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Abstract: The forward kinematics problem of parallel robot consists in computing
the position of a solid moving in the three-dimensional space with six points on
it constrained to lie respectively on six given spheres. This problem can also be
represented by a system of algebraic equations, and it is known to admit at most 40
complex solutions.

Our approach consists in adding extra sensors, that give us more information, in
order to reduce this bound. We propose a symbolic elimination method, based on
the scheme of dialytic elimination. We prove that our method actually gives upper
bounds on the number of solutions of the problem. Our implementation supplies us
with the first general bounds on this problem with extra sensors.
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Elimination symbolique et robots paralleles

Résumé : Le modele géométrique direct des robots paralleles consiste a calculer
la position d’un solide se déplagant dans 'espace a trois dimensions, lorsque six de
ses points sont contraints a rester sur six spheéres données. Ce probléme peut aussi
étre représenté par un systéme d’équations algébriques, et il est connu qu’il admet
au plus 40 solutions complexes.

Notre approche consiste & ajouter des capteurs supplémentaires, qui nous four-
nissent des informations additionnelles, de fagon & réduire cette borne. Nous pro-
posons une méthode d’élimination symbolique, basée sur le schéma de 1’élimination
dialytique. Nous démontrons que notre méthode donne effectivement des bornes
sur le nombre de solutions du probléme. Notre implantation nous permet d’obtenir
les premieres bornes générales pour le modeéle géométrique direct avec des capteurs
additionnels.

Mots-clé : robot parallele, modele géométrique direct, géométrie algébrique



Symbolic Elimination for parallel manipulators 3

1 Introduction

Parallel manipulators

A general six degrees of freedom parallel manipulator is made of two rigid bodies
connected to each other by six links. One of the bodies is fixed, the base; the other
body is a movable platform. Each link is connected to the base by a universal joint
and to the platform by a ball-and-socket joint. Linear actuators enable the links to
change their length. For each actuator a sensor measures the length of the leg (see
Figure 1). We denote by A; the center of the base joint of the i** leg, B; the center

Platform

Figure 1: General six degrees of freedom parallel manipulator

of the platform joint. p; will be the length of the i** leg, i.e. p; = ||4;B;||, where
||A;B;|| is the norm of vector A;B,;.

Forward kinematics problem

We consider the forward (or direct) kinematics problem (FKP for short): for a
given set of link lengths p;, ¢ € {1,...,6}, as measured by the actuators’ sensors,
determine the posture of the platform in the reference frame. In this paper posture
means position and orientation of the platform. An algebraic formulation of the

RR n" 2809



4 L. Tancred: & M. Teillaud & O. Devillers

problem is the following :
pz2=||A’LBZ||27 iE{l,...,6}

where A; and p; are known and B; is unknown, for ¢ € {1,...,6}. The FKP does
not have a unique solution. An upper bound on the number of complex solutions
is 40. This result has been obtained by continuation methods [Rag91, Wam94].
Algebraic proofs are also available [Laz92, Mou93], and recently an algorithm has
been presented which gives the forty solutions of the FKP [Hus94|. Examples with 24
real solutions have been found [IP93, Tan95a], but no examples have been found yet
with more than 24 real solutions. Many special architectures have been studied but
the number of solutions still remains quite high even for very particular architectures
(see for example [CR89, IP90, IP91, ZS91, LM94|). In the general case, a systematic
study of the bound for different combinatorial classes of manipulators was made by
FAUGERE and LAZARD [FL95].

Our approach consists in adding more data, by using extra sensors. As STOUGH-
TON and ARAI [SA91] and MERLET [Mer93], we choose the use of rotary sensors
located on the base joints. Such a sensor placed on the i™ leg measures an angle, or
equivalently a plane containing A; and B;, which results in an equation of the form

where N; is a vector normal to the plane.

Thus we are given an over-constrained set of algebraic equations: six unknowns
(six degrees of freedom), and at least seven equations. Intuitively, such a problem
usually admits no solution, but if we assume that the robot is well built, the problem
must have one solution by hypothesis. We are interested here in obtaining a bound
on the maximum number of solutions. Some bounds for the same problem have
already been proposed in [TTM95a, TTM95b] for special cases. In this paper we
propose a symbolic elimination method, and we prove that this method enables us
to tackle the general case: general architecture, and general placements of the extra
sensors.

Elimination and resultants

Elimination theory is a fundamental aspect of algebraic geometry. Given s polyno-
mial equations f1 = fa = ... = f, = 0 in Klzy,...,z], for K a given field, an
elimination method consists in two steps: an elimination step and an extension step.
The elimination step computes a consequence fsy1 = 0 in only one variable. The

INRIA



Symbolic Elimination for parallel manipulators 5

extension step considers fs41 = 0 as solved and extends its solutions into solutions
of the whole initial system.

Elimination methods are often used in theory of mechanisms. They avoid the
drawbacks of iterative methods, such as dealing with solutions at infinity, some
typical numeric problems, and the lack of information on the behavior of the solutions
[Rot93]. Moreover, methods based on resultants are quicker than Grébner bases and
homotopy methods [Emi94].

During the last century, SYLVESTER introduced the resultant to perform an eli-
mination for two polynomials in one variable. The resultant is a polynomial whose
degree gives a bound on the number of common roots of the two polynomials, the
Bézout bound. The multivariate resultant [vdW48, Can88| generalizes this notion
to the case of k homogeneous polynomials in k variables. EMIRIS [Emi94] shows
that this resultant is a particular class of sparse resultant when the coefficient of
the polynomials are generic, that is when they do not satisfy any particular relation
among each other. Sparse elimination takes place in (C\ {0})*, while multivariate
resultant is computed in the projective space P¥(C). EMIRIS’ program!® can compute
this sparse resultant. The degree of this polynomial is the mixed volume of the New-
ton polytopes of the initial polynomials, known as the BKK bound [Ber75]. Other
bounds have been found recently for the number of solutions of a system in C*, the
best one is given in [HS96].

A more complete overview of related results on systems of algebraic equations
can be found for example in [EC96].

Outline of the paper

As far as we know, there is no tool that can deal with a system having more equations
than unknowns, as our problem has. That is why we propose here a new method,
based on dialytic elimination.

In Section 2, we briefly recall the scheme of dialytic elimination. Then we present
in Section 3 our symbolic method. We show that the symbolic case poses complex
problems. Our method constructs a polynomial in a single variable, and it is quite
involved to prove that the degree of this polynomial actually gives an upper bound
on the number of (complex) solutions of the FKP for parallel robots with extra
sensors. The proof is given in Section 4. Finally, practical results for parallel robots
are presented in Section 5.

1ftp://robotics.eecs.berkeley.edu/pub/emiris/res_solver
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2 Dialytic elimination

SYLVESTER’s dialytic elimination computes Sylvester’s resultant. This method can

only deal with problems in one or two unknowns [Sal85] and a small number of

equations. ROTH [Rot93] presented a generalization of this method, by adapting it
to several unknowns and a large number of equations.

The general idea consists in transforming a non linear system into a linear system,
which is easy to solve. This is performed by considering each monomial as a new
unknown, without considering the relations between these monomials. The method

can be divided into seven steps:

1.

2.

Consider one variable as a parameter: hide a variable.

In most cases, the number of monomials is bigger than the number of equa-
tions. The second step consists in constructing as many equations as necessary
to obtain a square system, linear, independent and homogeneous with respect
to the monomials. The non-linear relations among the monomials are not consi-
dered. New equations are usually constructed by multiplying some equations
by monomials. Of course, during that process, new monomials appear. This
step must go on until a square system of independent equations is obtained.

Rename the monomials (including the constant monomial 1) as new variables.
The system becomes linear and homogeneous in the new variables.

Compute the determinant of this linear system, which is a polynomial in the
hidden variable. Each solution of the initial system necessarily corresponds to
a root of this determinant.

Compute all the roots of this polynomial.

. For each root, substitute the hidden variable by it and solve the system obtained

in this way, which is linear in the monomials.

For each root of the determinant, deduce the values of the variables of the
initial system from the values of the monomials and using now the non-linear
relations between monomials. Any valid solution must satisfy all the relations
between the monomials.

INRIA
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3 Symbolic method

The method we implemented in Maple? is based on dialytic elimination. However,
we encounter different problems, since we are interested in the symbolic case, and
we try to give bounds on the number of solutions of the system. In this section, we
focus on these problems. We show here how to adapt steps 1 to 5 of the algorithm
to the symbolic case.

In the sequel, we are working in the ring of polynomials Clzy, ..., z4].

3.1 Choice of the hidden variable

This first step consists in considering one variable as a parameter. Then the rest of
the process will go on as if its value was known. It is easy to be convinced that the
choice of this hidden variable will influence the execution of the algorithm. In fact,
it will change the size of the square linear system constructed afterwards, so it will
change its determinant, which is a polynomial in the hidden variable, in particular
it will change the degree of this polynomial.

The only thing that can be done, given the present knowledge on this topic, is
to propose heuristics of choice, such as:

e the variable of minimal degree among all the equations
e the variable whose sum of degrees in all the equations is minimal

e the variable that, when hidden, will lead to the smallest number of present
monomials

On the systems we were given, we could notice that the most efficient heuristic was
the second one.

3.2 Construction of a square system

There are two reasons to need a matrix with small size. The first one is practical:
when the dimension of the system is too large, it is impossible to compute its deter-
minant symbolically. As we will see, for the FKP problem, this will almost always
be the case. The second reason is theoretical: if the size is not minimal, the determi-
nant of the system will be a multiple of the resultant of the initial polynomial, and
so spurious solutions will be counted. In fact there is no algorithm ensuring that the

2© Waterloo University (Canada) and Waterloo Maple Software
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8 L. Tancred: & M. Teillaud & O. Devillers

system it constructs will have minimal size. ROTH proposes techniques to minimize
the size of the system, but these techniques highly depend on the structure of the
initial system, they only work for a restricted number of cases, and do not give any
hint on the symbolic case.

There is no general rule to construct new equations, the only constraint being
that each new equation must be independent of the already present equations. As
previously said, the usual way of finding a new equation consists in multiplying one
of the present equation by a monomial in the variables. Equations and monomials
should be chosen in order to obtain a square system with reasonable size. Once
more, there is no way to ensure that the obtained system will be of minimal size.
For each choice of a pair equation/monomial, we can look at the number of new
monomials that will be created and choose the smallest one. We can also consider
the maximum degree of created monomials. Notice that when a pair does not create
any new monomial, both strategies automatically choose it. It must in fact be chosen
because it allows the process to converge to a square system.

Another way could also be inspired by the construction of the bézoutian [Dix08]:
it is possible to make combinations between two equations in order to make their
term of highest degree disappear.

3.3 Degree of the determinant of the system

As previously stated, the problem consisting in working on a particular system of
equations can be solved numerically. However we want to give general bounds on
the number of solutions of a system, so we keep everything symbolic.

Let us define now some notations that will be used in the sequel of this paper. y
denotes the hidden variable and X;, (¢ € {1,...,n}) represent the monomials that
appeared in the equations. Our problem reduces to the linear system:

X1

[Ai; (y)]lgingn =0 (1)
Xn

A(y) = [Aijlijeq1,..n} 18 a square matrix of size n X n whose entries are polynomials
in y. If, for a given value yg of y, the determinant |A(yg)| is not equal to 0, then the
only solution of the systemis (X1,...,X,) = (0,...,0). But we want to consider only
solutions of this system in the monomials that will give solutions of the initial system
in the variables. The solution (Xji,...,X,) = (0,...,0) cannot give any solution in
the variables since one of the monomials, say X1, is the constant monomial 1. Thus,
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to yield solutions in the variables, the matrix A(yg) must have rank at most n — 1,
that is yo must be a root of equation |A(y)| = 0.

In practice, the determinants we obtain are symbolic and have large size (> 16 X
16). No present system of symbolic computation (even BAREISS’ method [GCL92|)
is able to compute explicitly such determinants. Since we are looking for a bound
on the number of solutions, we propose an algorithm [Tan95a, Tan95b] allowing us
to find an upper bound on the degree of the determinant |A(y)|. We will prove in
Section 4 that this bound on the number of roots of |A(y)| = 0 gives a bound on the
number of solutions of the initial system.

An entry A;;(y) is the coeficient of monomial X; in equation 7 of the square
system, it is a polynomial in y. A first trivial bound on the degree of |A| is

< ..
deg(|A]) < X; imax deg Ay
J:

which is far from being tight.

To obtain a better bound, we will examine one by one all the coefficients of the
polynomial |A(y)|, starting from the leading term, until we find a coefficient different
from 0. Each of these coefficients is a determinant constructed from coefficients of

A.

More precisely, if (%)

)
X in equation ¢, that is

is the coefficient of y% in the coefficient A; j of monomial

d; )
Aij(w) = Doy,

d;

then the coefficient of y? in |A(y)] is the sum of the following determinants

d dj dn
a(l,i) a(l,j) oo gl .
Ay, d) = : : : where de =d

If all the terms Ag, . 4,y for all (dy,...,d,) such that di + ...+ d, > d equal 0,

and if there is one Agfljl""’d") such that dy + ...+ d,, = d that is different from zero,
we know that deg(|]A|) < d. As there is no way to check whether such a sum of
determinants equals 0, we have no way to find the exact degree.

We only need know a method to test whether a symbolic determinant equals 0.
To this aim, we developed an algorithm derived from Gaussian elimination.

An entry of A(g, . 4,) is represented by

RR n” 2809



10 L. Tancred: & M. Teillaud & O. Devillers

0 if a!%) =0
i,
* otherwise

By a permutation on the lines of Ay, . 4,), We choose a row with non zero pivot.
We “subtract” this row from all the rows below it in which the element in the pivot’s
column is %, in order to obtain O values for all the elements below the pivot in
its column. The difference with classical Gaussian elimination lies in the way the
subtraction is defined, since we are working on a symbolic matrix:

* — % = x on all the columns except the pivot’s column
*x —x = 0 on the pivot’s column ([*])

*x—=0=x=0—-x

0-0=0
An illustration can be seen on the following example:
0 0 [x] 0 % « 0 0 [x] 0 =+ «
0 0 ~ 0 0 «x —]0 0 0 0 % 9«
0 0 0 0 % x 0 0 0 0 % «x

The algorithm stops when the matrix is triangular or when there is no more non
0 pivot. The rule x — x = % does not take notice of the possible relations between
the coefficients that could lead to simplifications. These relations are in fact too
complicated to be checked. So, when our algorithm answers that a determinant
Ag,,..d,) equals 0 its answer is correct, but when its answer is that a determinant
is different from 0, it is not necessarily true. That is another reason why the bound
we obtain on the degree of |A(y)| is only an upper bound.

In practice, as previously said, it is impossible to compute exactly such a sym-
bolic determinant, so if we want to test whether the bound we find is tight, we can
compute the determinants Ag, . 4,) after replacing the parameters of the equations
by random numeric values. Indeed, such a determinant is a multivariate polynomial
in the parameters measured, so it can take value 0 only for a set of parameters with
null measure. If we make several random tests, and if Ay, 4.) is not the zero
polynomial, one of these test will return a non zero value, with probability 1.

We claim the following:

INRIA



Symbolic Elimination for parallel manipulators 11

Theorem 1 The degree of the polynomial |A(y)| obtained by the symbolic elimina-
tion method gives a bound on the number of solutions of the FKP.

The proof is given in the next section.

4 Proof of correctness

This section is devoted to the proof of Theorem 1. In our case, since it is hopeless
to solve such a general symbolic system (Equation 1), we only want to show bounds
on the number of solutions. We will see that this step requires a particular attention
in the symbolic case, and that a careful proof is necessary to show that Theorem 1
holds.

The X;’s are monomials in the parameters z;,y;,2;,(j € B C {1,...,4}) of the
robot (the parameterization will be introduced into details in Section 4.2).

In this section, we first explain which problem might arise, we then explicit the
equations we choose to represent the FKP, and we finally we prove the claim.

4.1 Problem

We know that there are at most deg(]A(y)|) values of the hidden variable y that
are roots of this determinant. However, this does not give us a priori a bound on
the number of solutions of the initial system in the variables, because one value of y
might lead to several solutions of the initial system. This problem can be illustrated
on the following example:

Example 1 Consider the system:

€E2y —6y+1 =
-y =
If y is hidden, we obtain a square system in the monomials 1 and =2, there is no need
for adding equations. Its determinant is |A(y)| = y* — 6y + 1, with degree 2, and it
admats two distinct positive roots y1 and ys. For each of these values, we then solve
@2 =y, which gives us two opposite solutions. Thus the system admits four distinct
solutions (z1,y1), (—z1,y1), (z2,y2), (—z2,y2), though |A(y)| has degree 2.

The relation between the number of solutions of a polynomial system and the
degree of an associated univariate polynomial was studied in the case of spare resul-
tant [Emi94]. It was shown that, if the lattice generated by the Newton polytopes

RR n~ 2809



12 L. Tancred: & M. Teillaud & O. Devillers

of the system was Z", then there was no problem: the degree of the sparse resultant
is equal to the mixed volume of the polytopes associated with the polynomials of
the system; the degree then gives a bound on the number of solutions of the system.
This can be illustrated on the preceding example.

Example 2 On the same example, we can compute the resultant with respect to x:

y 0 —6y+1 0
0 vy 0 —6y+1
= (¥ -6y +1)°
1 —y 0
01 0 —y

Its roots are the same as the roots of our polynomial |A(y)|, but here they have
multiplicity 2. The number of solutions coincide with the degree of the resultants,
which is also the sum of multiplicities of its roots.

The difference between |A(y)| and the resultant lies in the fact that all the mo-
nomials 1,z,2° are considered to compute the resultant, whereas only the present
monomials are considered to compute |A(y)].

As far as we know, this problem has never been solved in its generality for dialytic
elimination (or for other ad hoc methods of elimination). In the literature, even
for special systems, the question is often evaded, and the conclusion comes quickly
without precise justification, that the degree of the univariate polynomial that is
obtained by any elimination process gives a bound on the number of solutions. This
might be false, as we saw on Example 1. Even if some properties of the equations
ensure that this may be true in those particular cases, the result is however not
immediate.

We do not intend to develop here a study that would yield as many general results
as there are for the case of sparse resultants for example [Emi94]. However we will
prove that, in the case of the equations of the FKP for parallel robots, with extra
sensors, the degree of |A(y)| gives a bound on the number of possible postures.

The remark we made in Example 2 on the multiplicities of the roots of the
resultant suggests further reflections. Nothing implies at once that our determinant
is a multiple of the resultant, this is even false on the example. We know that, for
generic systems, the existence of a root on the system implies the existence of a root
of |A(y)|. This allows us to say that, under genericity assumption, each root of the
resultant is a root of |A(y)|. But, as in Example 1-2, the multiplicity of a root in

INRIA
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|A(y)| can be smaller than its multiplicity in the resultant, so that the degree of
|A(y)| is smaller, for the same number of solutions to the initial system.

However, by noticing that some precise monomials, such as the initial variables,
appear in the system, because they appear in the initial system (that will be described
in the following Section 4.2), we can prove Theorem 1. The proof is rather complex,
and uses some known results on the FKP of parallel robots, and thus it cannot
be extended trivially to other problems. Indeed we cannot use directly the results
stated in [Laz83] since they require a lot of monomials to appear in the system, and
we cannot ensure that these monomials are actually present.

4.2 Algebraic parameterization of the FKP

We use a formulation of the FKP proposed by LAZARD [Laz93], because it introduces
a small number of monomials and some linear equations. Some joints on the platform
are used to form a basis of this platform. A set B of 4 joints is needed in the case of a
three dimensional platform (another formulation using only 3 points is also proposed
in [Laz93], but it introduces equations of larger degree), while a set B with only 3
joints is enough in the case of a planar platform.

The unknowns will be the coordinates of the vectors A4;B; for 7 € B:

T4
Vie B A;B,=1| v
2
For a planar platform B = {1,2,3} and there are 9 unknowns, for a general

platform B = {1,2, 3,4} and there are 12 unknowns. The equations are the following
(the reader will find details on the way they are obtained in [Laz93])

1.
|4iBil> = p; (Vi€ B)
II.
IBiBj||> = Kij (V(3,5) €B? i#j)
III.

|4:Bil|> = p; (Vi ¢ B)

2

RR n~ 2809



14 L. Tancred: & M. Teillaud & O. Devillers

This can be expressed using the unknowns A;B;, for ¢ € B. In the general case
this becomes

P? = (—AlAi + A1B1+¢; B1By+ f; B1B3 + gi BlB4)2
and for a planar platform
p? = (—A1A; + A1 By +e; BiBa + f; B1B3)?

ei, fi, gi (resp. e;, f; for a planar platform) for ¢ € B are the coordinates of B; in
frame (B, B1Bs2, B1B3, B1By) (resp. (Bi, B1Bs, B1Bs3)), they only depend
on the geometry of the robot.

The non linear terms that appear in this equation are linear combinations of
those appearing in equations of types I and II. The equations of type III thus
become linear by subtractions of equations of the preceding types.

IV. Informations from the extra sensors, for some i € {1,...,6}:

A;B;-N; =0

In the sequel, particularly in Lemma 8 and in Section 5 we will often make the
assumption that none of the extra sensors is redundant, which means that they
all actually give us some information. This allows us to say that the equations
of type IV are independent of the equations of the other types, and that they are
mutually independent too. With this property, we can solve, as done in Section 5,
the linear system formed by the linear equations of types IV and III to reduce the
number of unknowns.

4.3 Degree of |A(y)| and number of postures

The proof of Theorem 1 is done in two steps: a first step consists in proving a relation
between the multiplicity of a root yg of |A(y)| and the rank of matrix A(yg). Then,
in a second step, by using the shape of the monomials that are present in our system,
we show that, for each root ygy of the polynomial, the number of postures solutions of
the FKP, for which the hidden variable y has value yq is bounded by the multiplicity
of yo in [A(y)].

Example 3 Let us have a look at the following system:

az’y+by+c = 0
dey+ey = 0

Dialytic elimination leads to a matriz A(y) whose determinant is:

INRIA



Symbolic Elimination for parallel manipulators 15

by+c 0 ay
ey dy O = 42 (y bd? + ye?a + cd2)
0 ey dy

y =0 is a root of multiplicity 2, and the rank of A(0) s 1 =3 — 2.

c 00
0 00
0 00

When the rank becomes 0, then ¢ = 0, and the multiplicity of the root y = 0 becomes
3.

Let us show the following lemma that states the general result corresponding to
this example.

Lemma 2 If the rank of A(yo) is less or equal to n — v, then the multiplicity of yo
in the polynomial |A(y)| ts at least equal to v.

Proof: When v = 1 we already noticed that, if the rank of the matrix is less of
equal to n — 1, then trivially yg is a root of |A(y)|, thus its multiplicity is at least 1.

Let us first show the result for the case of a matrix A(yp) with rank less of equal
to n — 2 for a given value yjg.

A(y) is the matrix of an endomorphism in a fixed basis (e1,...,e,). A(yo) is
not invertible, thus there exists one vector vy # 0 in its kernel. Form the theorem
of incomplete basis of elementary linear algebra, we can find n — 1 vectors in the

basis (ej,...,e,) forming a new basis with vg. By renumbering the elements of the
basis, let us assume that (ey,...,e,—_1,v0) is the basis we obtain. In this basis, A(y)
becomes

Ao(y) = PyA(y) Pyt

where P, is the matrix connecting the two bases (e1,...,e,) and (e1,..., ex_1,v0).
Of course we have:
[Ao(y)] = |A(y)]
Ay (y) looks like
p1(y)
Pa(y)

RR n~" 2809



16 L. Tancred: & M. Teillaud & O. Devillers

Since vy lies in the kernel of Ag(yp), all the polynomials p1(y),...,pn(y) have yq as
a root, so they can be divided by y — yp.

Let us now expand the determinant of Ay(y) according to the last row. Let M;(y)
be the determinant obtained by deleting the last column and the ™ row in Ag(y).
We obtain:

[Ao(y)| = Z(—l)”“_lpi(y)Mz’(y)

n

= (g o) (- B )

i=1 Yy~

By hypothesis, the rank of Ag(y) is strictly less than n—1, so all the sub-determinants
of size (n — 1) X (n — 1) extracted from Ag(yg) are equal to 0. In particular all the
M;(y)’s are equal to 0 when y = gy, thus each polynomial M;(y) is divisible by y—1yq,
which implies:

— (212 - _1ynti—1 pi(y) Mi(y)
B0)] = (= w)* (-0 PR

So the multiplicity of yg is at least 2 in |A(y)|.

Let us do the same proof again, with the hypothesis now that the rank of A(yq)
is less or equal to n — v. We now have a basis vy,...,v, of its kernel, completed
into a basis (e1,...,€,—y,v1,...,v,), after a proper renumbering of the elements of
(e1,...,€n). Then

Aoly) = PAW)F;

and Ag(y) can be written as

p11(y) p120y) - p1.(y)
p21(y) p22y) - p2u(y)
pn,l.(y) pn,?..(y) : . pn,l;(y)

where the polynomials p;j, 7 € {1,...,n},j € {1,...,v} all have root yg since
v1,...,0, belong to the kernel of Ag(yp).

Let us now compute |Ag(y)| by the classical definition using all the permutations
of the set S, of permutations in {1,...,n}. (o) denotes the signature of permutation
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ag.
Do) = D (@)A1 18022+ - Ao(n)n
ocEeS,
= Z [‘E(U)Aa(l),le(Q)ﬂ s Ao‘(nfu),nfy
TES,

: Aa(n—y—l—l),n—y—l—l .. A(J'(’n),’n]

The last v elements

Aa(n—y—l—l),n—y—l—la Aa(n—y+2),n—y+2) .. aAa(n),n

of the matrix are polynomials for which yg is necessarily a root since these polyno-
mials lie among p1.1(y), ---, P14(Y)s -- -5 Pn1(y), - - -, P1p(¥). ¥y — yo is thus a factor
of all these v elements, which allows us to write (y —yg)” as a factor in |A(y)|. yo is
thus a root of |A(y)| with multiplicity greater or equal to v (possibly strictly greater
than v). &

Now we must relate the rank of A(yg) with the number of global solutions of the
FKP, in the initial unknowns «;,y;,2;,¢ € B, for which the hidden variable y has
value yg. To make everything clearer, let us assume that y is one of the coordinates
of vector A;Bj. It is interesting to distinguish two cases in which we have at least
two global solutions for the same value yg of y.

In the first case, the global solutions we obtain in this way correspond to at least
2 distinct positions of the point By, which means that the coordinate axes have been
chosen so that two positions for Bj are lying in a same plane parallel to a coordinate
plane. It is then possible to perturb the axes slightly so that this does not happen.
Notice that our study remains valid, since we did not make any assumption so far
on the choice of the axes.

In the second case, the case in which we will be from now on, if several solutions
are possible for the posture of the robot for a given value yq of y, then for all these
postures, the point B; will have the same position.

Thus the idea of fixing a value yg for y and perturbing the axes allows us to
assume now that the position of one point of the platform is known.

We would like to show that the degree of |A(y)| gives a bound on the number of
solutions of the FKP. Let us state the following conjecture:

Conjecture : if the rank of A(yg) is n—v, then the system admits at most
v solutions for the value yg of the hidden variable.

RR n~"2809
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Then, each root would lead to a number of solutions that would be bounded by its
multiplicity in the polynomial, so by summing the multiplicity, the result would be
obtained.

We could not prove this conjecture in the general case, but only for the case of
the FKP, which allows us to prove Theorem 1 as will be seen in the rest of this
section. The idea of the proof is the following:

For a given root yg of |A(y)|, we can assume as previously said that By is known.
Then we can use some known results [Tan95a] on the number of postures, depending
on the robot’s architecture. There is 1y depending on the architecture of the robot,
such that, the number of postures is bounded by vy. To our aim, it is enough to
show the conjecture for v < vy.

More precisely,

Lemma 3 [Tan95a, TTM95a] When the platform of the robot is planar, and when
one point By is known on the platform, the number of postures is bounded by 2 in
general.

The bound may become 4 or 8 for some special architectures, for example when
there is i € {2,...,6} such that B; = B1, or when Bs,...,Bg and By are collinear,
or when As,...,Ag and By are coplanar.

When Bi s known, and when one additional sensor is placed on the robot, there
18 1n gemeral a unique solution to the FKP.

The bound for this case 1s 4, and it may be reached for the special architectures
described just above.

So, for the general case, when the platform is planar, it is enough to prove the
conjecture for rank n — 1.

We do not have an exhaustive list of architectures and configurations in which
the bound is 4 or 8, such architectures are very particular, but we can only give

sufficient conditions under which the bound is greater than the general bound, equal
to 2 ([Tan95a, TTM95a]).

Lemma 4 [Tan95a, TTM95a] For a general platform, if one point By is known on
the platform, and if an additional sensor is placed on another segment, then the bound
on the number of solutions of the FKP is /.

For this case, we need to prove the conjecture until rank n — 3. We will see that

it is necessary to assume that the hidden variable is not among the variables relative
to the segment on which the additional sensor is placed.
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In both cases, we prove a theorem stating the result.

The following lemma gives the first intermediate result in the case when the rank
of the matrix is n — 1. It is independent of the FKP.

Lemma 5 For a system in which all monomials of degree 0 and 1 are present, if
the rank of A(yo) equals n — 1, then there s at most one solution to the system for
which the hidden variable has value yq.

Proof: 1In fact if rank(A(yo)) = n—1 for y = yo then the kernel of A(yg) is a vector
space of dimension 1, generated by (u1,us,...,uy), where u; depends of yg.

Let us go back to the variables contained in the monomials. In our case (see
Section 4.2) all the monomials reduced to variables are present. Let us suppose that
X1 be the constant 1, X9 the variable o, X3 the variable yo, ...by a renumbering of
monomials. The fact that (X1,...,X,) is an element of the kernel can be expressed
by the existence of a number A such that

1 = )\’U,l
To = Aug
Y2 = Aug

u1 cannot be equal to 0, so a unique value can be deduced for A\. By replacing A
by its value in the following equations, we obtain at most a unique solution for each
variable. Some equations can be inconsistent with other ones,so it is also possible to
obtain no solution to the system in the variables. &

The preceding lemma is quite general, since the only hypothesis that is made
concerns the presence of the variables and of the constant monomial. The following
lemmas will use the architecture of parallel robots.

The rest of the proof is given first for the case of a planar platform (Section 4.3.1).
Then in Section 4.3.2 we will see that the proof is more complicated for a general
robot.

4.3.1 Case of a planar platform

As we saw in Lemma 3 that for a planar platform, there are only two solutions in
general to the FKP when the position of Bj is known.
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To summarize what has been said, if the rank of A(yg) is n — 1, then the root yq
is simple in the polynomial |A(y)|, and there is at most one posture that is solution
of the FKP. If the rank of A(yg) is less or equal to n — 2, from this lemma 3 the
number of postures is at most 2, and from Lemma 2 the root has multiplicity at least
2.

We deduce the following theorem:

Theorem 6 The number of solutions of the system, and thus the number of possible
postures for the robot, for a robot with planar platform, is bounded by the degree in
y of |A(y)|, except for some very special architectures indicated in Lemma 3.

4.3.2 Case of a general platform

We saw in Lemma 4 that when a joint is known, and when an additional information
is given by another sensor on another leg, then there are at most 4 solutions to the
FKP.

We must still show that for v = 2,3, if the rank of A(yg) is n — v, then the
number of solutions of the FKP for y = yq is bounded by v. Theorem 6 will then be
generalized to the case of a general platform.

Lemma 7 On the equations of the FKP, if the rank of A(yg) is n — 2, then there
are at most two solutions of the system for which y has the same value yq.

Proof: f rank(A(yg)) = n — 2, then the kernel of A(yg) has dimension 2, and it is
generated by two vectors U(yg) = (u1,ua,...,u,) and V(yg) = (v1,v2,...,v,) whose
coordinates depend on yg. We can write, as in the preceding lemma, the following
equalities in which we are interested in priority in the variables representing the
coordinates of vector As By

1 = Jdup+ pw (2)
T2 = Aug+ pvz (3)
Y2 = Aug+ pvs (4)
z2 = Aug+ pug (5)
T3 = Aus+ pvs (6)

Of course this assumes that we possibly renumbered the monomials.
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In the first equality, u; and v; cannot be simultaneously equal to 0. Let us assume
that v1 # 0 for example. Then we can deduce that

1=y

U1

J (7)

which allows us to write:

o = A (u2 — ﬂw) + %2 (8)

v1 V1
u v

y2 = A (Us - —103> + 3 (9)
v1 V1

29 = A ('LL4 — E’U4> + Y4 (10)
v1 v1

Then we can have two cases:

o First case: Equations 8, 9, 10 define the parametric equations of a line. This
line gives the direction of vector AgBs.

Notice that we defined U(yg) and V (yo) without using the shape of the equations
given by the FKP. We also looked at the rank of the matrix, but we did not used its
shape, which is directly related to the equations of the problem.

If we now use the equation representing the length of the second leg, m%+y%+z% =
p2, and the preceding expressions we obtained for zg,%s, 22, we obtain an equation
of degree 2 in A. This equation cannot be the trivial equation 0 = 0, so it can only
have two solutions in A, which means that A5 By can only take two positions, if we
know its direction and its length. The two values of A we obtain in that way allow
us to deduce p from equality 7, then by replacing into equations 6 and the following,
we determine at most two postures for the robot.

o Second case: Equations 8, 9, 10 define a unique point (when the coefficients of
A are all equal to 0). In this case, the positions of both B; and By are known, so
there are at most two solutions, except when the robot lies in a singular posture (see
[Tan95a, TTM95a]).

In both cases, the number of postures is bounded by 2. &

We did not use so far the fact that there was an additional sensor. This will be
required for the proof of the next lemma.

Lemma 8 On the equations of the FKP for parallel robots, for a robot with general
platform, when an additional sensor is placed on one segment, then if the rank of
A(yo) ts n — 3, there are at most 3 solutions for which y has the same value yp.
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In fact this result holds as soon as the sensor ts placed on a segment, say 2, that
does not correspond to the hidden variable, and for a posture where B, Ba, A3, Ay,
As, Ag are not coplanar.

Proof: The general scheme of the proof is the same as the previous one.

If rank(A(yo)) = n — 3, we write the following equations in which U(yy) =
(u1,u2,...,uy), V(yo) = (v1,v2,...,v,) and W(yo) = (w1,ws, ..., w,) form a basis
of the kernel of A(yo):

1 = Adup+ pvi +rvuy (11)
To = Aug + pvs + vws (12)
Yo = Auz+ pvz +rvws (13)
Zo = Aug+ pvg + vwg (14)
3 = Aus+ pus + vws (15)
ys = Aug+ pvg + vwg (16)
z3 = Auy 4 pvr 4+ vwy (17)

By a possible renumbering of the indices, we assume that the second segment is
equipped with the additional sensor, which is possible if there is an additional sensor
on a segment for which none of the coordinates is the hidden variable y (remember
that the hidden variable is one coordinate of A;Bj).

For example w; # 0, hence

1—dug — puy
v=—" =

which allows us to write:

wy wy wy
u v w

y2 = A (U3 - —1w3> +p (Us - —1w3) +=2 (20)
wy wy wy
u v w.

29 = A <U4 — —1w4> + u (’U4 — —1w4) + —4 (21)
w1 wy wy

These equations define a plane, or a line, or a point.
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o First case : the equations 19, 20, 21 are the parametric representation of a
plane P containing vector AsBs. The equation of length for segment 2 (type I),
together with the equation expressing that ||ByBz|| is constant (type II) allow us to
deduce that Bg lies on a circle Cy. This circle might be contained in P. But then,
if the sensor gives some non redundant information, P cannot be the same plane as
the plane measured by the sensor (otherwise the sensor would be useless). So in all
cases, the intersection of the circle with one plane gives at most two points for Bs.

This can be expressed equivalently on A and p by saying that theses parameters
satisfy both an equation of degree 2 (equation of a sphere for By) and a linear
equation (equation of the plane given by the sensor). After eliminating u from the
linear equation, this yields an equation of degree 2 for A, so at most two solutions for
the pair (A, 1). The equations 15 and the following, together with equality 18 then
give at most two postures for the robot.

o Second case: the equations 19, 20, 21 define a line. This happens when the two
vectors generating the above plane are not independent, that is wlog when there is a

Ui U1

Uy — —wW9y = k |v2a— —ws
w1 w1
Ul U1

uz — —ws3 = k V3 — —ws;3
w1 w1
Ul U1

Ug — —W4 = k Vg — —W4
w1 w1

So the line containing By has equation

constant k such that

To = (k)\—}-u) (’02 — Z)—lwz) + w2

1 w1

v w
y2 = (kA+p) <U3 - —1w3) + =
w1 w1y

v w
z2 = (kA+p) (U4 - —1w4) +—
wy w1

The intersection of this line with Cy (defined as in the first case) gives at most 2

points B and B3, corresponding to 2 values ! and a? of the parameter kA + p. So
/,Ll = ol — kX

p? = o —kX
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This allows us to eliminate p in the equations 15, 16 and 17corresponding with point
B3. We know that when the positions of 2 joints of the platform are known, there
are at most 2 possible postures [Tan95a, TTM95a]. So there will be 2 positions B§I
and Bé” when the position of By and the position Bj of By are known, for i = 1,2,
which gives at most 4 postures for the robot. Let us study in which cases these 4
postures can really be solutions of the problem.

It is easy to check that Equations 15, 16 and 17, for each value ! and p2,
become respectively the equations of lines Dgl) (containing points B%I and B%”) and
D? (containing B;‘fl and B%”)7 and that these 2 lines are parallel.

We also know that B3 must lie on a circle Cs, intersection of the sphere of center
As and radius p3, and of the sphere of center By and radius ||B1Bs||. Bél and Bé”
also lie on the sphere of center B} and radius || B2 B3|, for i = 1,2. So the points By,
B:} and A3z belong to the bisecting plane of B%I and B%”. In the same manner, B,
B% and A3 belong to the bisecting plane of Bg’ and Bg”. Moreover, as D% and D%
are parallel, these two planes are identical. So By, B3, B2 and Aj are coplanar.

If the same reasoning is repeated for points By, Bs, Bg, we conclude that, in
order to have 4 possible postures, Bj, B21, Bg, Az, Ay, As, Ag must be coplanar.

In all the other cases, there will not be more than 3 solutions.

o Third case: Equations 19, 20, 21 define a unique point. The conclusion then
comes as in the preceding lemma.

In all cases (except the indicated special case) the number of postures is bounded

by 3. &

So we can now deduce the final theorem:

Theorem 9 The number of solutions of the system, and thus the number of possible
postures for the FKP with extra sensors, for a robot with general platform, is bounded
by the degree in y of the determinant |A(y)|, except for the special configurations
indicated in Lemma 8.

4.3.3 Conclusion

Theorem 1 is now proved (except for some very particular cases).

As previously noticed, this bound is only an upper bound, and it is probably
not tight, for several reasons : first we only obtain an upper bound for the degree
of |A(y)|; second, the number of real roots of the polynomial may be inferior to the
number of its complex roots given by its degree; finally |A(y)| is a multiple of the
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resultant, it may have spurious roots that will not lead to any solution of the system,
and even if a root leads to a solution, its multiplicity may be smaller.

5 Results

In this section, the symbolic method proposed previously will be applied and we will
give bound on the number of solutions of the FKP for a robot equipped with 1 to 6
additional sensors.

We tried several parameterization of the problem, and we chose Lazard’s para-
meterization (Section 4.2), because it gives the best results. Elimination methods
have many advantages, but they are very sensitive to the number of unknowns and
the degree of the equations. This parameterization does not increase the degrees of
equations, it even supplies us with linear equations, and it gives a small number of
monomials, compared with other possible parameterizations.

It is interesting to have as least unknowns as possible in the starting system. We
noticed that it was very helpful to eliminate some of the variables by solving the
linear equations (type III and IV). This allows us to remove a lot of monomials, as
shown in Table 1 in the case of a planar platform. The size of the square system
we obtain by the symbolic elimination is smaller when the number of monomials is
smaller. And fortunately this does not spoil the proof of correctness, since all the
eliminated variables are linear combinations of the non eliminated ones, and then all
the equations written in the proofs of the lemmas still hold.

‘ Sensors H 3 ‘ 2 ‘ 1 |
Before linear elimination 28
After linear elimination 10 ‘ 15 ‘ 21

Table 1: Number of monomials present in the equations before and after the resolu-
tion of the linear equations

5.1 Planar platform

Table 2 gives bounds on the number of solutions, depending on the number of extra
sensors that are added on the robot. They also give the number of unknowns in the
initial non-linear system, the number of equations in the square system obtained by
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the elimination method, and the trivial bound on the degree of its determinant, from
which we derive a tighter bound as explained in Section 3.3. The symbolic Gaussian
elimination was used to this aim, except for the case when only one sensor is used,
which leads to too large a computation time: it only gave us a bound equal to 27,
and we obtained the bound 20 by taking random numerical parameters of the robot
for the evaluation of the degree of the determinant of the dialytic matrix. Results
obtained with another representation than Lazard’s one can be found for comparison
in [Tan95a], they are far less good.

Sensors || Unknowns | Dim matrix | Trivial bound || Final bound
6 0* NS** NS 1
5 1 NS NS 2
4 2 NS NS 2
3 3 4 6 4
2 4 16 14 9
1 5 64 41 20

* After solving the linear equations, there is no more unknown since there are (6-+3) linear equations
and 9 unknowns.

** Non significant data: it does not pay to build a dialytic matrix

Table 2: Bounds on the number of solutions of the FKP for a robot with planar
platform (9 unknowns)

When there are more than 3 sensors (we always assume that the sensors are not
redundant, which means that they actually give information), it is not interesting to
build the dialytic matrix. Indeed it is better to solve the non-linear system by taking
advantage of its structure when the linear equations have been eliminated. We obtain
in this way a better bound. If 6 sensors are used and give information, we obtain
a unique solution by solving the linear system corresponding to the 6 equations of
type IV given by the sensors and the 3 equations of type IIL

The CPU times given in Table 3 are the times we needed to obtain the bound with
the symbolic method of Section 3.3. They are only indicative. In fact in practice
this computation is not done since we only want to compute numerically the result.
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Degree 39 38 37 36 | 35| 34 | 33 32
CPU time (s) || 0,26 | 0,85 | 3,47 | 13,7 | 50 | 161 | 488 | 1488

Table 3: Symbolic test whether the coefficient of the term of a given degree in |A(y)|
equals 0, for one additional sensor and a planar platform (SS10 75 MHz)

5.2 General platform

For a general platform, the sizes of the matrices grow very quickly, and the bounds
we obtain are much higher than in the previous case. For example, Table 4 gives
values for 5 and 6 additional sensors.

| Sensors H Unknowns | Dim matrix | Trivial bound H Final bound

6 4 10 5 5
5 5 31 18 11

Table 4: Bounds on the number of solutions of the FKP for a robot with general
platform (12 unknowns)

6 Conclusion

Some difficulties arise in the symbolic method we presented in this paper.

It is important to minimize the size of the square system we obtain. But there
is no way to determine a priori which would be the optimal size.

Up to now, the symbolic computation of the degree is very long because it consists
in a recursive process involving very large matrices. As previously said, we can com-
pute the degree by random parameters for the robot. Then, numerically, the com-
putation of the determinant can be avoided and replaced by methods of eigenvalues,
as used in [ZA94] for parallel robots (see also [RR95] for details).

In spite of these difficulties, we proved that this symbolic method gives actual
bounds on the number of solutions of the FKP of parallel robots, with additional
sensors. We presented the results obtained with this method.
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We leave the conjecture presented in Section 4.3 as an open question for general
systems of algebraic equations. Does it hold for example if all the monomials of
degree less than some constant appear in the system 7

Another important advantage of this method is that it allows the symbolic matrix
to be re-used again: it can be computed off-line symbolically for a symbolic robot,
and then, if numeric solvings are needed for numerous cases of different architec-
tures and configurations, each of these computations can be done on-line using the
pre-computed matrix.
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