definitions and assumptions, we can now simply state the problem. Given a
parallel execution plan which consists of an operator tree, operator scheduling and operator homes,
the problem is to produce an execution on a hierarchical architecture which minimizes response time.
A necessary condition to minimize response time is to avoid processor idle time using dynamic load
balancing. This must be done at two levels: (i) within an SM-node, load balancing is achieved via fast
interprocess communication; (ii) between SM-nodes, more expensive message-passing communica-
tion is needed. Thus, the problem is to come up with an execution model that provides a two-level
dynamic load balancing strategie so that the use of local load balancing is maximized while the use
of global load balancing is minimized.

3 Parallel Execution Model

Intuitively, parallelizing a query amounts to partition the total work along two dimensions. First,
each operator is horizontally partitioned to yield intra-operator parallelism. Second, the query is
vertically partitioned into dependent or independent operators to yield inter-operator parallelism. We
call activation the finest unit of sequential processing, i.e., which cannot be further partitioned. The
main property of our model is to allow any thread to process any activation of its SM-node. Thus,
there is no static association between threads and operators. This should yield perfect load-balancing
for both intra-operator and inter-operator parallelism within an SM-node, and thus, reduce to the
minimum the need for global load balancing, i.e., when there is no more work to do in an SM-node.

In the rest of this section, we present the basic concepts underlying our model and its load
balancing strategy which we illustrate with an example.

3.1 Basic Concepts

Our execution model is based on a few concepts: activations, activation queues, fragmentation, and
threads. These concepts are simple and their combination provide much flexibility and generality.
Activations. An activation represents a sequential unit of work. Since any activation can be executed
by any thread, activations must be self-contained and reference all information necessary for their
execution: the code to execute and the data to process. Two kinds of activations can be distinguished:
trigger activations and data activations. A trigger activation is used to start the execution of a
leaf operator, i.e., scan. It is represented by an � ���������
	��
��������������	��

pair which references the scan
operator and the base relation bucket to scan. A data activation describes a tuple produced in pipeline
mode. It is represented by an � �������
�
	��
�������������
��������� ��	��

triple which references the operator to
process (build or probe), the tuple to process, and the corresponding bucket. For a build operator, the
data activation specifies that the tuple must be inserted in the hash table of the bucket. For a probe
operator, it specifies that the tuple must be probed with the bucket’s hash table. Although activations
are self-contained, they can only be executed on the SM-node where the associated data (hash tables
or base relations) is located.

The quality of load balancing depends on the granularity of parallelism [Bouganim96]. Fine-grain
parallelism (i.e., parallel execution of data activations) achieves perfect load balancing but may yield
high overhead. Conversely, coarse-grain parallelism (i.e., parallel execution of trigger activations)
has limited overhead but may yield poor load balancing. To obtain good load balancing with little
overhead, we reduce the granularity of trigger activations by replacing a bucket by one or more pages
of a bucket, and increase the granularity of data activations by buffering.
Activation Queues. Moving data activations along pipeline chains is done using activation queues,
called table queues in [Pirahesh90], associated with operators. If the producer and consumer of an
activation are on the same SM-node, then the move is done via shared-memory. Otherwise, it requires

RR n � 2815

8 L. Bouganim, D.Florescu, P. Valduriez

Scan1
Build1
Scan2
Probe1
Build3
Scan3
Build2
Scan4
Probe2
Probe3

TT

Node A Node B Node C

Terminated

Blocked

Thread

 queue

primary

 queue

Set of

Active queue

queues

TTTT T T

Figure 3: Snapshot of an execution

message-passing. To unify the execution model, queues are used for trigger activations (inputs for
scan operators) as well as tuple activations (inputs for build or probe operators).

Each operator needs a queue to receive input activations. Since all threads have unrestricted
access to all queues located on their SM-node, managing a small number of queues (e.g., one for
each operator) may lead to interference. To reduce interference, we associate one queue per thread
working on an operator. Note that a higher number of queues would likely trade interference for queue
management overhead. To further reduce interference without increasing the number of queues, we
give each thread priority access to a distinct set of queues, called its primary queues. Thus, a thread
always tries to first consume activations in its primary queues.

During execution, operator scheduling constraints may imply an operator to be blocked until the
end of some other operators (the blocking operators). Therefore, a queue for a blocked operator is
also blocked, i.e., its activations cannot be consumed but they can still be produced if the producing
operator is not blocked. When all its blocking operators terminate, the blocked queue becomes
consumable, i.e., threads can consume its activations. This is illustrated in Figure 3 with an execution
snapshot for the operator tree of Figure 2.

Threads can freely consume activations in any of the unblocked queues. Without any restriction
on the way activations are selected, memory consumption may well increase. For instance, consider
the concurrent execution of two pipelined operators. If the selection strategy favors the producer
operator, then it may well end up materializing the entire intermediate result at the expense of memory
consumption. To avoid this situation, we simply limit the size of the queues and use a flow control
mechanism similar to [Graefe93, Pirahesh90] to synchronize producers and consumer in a pipeline
chain.
Fragmentation. Let us call degree of fragmentation the number of buckets of the building and
probing relations. To reduce the negative effects of data skew, the typical solution is to have a degree
of fragmentation much higher than the degree of parallelism (i.e., the number of processors allocated
to the build or probe operators) [Kitsuregawa90, DeWitt92]. However, one problem is the potential
overhead of managing many buckets for each processor. Since our activations are self-contained
and reference their own bucket, we can mix activations of different buckets in the same queue and
thus reduce the overhead of queue management. More generally, by using a very high degree of
fragmentation, our model eases load balancing.
Threads. A simple strategy for obtaining good load balancing inside an SM-node is to allocate a
number of threads much higher than the number of processors and let the operating system do thread

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 9

scheduling. However, this strategy incurs high numbers of system calls due to thread scheduling,
interference and convoy problems [Blasgen79, Pirahesh90, Hong92].

Instead on relying on the operating system for load balancing, we choose to allocate only one
thread per processor per query. This is made possible by the fact that any thread can execute any
operator assigned to its SM-node. The advantage of this one-thread-per-processor allocation strategy
is to significantly reduce the overhead of interference and synchronization. At each SM-node, we
then create one queue per operator and thread so that each operator has the same potential degree of
parallelism. Furthermore, since there is only one thread per processor for the entire query, we do not
have the traditional start-up overhead.

This one-thread-per-processor strategy can yield good load balancing provided that a thread is
never blocked, i.e., waiting for some event, which would cause processor idle time. During the
processing of an activation, a thread can be blocked in the following situations:

� the thread cannot insert an activation in a pipeline queue because the queue is full (flow
control);

� the use of asynchronous I/O (for multiplexing disk accesses with data processing) can create
waiting situations;

� with multiple transactions, processing an activation referencing a shared data item may cause
the thread to be blocked on a lock request.

Waiting situations are typically solved using operating system synchronization mechanisms
(e.g., signals). This solution is not optimal because of the overhead of synchronization and context
switching. However, it is acceptable with many more threads than processors since the operating
system can switch threads for better processor utilization. In our model, with a single thread per
processor, these waiting situations may lead to processor idle time. We solve this problem as follows.
A thread in a waiting situation suspends its current execution by making a procedure call to find
another local activation to process. The advantage is that context saving is done by procedure call,
which is much less expensive than operating system based synchronization.

3.2 Load Balancing Strategy

Load balancing within an SM-node is obtained by allocating all activation queues in a segment of
shared-memory and by allowing all threads to consume activations in any queue. To limit thread
interference, a thread will consume as much as possible in its set of primary queues before considering
the other queues of the SM-node. Therefore, a thread gets idle only when there is no more activation
of any operator, which, in turn means that there is no more work to do on that SM- node which is
starving. Thus, local load balancing can be obtained at low cost.

When an SM-node gets starving, i.e., there are no more activations in all unblocked queues, we
can apply load sharing with another SM-node by acquiring some of its workload [Shatdal93]. Howe-
ver, acquiring activations (through message-passing) incurs communication overhead. Furthermore,
activation acquisition is not enough since associated data, i.e., hash tables must also be acquired.
Thus, we need a mechanism that can dynamically estimate the benefit of acquiring activations and
data.

Let us call “requester” the SM-node which acquires work and “provider” the SM-node which gets
off-loaded by providing work to the requester. The problem is to select a queue to acquire activations
and decide how much work to acquire. This is a dynamic optimization problem since there is a trade-
off between the potential gain of off-loading the provider and the overhead of acquiring activations
and data. This trade-off can be expressed by the following conditions: (i) the requester must be able to
store in memory the activations and corresponding data; (ii) enough work must be acquired in order
to amortize the overhead of acquisition; (iii) not too much work must be acquired in order to avoid
overloading the requester; (iv) only probe activations can be acquired since triggered activations
require disk accesses and build activations require building hash tables locally; (v) there is no gain to

RR n � 2815

10 L. Bouganim, D.Florescu, P. Valduriez

R S

ScanR

ScanSBuildR

Probe

Join tree Parallel execution plan

TB1 TB2TA1 TA2

ScanR

ScanS

BuildR

Probe
c1 c2

Execution snapshot

Node A

Node B

BuildR < Probe

Node A Node B

Figure 4: A simple example of query execution

move activations associated with blocked operators which could not be processed anyway. Finally,
to respect the decisions of the optimizer, an SM-node cannot execute activations of an operator that
it does not own, i.e., the SM-node is not in the operator home. More details about the global load
balancing policy are given in section 4.

The quality of the load balancing obtained depends on the number of operators that are concur-
rently executed which provides opportunities of finding some work to share in case of idle times.
Increasing the number of concurrent operators can be done by allowing concurrent execution of
several pipeline chains or by using non-blocking hash-join algorithms [Wilshut95]. As an extreme
case, it is possible to execute all the operators of the bushy tree concurrently with the full parallel
strategy described in [Wilshut95]. On the other hand, executing more operators concurrently can
increase memory consumption. Static operator scheduling as provided by the optimizer should avoid
memory overflow and solve this tradeoff.

3.3 Example

We now illustrate these main concepts on a simple example. Although the model is designed for
multi-join queries, a complex example would be unnecessarily lengthy. We consider the join of
relations R and S executed on two SM-nodes

�
and

�
, each having two processors and thus two

threads. Relation R is stored at node
�

and relation S at node
�

. Figure 4 gives the parallel execution
plan and its execution snapshot at the beginning.

Execution at node
�

proceeds as follows. Threads
���

1 and
���

2 consume trigger activations for
the scan � operator in their associated queue. For each activation, they execute the scan operator on
a partition of R, reading R tuples from disk and sending selected tuples in pipeline mode to the build
operator at node

�
. If

���
1 and

���
2 get blocked because the build queues are full, and since there

is no other operator to process at
�

, they must wait for the build queues to free. If one thread, say���
1, terminates processing all activations in its queue, it may consume activations in

���
2 ’s queue

in order to balance the remaining load. Operator scan � terminates when there is no more activation
to process.

Execution at node
�

proceeds as follows. Threads
���

1 and
���

2 start consuming trigger activations
for the scan � operator in their associated queue. For each activation, they execute the scan operator
on a partition of S, reading S tuples from disk and sending selected tuples in pipeline mode to the
probe operator. To illustrate execution switching by a thread, we assume that activations 	 1 and
	 2 produce more selected tuples (data activations) than the probe queues can store. Thus, during
execution of 	 1,

� �
1 fills the probe queues. To avoid waiting,

� �
1 suspends the execution of 	 1 by

calling the procedure that selects activations, thus saving 	 1’s execution context. Since executing
other scan � activations would result in blocking

� �
1 again and since the probe operator is blocked,

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 11

� �
1 selects build activations produced by

���
1 and

���
2. The same execution happens for

� �
2 with

	 2.
� �

1 and
���

2 execute all build activations until termination (i.e., the hash table has been entirely
built), which unblocks the probe operator. Thus, they can execute probe activations, which frees the
probe queues, and resume execution of 	 1 and 	 2. Processing of new scan � activations may again
fill the probe queues, in which case

� �
1 and

� �
2 would switch to process probe activations, and so

on until termination of scan � .
This simple example shows the value of using activation queues and procedure calls. Threads���

1 and
���

2 are always busy during query execution and the load of node
�

perfectly balanced.
Furthermore, threads

� �
1 and

� �
2 are fully busy during the first phase of execution according to the

optimizer decisions.

4 Basic Techniques

In this section, we present the basic techniques to support our execution model. We do so by following
the various steps of query execution in a hierarchical system.
Initialization. Let � be the number of SM-nodes, each having

�
processors. The execution is

initialized by creating, at each SM-node participating in the query,
�

execution threads, and, for
each unblocked operator located on this node,

�
queues. Furthermore, an additional thread, called

scheduler, is created at each SM-node to deal with message-passing. During execution, the scheduler
receives messages from the remote SM-nodes and directs them to the queues of its SM-node. The
scheduler also manages inter-node communication as needed for global load balancing and detection
of operator end. Locally, the scheduler communicates with other threads using operating system
signals.
Query execution. It starts by sending trigger activations to all unblocked scan queues. Then, each
execution thread processes activations by consuming queues in priority order. First, it consumes its
primary queues, then the other queues at the same SM-node and finally, other queues at another
SM-node using load sharing. Conceptually, each thread performs a simple loop which ends when the
last operator of the query terminates. At each iteration, an activation is processed. If there is no local
activation to process and no global activation to acquire through load sharing (see section 3.2), the
thread falls asleep. If new activations come in or some of the local queues become unblocked, the
scheduler wakes up the thread which can resume the loop.
Local activation selection. To maximize SM-node load balancing, activation selection must mini-
mize thread interference when accessing queues and avoid useless access to queues associated with
operators that are either terminated or blocked. Our solution is based on a circular list of references
to all active queues, i.e., neither terminated nor blocked, which is accessed by all threads during
activation selection. To avoid interference, each thread starts accessing the list at a different position
corresponding to its first primary queue (see Figure 5). This list is created at the beginning of query
execution, and updated at the end of each operator to delete all queues associated with it. Further-
more, if the end of the operator causes unblocking of some other operators, the unblocked queues
are inserted in the circular list. If no activation is found in any queue of the circular list, it means that
there is no more work to do at that SM-node and global activations must be selected by the global
load balancing strategy.
Global Activation Selection. Global activation selection, i.e., for load sharing with another SM-
node, contributes to global load balancing. When a thread does not find local activations, it sends
a signal to its local scheduler which, in turn, sends a starving message to the other SM-nodes. This
message indicates the available memory of the requester node. The scheduler at each SM-node, when
receiving a starving message, looks up its candidate queues. Section 3.2 enumerates the necessary
conditions for a queue to be candidate, i.e. the conditions which insure that this stealing is possible and
beneficial. The scheduler selects between the candidate queues the one with the best benefit/overhead
ratio. The benefit obtained by stealing a candidate queue is proportional to the number of activations
in the queue, i.e. the work removed from the overloaded SM-node. The overhead is proportional to

RR n � 2815

12 L. Bouganim, D.Florescu, P. Valduriez

Activation selection

Thread 1

Thread 2

Thread 3

Thread 4

Q2
1

Q2
2 Q1

3
Q1

2

Q1
1

Q4
3

Q4
2

Q4
1

Q3
3Q3

2
Q3

1

Q2
3

indicates the primary queue
of operator i for thread j

Q j
i

Figure 5: Circular list of activation queues.

the size of the data to be transmitted (hash table and activations). Then, the scheduler back to the
requester information on the selected queue (if any) as well as information on its actual load. After
receiving answers from all SM-nodes, the requester selects the most loaded SM-node and requests
for activations and corresponding data, i.e., hash tables to be sent. Upon receipt of activations, the
scheduler of the requester SM-node wakes up the executions threads to process them.

To optimize in case of repeated starving of the same SM-node, a list of stolen queues can be
maintained at the requester SM-node. At the next starving situation, it can try to steal activations
from theses queues whose associated data have been already copied.
Activation Execution. An activation has a reference to the code to be executed (scan, probe or
build). Thus, activation is simply performed by calling the corresponding operator code. However,
when executing that code, a thread can perform a blocking action, e.g., by reading from disk or
writing in a queue that is full. Thus, in the code of each operator, the potential blocking actions are
modified as follows:

if (cannot perform (BlockingAction) then
while cannot perform (BlockingAction) do

ProcessAnotherActivation
end

The procedure ProcessAnotherActivation will not consume activations of the same operator in order
to avoid new blocking situations. For instance, reading NbPages from Disk can be expressed by the
following code:

IoRequest = IO InitAsync(Disk, NbPages)
NbP = 0
while (NbP != NbPages)

while (IO Read(IoRequest) == 0)
ProcessAnotherActivation

end
Process the current page
NbP = NbP + 1

end

With this technique, we avoid blocking actions and maximize processor utilization without system
calls.
Detection of Operator End To avoid useless resource consumption, it is important to detect as soon
as possible the global end of an operator. In particular, a delay between actual end and detection can
create a starving situation at an SM-node because queues are blocked. This leads to the use of global
load balancing which could have been avoided by faster detection of operator end.

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 13

In our case, the problem is complicated by the fact that activations can be processed by any
SM-node through load sharing. Thus, we need coordination of SM-nodes which is done by one
SM-node, called coordinator, and a protocol similar to two-phase commit.

Detecting the end of operator
���

proceeds as follows. During activation consumption, each thread
that empties a queue

�
of

���
checks whether the producing operator

�����
1 has terminated. If it has,

�
will no longer receive activations and becomes inactive. In this case, the thread sends a EndOfQueue
signal to its scheduler. After receiving

�
EndOfQueue signals (

�
queues are created for each operator

on an SM-node), the scheduler sends a EndofQueuesAtNode message to the coordinator scheduler.
The receipt of � such messages (one per SM-node) indicates the coordinator that all queues of

� �
are

inactive. This means that
� �

is almost terminated but there may still be threads that are processing� �
activations. Therefore, a second synchronization phase between the coordinator and the threads

(via their scheduler) is needed to make sure that they have terminated processing
� �

activations.
Then, the coordinator can tell all schedulers to update their list of consumable queues. This protocol
is cheap (4 � inter-node messages) and minimizes the delay between end of operator and detection.

5 Performance Evaluation
Performance evaluation of a parallel execution model for multi-join queries is made difficult by the
need to experiment with many different queries and large relations. The typical solution is to use
simulation which eases the generation of queries and data, and allows testing with various configu-
rations. However, simulation would not allow us to take into account some important performance
aspects such as the overhead of thread interference within an SM-node. On the other hand, using
implementation and benchmarking would restrict the number of queries and make data generation
very hard. Therefore, we decided to fully implement our execution model on a multiprocessor and
simulate the execution of operators. Thus, query execution does not depend on relation content and
can be simply studied by generating queries and setting relation parameters (cardinality, selectivity,
skew factor, etc.).

In the rest of this section, we describe our experimentation platform and report on performance
results on load balancing at two levels: locally within an SM-node and globally among SM-nodes.

5.1 Experimentation Platform

We now introduce the multiprocessor configuration we have used for our experiments and the way
we have generated parallel execution plans and relations. We also present the methodology that was
applied in all experiments.

5.1.1 Multiprocessor Configuration

We have implemented our execution model on a 72-processor KSR1 computer [Frank93] for two
reasons. First, it is freely available to us at Inria. Second, its shared virtual memory architecture
and high number of processors make it possible to organize as a hierarchical parallel system. Each
processor is 40 MIPS fast and has its own 32 Megabytes memory, called local cache. KSR1’s Allcache
system uses hardware to provide a shared virtual memory space which includes all local caches.

To experiment with various hierarchical system configurations, we cluster processors as SM-
nodes2 and simulate inter-node communication using the following typical network parameters:

2In order to simulate a real SM-node and avoid the influence of the NUMA architecture of the KSR1, we force all read
and write data accesses to be local, i.e. in the local cache of the processor.

RR n � 2815

14 L. Bouganim, D.Florescu, P. Valduriez

Network Parameters Values
Bandwidth (based on [Mehta95]) Infinite
End to end transmission delay 0.5 ms
CPU cost for sending 8K byte 10000 instr.
CPU cost for receiving 8K byte 10000 instr.

Furthermore, to experiment with multiple disks (only one disk of the KSR1 was available to us), we
simulate disk accesses to base relations with the following parameters:

Disk Parameters Values
Nb. of disks 1 per processor
Disk latency [Mehta95] 17 ms
Seek Time 5 ms
Transfer Rate 6 MB/s
CPU cost for asynchronous I/O init. 5000 instr.
I/O Cache Size 8 pages

5.1.2 Parallel Execution Plans

The input to our execution model is a parallel execution plan obtained after compilation and optimi-
zation of a user query. To generate queries, we use the algorithm given in [Shekita93] with three kinds
of relations: small (10K-20K tuples), medium (100K-200K tuples) and large (1M-2M tuples). First,
the predicate connection graph of the query is randomly generated. Since most multi-join queries in
practice tend to have simple join predicates, we consider only acyclic connected graphs. Second, for
each relation involved in the query, a cardinality is randomly chosen in one of the small, medium or
large ranges. Third, the join selectivity factor of each edge (R,S) in the predicate connection graph is
randomly chosen in the range � 0 � 5 ������� �
	��
	 � 	���	 ��� 	�������	 � 1 � 5 ��� ��� ��	���	 � 	���	 ��� 	�������	 .

The result of query generation is an acyclic connected graph adorned with relation cardinalities
and edge selectivities. We have generated 20 queries, each involving 12 relations. Each query is then
run through our DBS3 query optimizer [Lanzelotte93] which gives us full control over optimization.
For each query, the two best bushy operator trees are retained. To automatically produce parallel
execution plans from operator trees, we make a number of assumptions. First, relations are fully
partitioned across all SM-nodes. Second, all SM-nodes are allocated to all operators of the plan.
Third, pipeline chains are executed one-at-a-time. Although these assumptions cannot yield the
best parallel execution plan, they are reasonable. Furthermore, our goal here is to produce the best
execution for a given parallel execution plan.

Without any constraint on query generation, we would obtain very different executions which
would make it difficult to give meaningful conclusions. Therefore, we constrain the generation of
operator trees so that the sequential response time is between 30 mn and one hour. Thus, we have
produced 40 parallel execution plans involving about 1.3 Gigabytes of base relations and about
4 Gigabytes of intermediate results. Since we ignore the content of relations, we could generate
automatically large relations with given cardinalities.

5.1.3 Experimentation Methodology

In the following experiments, each point in a graph will be obtained from a computation based
on the response times of 40 parallel execution plans. Since the different parallel execution plans
correspond to 20 different queries, computing the average response time does not make sense.
Therefore, the results will always be in terms of comparable execution times. For instance, in a
speedup experiment, let the speedup be the ratio of response time with p processors over the response
time with one processor, each point will be computed as the average of the speedups of all plans.

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 15

More generally, each point of a graph is obtained with � measurements, each on a different plan,
using the following formula:

1
�

��� ��
���

1

���
�
��� � � � 	 ��� � ��� ��� ����� ��� � � 	�
��� ����� � � � ��� � ��� � � ��	 ��� �

where the reference response time will be indicated for each experiment. To obtain precise measure-
ments, each response time is computed as the average of five successive measurements.

5.2 Local Load Balancing

To study the performance of our model within an SM-node, we compare it with two other execution
models. Then we study the impact of data skew.

5.2.1 Performance Comparisons

To compare with our model in the shared-memory case, we have chosen and implemented two
well-known load balancing strategies. The first strategy is synchronous pipelining (SP) [Shekita93]
and is designed for shared-memory. Each processor is multiplexed between I/O and CPU threads and
participates in every operator of a pipeline chain. I/O threads are used to read the base relations into
buffers. Each CPU thread reads tuples from the buffers and probes all the hash tables along the pipeline
chain. Unless there is severe data skew (which yields high variations in tuple processing time), this
model will achieve perfect load balancing. However, SP cannot be implemented in shared-nothing
because data redistribution between two successive operators would imply costly remote procedure
synchronization. The second strategy has been designed for shared-nothing [DeWitt90, Boral90].
For each pipeline chain, processors are statically allocated to operators based on a ratio of the
estimated complexity, including CPU and I/O costs, of each operator versus the global complexity
of the pipeline chain. This strategy yields good load balancing as long as the cost model is accurate.
We adapt this strategy for shared-memory, allowing intra-operator load balancing and call it fixed
processing (FP). This was implemented by using our execution model, restricting each thread to
process activations associated with only one operator. To compare with SP and FP, we call our model
dynamic processing (DP) to reflect the fact that processors are dynamically allocated to operators of
a pipeline chain.

Figure 6 compares the relative performance of the three strategies for different numbers of
processors with no data skew. The reference response time is that of SP which is always best. FP is
always worse because of discretization errors which worsen as the number of processors decreases.
The performance of our strategy is very close to that of SP from 8 and 32 processors and remain
close for higher numbers. The small performance difference is due to thread interference and queue
management in DP.

The performance of FP strongly depends on the accuracy of its cost model and we were interested
in studying the impact of errors in cost estimates. Figure 7 shows the relative performance of FP
versus the error rate, using several degrees of parallelism, with SP’s response time used as reference.

To obtain a measurement with an error rate
�
, the cardinalities of base and intermediate relations

are distorted by a value chosen in [-
�
,+
�
], which propagates errors in estimating the cost of operators

and the number of allocated processors. The measurements have been performed with a realistic error
rate between 0 and 30%. Given the random nature of the measurements, we have chosen to restrict
the number of execution plans tested. However, for each error rate, three distortions are randomly
picked for each plan.

The results show that response time degrades significantly as the error rate increases and that it
depends much on the degree of parallelism. With few processors (e.g., 8), performance degradation
is small with a small error rate but increases significantly as the error rate increases. This is because
badly allocated processors get idle which is more significant with few processors (e.g., 1/8 is worse

RR n � 2815

16 L. Bouganim, D.Florescu, P. Valduriez

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

16 32 64

R
el

at
iv

e
pe

rf
or

m
an

ce

Nb of processors

SP
DP
FP

8 procs
16 procs
32 procs
64 procs0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 20 30

R
el

at
iv

e
pe

rf
or

m
an

ce
 d

eg
ra

da
tio

n

Cost model error rate (in %)

Figure 6: Relative performances Figure 7: Impact of cost model errors
of SP, FP and DP on FP

than 1/64). So with more processors (e.g., 64), a small error rate changes the effectiveness of
processor allocation, but the impact on performance is proportionally less. The worst load balancing
is obtained when a few processors are allocated to costly operators while all others are allocated to
cheap operators. This is reached sooner or later depending on the degree of parallelism. For instance,
with 5 operators and 8 processors, the worst load balancing is reached with only 3 processors badly
allocated, whereas it is reached with 59 with 64 processors. This explains the threshold around 20%
with 8 processors and the steadier and smaller degradation with more processors. These experiments
confirm the limitations of static load balancing, thus motivating the need for dynamic load balancing.

Figure 8 shows the average speed-up of all query executions for each strategy, with r=0 for FP.
Again SP is always slightly better than DP, and FP is always worse. Up to 32 processors, SP and DP
yield near-linear speedup. Beyond, the overhead of data access across KSR1’s memory hierarchy
reduces a bit the performance improvement. However, a hierarchical system would typically include
SM-nodes with less than 32 processors thereby making DP an excellent strategy.

5.2.2 Impact of Data Skew

In our model, all threads have access to all local activation queues and thus can interfere with each
other. The interference overhead increases with bad distributions of activations in queues which stem
from various forms of data skew [Walton91]. Attribute value skew or tuple placement skew lead to
unbalanced relation partitions thereby causing bad distribution of trigger activations in scan queues.
Redistribution skew leads to bad distribution of data activations in pipeline queues.

In this experiment, we study the overhead of interference in our model in case of skew. To do so,
we have introduced redistribution skew in the production of trigger activations and in all operators
producing pipelined tuples. For simplicity, the skew factor of a producer operator does not impact
that of the consumer operator. All operators have the same skew factor based on a Zipf function
[Zipf49] that yields a factor between 0 (no skew) and 1 (high skew).

Figure 9 shows the relative performance of DP versus the skew factor with 64 processors, the
reference response time being that with no skew. The important conclusion is that the impact of skew
on our model is insignificant. This is due to several design decisions. First, our model allows a high
degree of operator partitioning which reduces the negative effect of skew [Kitsuregawa90]. Second,

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 17

1

8

16

24

32

40

48

56

1 8 16 32 48 64

Sp
ee

du
p

Nb of processors

SP
DP
FP

DP

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
s

de
gr

ad
at

io
n

Degree of redistribution skew (Zipf)

Figure 8: Speedup of SP, FP, DP Figure 9: Impact of data skew on DP

the priority-based association of queues to threads reduces interference. Finally, interferences are
further reduced by caching read and write activations.

This experiment could not consider all consequences of data skew. In particular, data skew can
also yield different processing times for activations. This happens in case of attribute value skew,
selectivity skew and join product skew. In effect, these kinds of skew can overload some queues
because of higher processing times, and not because of higher numbers of activations. And this yields
the same good behavior of the model.

5.3 Global Load Balancing

In our model, we minimize the use of global load balancing (which incurs communication overhead)
by favoring more efficient local inter- and intra-operator load balancing. To assess the performance
gain of such strategy in a hierarchical system, we compare it with FP which performs well in shared-
nothing. In our experiment, we adapt FP as follows. As each operator is present on all SM-nodes,
the distribution of the processors of each SM-node over the operators of the pipeline chain is done
independently, according to the strategy described in Section 5.2.1.

Since FP imposes that processors process activations of only one operator, a processor that
becomes idle triggers the use of global load balancing. Therefore, an uneven operator load distribution
on the nodes may lead to global load balancing at the end of each operator.

In order to create poor load balancing within SM-nodes, we simply introduce skew as before.
Without skew, we have experimentally observed that global load balancing is almost never used,
and, the response time of each plan with or without global load balancing is similar.

We first compare the behavior of FP and DP for a simple execution plan, i.e., a pipeline chain of
5 operators, each having a redistribution skew factor of 0.8. The hierarchical system is configured as
4 SM-nodes, each having 8 processors. We measured the amount of data exchanged between nodes
with FP and DP. For this experiment, FP requires 9 Megabytes data to be transferred versus only 2.5
Megabytes for DP. The difference observed is explained by the following.

With FP, all processors can become idle independently of each other. Since there is no dynamic
inter-operator load balancing, a processor allocated to an operator can be idle whereas another
processor allocated to another operator is overloaded. The idle processor will then invoke global load
balancing to steal work from a remote processor allocated to the same operator. Thus, several starving

RR n � 2815

18 L. Bouganim, D.Florescu, P. Valduriez

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

4x8 4x12 4x16

R
el

at
iv

e
pe

rf
or

m
an

ce

Configuration (Nb of nodes x Nb of procs/node)

DP
FP

Figure 10: Relative performance of FP and DP

situations can appear at the same SM-node. Furthermore, there can be mutual stealing between two
SM-nodes.

With DP, these problems are avoided. When a processor becomes idle, this is because the entire
SM-node is starving. Since load sharing is applied at the level of the SM-node (rather than the
processor), there cannot be repeated or mutual starving situations.

As in the previous experiments, we have also done other measurements with 40 execution plans
(bushy trees involving 12 relations), with three configurations and a skew factor of 0.6. Figure
10 shows the performance gain of DP over FP with 4 nodes of 8, 12, respectively 16 processors.
We observed, among all executions, performance gains between 14 and 39%. This is due to less
utilization of global load balancing for DP as well as better performance of DP on SM-nodes.
The communication overhead due to global load balancing is 2 to 4 times smaller for DP. Also,
processor idle time with DP is almost null whereas it is quite significant with FP. We did not observe
any relationship between the number of processors on each node and the performance difference
between FP and DP.

6 Conclusion

In this paper, we have addressed the problem of dynamic load balancing for multi-join queries
in a hierarchical parallel system, i.e., a shared-nothing system whose nodes are shared-memory
multiprocessors (SM-nodes). Given a parallel execution plan resulting from the parallel optimization
of a query, the goal of dynamic load balancing is to minimize query response time by avoiding
processor idle time. We have proposed a new, dynamic solution that maximizes load balancing
locally within shared-memory nodes and reduces as much as possible the need for load sharing
across nodes. This is obtained by decomposing the work in self-contained activations that represent
the finest units of sequential processing and allowing any thread to process any activation of its SM-
node. Thus, there is no static association between threads and operators. This yields much flexibility
in exploiting intra-operator and inter-operator parallelism within an SM-node, and thus, reduces
to the minimum the need for global load balancing, i.e., when there is no more work to do in an
SM-node.

Furthermore, our execution model eases static optimization, which is tipically complex in a
hierarchical architecture, by avoiding to statically decide the operator scheduling and the association

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 19

between operators and processors. However, if static distribution is decided by the optimizer, our
execution model can exploit it and would still minimize the overhead of dynamic load balancing.
The cost estimate errors, unavoidable in such architecture will have small impact on response time
due to dynamic load balancing.

To evaluate the performance of our model, we did an implementation on a 72-processor KSR1
computer. KSR1’s shared virtual memory architecture and high number of processors have made
it easy to organize as a hierarchical parallel system. To experiment with many different queries,
large relations and different relation parameters (cardinality, selectivity, skew factor, etc.), we have
simulated the execution of atomic operators. We have performed various experiments at two levels:
locally within an SM-node and globally among SM-nodes.

In the shared-memory case, we have compared our load balancing strategy called dynamic
processing (DP) with synchronous pipelining (SP) and fixed processing (FP). SP is best for shared-
memory but does not work in shared-nothing whereas FP is designed for shared-nothing and also
works in shared-memory. FP is always worse because of discretization errors which worsen as the
number of processors decreases. The performance of our strategy is very close to that of SP from 8
to 32 processors and remain close for higher numbers. Both SP and DP strategies show very good
speedup, even with highly skewed data.

To assess the performance of our global load balancing strategy in a hierarchical system, we have
compared it with FP which performs well in shared-nothing. Our strategy outperforms FP by a factor
between 14 and 39% and the communication overhead due to global load balancing is 2 to 4 times
smaller. Finally, processor idle time is almost null with DP whereas it is quite significant with FP.

To summarize, in shared-memory,our execution model performs as well as a dedicated model and
can scale up very well to deal with multiple nodes. Considering the current multiprocessor towards
hierarchical architectures with database as the main target application, such a model provides two
strong advantages: predictable performance across many different configurations and portability of
DBMS software.

Acknowledgments
The authors wish to thank Benoit Dageville for many fruitful discussions on parallel execution model
and Jean-Paul Chieze for helping us with the KSR1 at Inria.

References

[Apers92] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L. Kersten, A. N. Wil-
schut, “PRISMA/DB: A Parallel Main Memory Relational DBMS“. IEEE Trans. Knowledge and Data
Engineering, 4(6), December 1992.

[Berg92] C. A. van den Berg, M, L, Kersten, “Analysis of a Dynamic Query Optimization Technique for
Multi-join Queries“. Int. Conf. on Information and Knowledge Engineering, Washington, 1992.

[Bergsten91] B. Bergsten, M. Couprie, P. Valduriez, “Prototyping DBS3, a Shared Memory Parallel System“.
Int. Conf. on Parallel and Distributed Information Systems, Miami Beach, December 1991.

[Blasgen79] M. Blasgen, J. Gray, M. Mitoma, T. Price, “The Convoy Phenomenon“. Operating Systems Review
13(2), Avril 1979.

[Boral90] H. Boral, W. Alexander, L. Clay, G.Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P.
Valduriez, “Prototyping Bubba, A Highly Parallel Database System“. IEEE Trans. Knowledge and Data
Engineering., 2(1), March 1990.

[Bouganim96] L. Bouganim, B. Dageville, P. Valduriez, “Adaptative Parallel Query Execution in DBS3”. Int.
Conf. on EDBT, to appear, 1996.

RR n � 2815

20 L. Bouganim, D.Florescu, P. Valduriez

[Copeland88] G. Copeland, W. Alexander, E. Boughter, T. Keller, “Data Placement in bubba”. ACM-SIGMOD
Int. Conf., Chicago, IL, June 1988.

[Dageville94] B.Dageville, P.Casadessus, P.Borla-Salamet, “The Impact of the KSR1 AllCache Architecture
on the Behavior of the DBS3 Parallel DBMS“. Int. Conf. on Parallel Architectures and Language, Athens,
July 1994.

[Davis92] D. D. Davis, “Oracle’s Parallel Punch for OLTP”. Datamation, August 1992.

[DeWitt90] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao, R. Rasmussen, “The Gamma
Database Machine Project“. IEEE Trans. on Knowledge and Data Engineering, 2(1), March 1990.

[DeWitt92] D.J. DeWitt, J.F. Naughton, D.A. Schneider, S. Seshadri, “Practical Skew Handling in Parallel
Joins”. Int. Conf. on VLDB, Vancouver, Canada, August 1992.

[Frank93] S. Frank, H. Burkhardt, J. Rothnie, “The KSR1: Bridging the Gap Between Shared-Memory and
MPPs“. Compcon’93, San Francisco, February 1993.

[Garofalakis96] M. N. Garofalakis, Y. E. Yoannidis, “Multi-dimensional Resource Scheduling for Paralle
Queries”. ACM-SIGMOD Int. Conf., to appear, 1996.

[Graefe93] G. Graefe, “Query Evaluation Techniques for Large Databases”. ACM Computing Surveys 25(2),
June 1993.

[Hassan94] W. Hassan, R. Motwani, “Optimization Algorithms for Exploiting the Parallel-Communication
Tradeoff in Pipelined Parallelism”. Int. Conf on VLDB, Santiago, Chile, 1994.

[Hong92] W. Hong, “Exploiting Inter-Operation Parallelism in XPRS“. ACM-SIGMOD Int. Conf., San Diego,
June 1992.

[Hsiao94] H. Hsiao, M. S. Chen, P. S. Yu, “On Parallel Execution of Multiple Pipelined Hash Joins”. ACM-
SIGMOD Int. Conf., Minneapolis, May 1994.

[Kitsuregawa90] M. Kitsuregawa, Y. Ogawa, “Bucket Spreading Parallel Hash: A New, Robust, Parallel Hash
Join Method for Data Skew in the Super Database Computer“. Int. Conf on VLDB, Brisbane, 1990.

[Lanzelotte93] R. Lanzelotte, P. Valduriez, M. Zait, “On the Effectiveness of Optimization Search Strategies
for Parallel Execution Spaces“. Int. Conf. on VLDB, Dublin, August 1993.

[Lenoski92] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, A. Gupta, J. Henessy, M. Horowitz, M. S.
Lam, “The Stanford Dash Multiprocessor“. IEEE Computer, 25(3), March 1992.

[Lo93] M-L. Lo, M-S. Chen, C. V. Ravishankar, P. S. Yu, “On Optimal Processor Allocation to Support
Pipelined Hash Joins”. ACM-SIGMOD Int. Conf., Washington DC, May 1993.

[Lu91] H. Lu, M.-C. Shan, K.-L. Tan, “Optimization of Multi-Way Join Queries for Parallel Execution“. Int.
Conf. on VLDB, Barcelona, September 1991.

[Mehta95] M. Metha, D. DeWitt, “Managing Intra-operator Parallelism in Parallel Database Systems“. Int.
Conf. on VLDB, Zurich, September 1995.

[Murphy91] M. C. Murphy, M-C. Shan, “Execution Plan Balancing“. IEEE Int. Conf. on Data Engineering,
Kobe, April 1991.

[Pirahesh90] H. Pirahesh, C. Mohan, J. Cheng, T. S. Liu, P. Selinger, “Parallelism in relational database systems:
Architectural issues and design approaches“. Int. Symp. on Databases in Parallel and Distributed Systems,
Dublin, July 1990.

INRIA

Dynamic Load Balancing in Hierarchical Parallel Database Systems 21

[Rahm95] E. Rahm, R. Marek, “Dynamic Multi-Resource Load Balancing in Parallel Database Systems“. Int.
Conf. on VLDB, Zurich, Switzerland, September 1993.

[Shatdal93] A. Shatdal, J. F. Naughton, “Using Shared Virtual Memory for Parallel Join Processing“. ACM-
SIGMOD Int. Conf., Washington, May 1993.

[Shekita93] E. J. Shekita, H. C. Young, “Multi-Join Optimization for Symmetric Multiprocessor“. Int. Conf.
on VLDB, Dublin, August 1993.

[Schneider89] D. Schneider, D. DeWitt, ”A Performance Evaluation of Four Parallel Join Algorithms in a
Shared-Nothing Multiprocessor Environment”. ACM-SIGMOD Int. Conf., Portland, May-June 1989.

[Srivastava93] J. Srivastava, G. Elsesser, “Optimizing Multi-Join Queries in Parallel Relational Databases“.
Int. Conf. on Parallel and Distributed Information Systems, San Diego, January 1993.

[Valduriez84] P. Valduriez, G. Gardarin, “Join and Semi-join Algorithms for a Multiprocessor Database Ma-
chine“. ACM Trans. on Database Systems, 9(1), March 1984.

[Valduriez93] P. Valduriez, “Parallel Database Systems: open problems and new issues“. Int. Journal on
Distributed and Parallel Databases, 1(2), 1993.

[Walton91] C.B. Walton, A.G. Dale, R.M. Jenevin, “A taxonomy and Performance Model of Data Skew Effects
in Parallel Joins“. Int. Conf. on VLDB, Barcelona, September 1991.

[Wilshut95] A. N. Wilshut, J. Flokstra, P.G Apers, “Parallel Evaluation of multi-join queries“. ACM-SIGMOD
Int. Conf., San Jose, CA, 1995.

[Ziane93] M. Ziane, M. Zait, P. Borla-Salamet, “Parallel Query Processing With Zig-Zag Trees”. VLDB Journal,
Vol. 2, No 3, December 1993.

[Zipf49] G. K. Zipf, “Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology”.
Reading, MA, Addison-Wesley, 1949.

RR n � 2815

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

