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Abstract: Despite excellent results on pilot projects, formal validation based on
standard Formal Description Techniques (FDTs) never really catch up in the in-
dustry. We claim that this is mainly due to standard FDTs lack of support for
the modern software development methods and life-cycles needed in the construc-
tion and maintenance of open distributed systems. We propose to go the other
way round, that is to integrate formal validation technology within well established
object-oriented (OO) development methods. Building on the intuition that a uni-
versal language taking into account all the possible semantics aspects of parallelism
and communication is a holy grail, we propose to rely on an open (but simpler)
OO language to build dedicated frameworks. Such frameworks can be specialized
toward classes of distributed applications, and integrate formal validation tools. We
illustrate our approach using the famous alternating bit protocol example. We inves-
tigate on this example how a continuous validation framework could be set up to go
smoothly from the OO analysis to the OO implementation of a validated distributed
system.
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Une approche pour intégrer la validation formelle
dans un cycle de vie objet des protocoles

Résumé : Bien qu’ayant déja apporté d’excellents résultats sur des projets pilotes,
les techniques de descriptions formelles ne sont pratiquement pas utilisées dans 1’in-
dustrie pour la validation de protocoles. Ceci est essentiellement di & un manque de
support pour le formalisme dans les outils modernes de développement de logiciels.
Nous proposons une solution qui consiste a intégrer des techniques de formalisation
dans le cylce de développement d’un logiciel orienté objet. Plutét que d’étendre un
langage a tous les aspects possibles du parallélisme, ce qui semble irréalisable, nous
proposons de construire des frameworks dans un langage orienté objet existant, le
langage FEiffel. Chaque framework ainsi construit est spécialisé pour une classe d’ap-
plications distribuées et integre des outils de validation de protocoles. Nous illustrons
notre démarche par I’exemple du protocole du bit alterné.

Mots-clé: Modélisation orientée objet, validation et vérification, protocoles, ingé-
nierie logicielle, protocole du bit alterné.
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1 Introduction

It is now widely admitted [11] that only system development based on “real-world”
modeling is able to deal with the complexity and the versatility of open distributed
systems. Once the idea of analyzing a system through modeling has been accepted,
there is little surprise that the object-oriented (OO) approach is brought in, because
its roots lie in Simula-67, a language for simulation designed in the late 1960s, and
simulation basically relies on modeling. This is the underlying rationale of the nu-
merous object-oriented analysis and design (OOAD) methods that have been docu-
mented in the literature [18]. OOAD methods allow the same conceptual framework
(based on objects) to be used during the whole software life cycle. This seamless-
ness should yield considerable benefits in terms of flexibility and traceability. These
properties would translate to better quality software systems (fewer defects and de-
lays) that are much easier to maintain because a requirement shift usually may be
traced easily down to the (object-oriented) code.

However the design, implementation and maintenance of correct distributed soft-
ware is still a very difficult exercise, and people in both research laboratories and in
software companies agree about the necessity of validating the software system at
different stages of its life cycle, with as few “model-ruptures” as possible. To meet
the challenge of a continuously validated development process for open object-based
distributed systems, the following two problems have to be solved:

e an OO approach must correctly deal with parallelism and distribution issues,
without hindering good implementation performances,

e formal validation tools that can be used continuously during the OO life cycle
of the distributed software must be made available.

As B. Meyer writes in [17],

To judge by the looks of the two parties, the marriage between concurrent
computation and object-oriented programming appears an easy enough
affair to arrange. This appearance is deceptive: the problem is a hard
one.

The introduction of parallelism in an object-oriented language may be consid-
ered with two perspectives, whether it is loosely or tightly coupled with the rest
of the language. In the first case, it is more or less orthogonal to the structura-
tion brought in by the object-oriented paradigm: it basically relies on the model
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4 Claude Jard, Jean-Marc Jézéquel, Laurence Nédelka

of communicating sequential processes with one or more ad hoc communication se-
mantics (e.g., the various CORBA bindings existing for most object-oriented and
object-based languages). This simple parallelism model does not melt well with
inheritance, however, because synchronization constraints are hard to inherit in a
context in which subtype substitutability is to be preserved. This problem is known
as the inheritance anomaly [14] and is not easy to circumvent [15].

Another approach would be to tightly integrate a given parallelism semantics
within a language as in Parallel Eiffel [17], where there is no distinction between
“active” and “passive” objects. However, Parallel Eiffel relies on the availability of
a (distributed) multi rendez-vous communication scheme, which is powerful enough
to foster simple, concise, and elegant solutions for classic concurrency problems (such
as the dining philosophers), but which limits drastically the domains of interest of
this method.

Building on the intuition that a universal language taking into account all the
possible semantics aspects of parallelism and communication is a holy grail, we pro-
pose to rely on an open (but simpler) language to build dedicated frameworks. Such
a framework is specialized toward a class of distributed applications, and integrates
formal validation tools.

It is common sense to remark that formal validation needs formal descriptions.
But, as examplified by the fuzzy semantics of most popular methods like Booch [3]
or OMT [19] (Object Modeling Technique), it is a matter of facts that most people
(outside the academic world) don’t bother to be fully formal in early stages of
analysis. Trying to understand why this is so falls out of the scope of this paper. Let
us just note that when a method is a bit more formal (e.g., Fusion [5]), some aspects
of a real system become very hard (and thus very costly) to model formaly [6].

Still we cannot do formal validation of a distributed system without a formal
description of its communication structure. Owur approach is thus to attack the
problem at the output of the analysis stage, where we use an OO language that
is both abstract and formal enough to let us specify crucial parts precisely (thus
allowing the specifications to be validated), and efficient enough for a direct im-
plementation (thus providing the continuous framework allowing the validation of
the implementation). Our favorite language is Eiffel [16], which is a pure object-
oriented language featuring multiple inheritance, polymorphism, static typing and
dynamic binding, genericity, garbage collection, a disciplined exception mechanism,
and systematic use of assertions to improve software correctness in the context of
programming by contract. The semantics of Eiffel is defined formally [1].

INRIA
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The presentation will be organized as follows. First, we will argue for an open-
ness allowing the formal descriptions of distributed systems to be validated at the
various steps of the software development, even as far as the maintenance phase.
As a first step in this direction, we then use the famous alternating bit protocol ex-
ample to illustrate how such an openness helps in pushing FDTs part way into the
implementation phase. Finally, we will discuss how to actually integrate validation
in a seamless OO life-cycle.

2 Validating Open Distributed Software with Formal
Description Techniques

2.1 A set of complementary techniques

Validation techniques vary widely in their forms and their abilities, but they al-
ways need a formal description! of the distributed software system. They output
data on properties of the system under consideration that can be viewed with some
confidence level. Basically, the designer may attack his/her software by three com-
plementary techniques. We list here their advantages and major drawbacks:

o formal verification of properties: it gives a definite answer about validity, but
existing methods can only easily be applied to analyzing simplified models
of the considered problem. This forces the distributed algorithm to be de-
scribed at a high abstraction level, so its formal verification lets the problem
of property preservation during its refinement course widely open.

e protocol simulation, using a simulated (and centralized) environment: it can
deal with more refined models of the problem and can efficiently detect er-
rors on a subset of the possible system behaviors. The main difficulty is to
formally describe and simulate the execution environment. This is generally
very simplified, because it would not be realistic (nor interesting) to take into
account all the parameters of a real system, as for example, the exact influence
of message size on transmission delays, or the action durations (which are not
computable without execution).

e observation and test of an implementation: here, the execution environment
is a real one. But as there is a lack of tools to observe a distributed system

!Note that an executable program is a formal description.
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6 Claude Jard, Jean-Marc Jézéquel, Laurence Nédelka

as a whole, it will be difficult to actually validate the software. It will also be
difficult to generalize the possible behaviors from the observation.

It appears that these approaches are more complementary than in competition,
and that an advised project manager would try to use all of them.

However this is hard in practice because the formalisms used in these various
stages differ widely. Until now, there is a need for a formal specification to validate
something against. Most of these techniques have been developed in the context of
the Formal Description Techniques (FDTs) for protocols.

2.2 Difficulties in using FDTs

It is very deceptive to see that formal validation based on standard FDTs (such as
SDL, Estelle and Lotos) never acceded to a widespread use in the industry, despite
excellent results on most of the pilot projects where it has been used [13]. In our
experience, this is mainly due to the lack of integration of this promising technology
in widely used software development methods and life-cycles.

Because of the standard FDTs lack of support for modern software engineering
principles, it is extremely clumsy to try to use them as implementation languages
for real, large scale distributed applications. Furthermore, being fully formal implies
that FDTs are based on a close world assumption, making them awkward to deal
with open distributed systems: specifiers become prisoners of the FDTs underlying
semantics choices. For example, all FDTs force a given communication semantics
(multi rendez-vous for Lotos, FIFO for Estelle) upon the user, who has to laboriously
reconstruct the set of communication semantics needed for a given distributed system
starting from the FDTs one; sometimes with a high performance cost (Estelle FIFO
between layers are difficult to circumvent for instance).

Using FDTs validation technology thus imposes a model rupture in the usual
life-cycle. This implies that formal validation technology may be used during the
maintenance phase of a system only after a costly reverse engineering effort. Since
the maintenance phase cost for large, long-live systems can represent up to 3 or 4
times its initial development cost, this is not a good point for FDTs. As a conse-
quence, formal validation rarely passes the stage of an annex (and more or less toy)
task which gets low priority and low budget.

2.3 Alternative: Integrate Validation in an OO life-cycle

OOAD methods along with an OO implementation allow the same conceptual frame-
work (based on objects) to be used during the whole software life cycle. The first

INRIA
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step toward an object-oriented analysis is concerned with devising a precise, rele-
vant, concise, understandable, and correct model of the real world. The purpose of
object-oriented analysis is to model the problem domain so that it can be under-
stood and serve as a stable basis in preparing the design step. The design phase
starts with the output of the analysis phase and gradually shifts its emphasis from
the application domain to the computation domain: the implementation strategy is
defined, and trade-offs are made accordingly. Auxiliary classes may be introduced
at this stage to deal with complex relationships or implementation-related matters.
The output of the object-oriented design phase is a blueprint for the implementation
in an object-oriented language, which is basically an extension of the design process.

The boundaries between analysis, design and implementation are not rigid. This
seamlessness of the object-oriented approach may upset the old-time programmers
who favor the well-established structured methods that feature strong frontiers be-
tween phases. A reality check might be necessary here: how often does a final
product match its initial requirements? What is the situation 5 or 10 years later? 2

We advocate for extending this seamless OO development process to encompass
validation, not as a post facto task (as promoted in the classical vision of the V-model
of the life-cycle), but as an integrated activity within the OO development process.
The key point in implementing this idea is to rely on the sound technological basis
that has been developed in the context of formal validation based on FDTs. We
illustrate our vision of an integrated validation process on a classical example in the
next section.

3 An Example: the Alternating Bit Protocol

3.1 Introduction to the Alternating Bit Protocol

We could have chosen a multimedia application full of bells and whistles to illustrate
our approach. Since it would only have made the discussion more obfuscated, we
come back to the famous example of the Alternating Bit Protocol, because it served
as a common cas d’école at the time of the foundation of the protocol engineering
community fifthteen years ago. It is thus well-known among the FDT practitioners,
and it will be easy to compare our modelization with previous solutions.

We consider a system architecture made of several modules connected through
interaction points. We distinguish the SENDER and RECEIVER modules, interacting
through unreliable communication media (messages can be lost or corrupted). The

2See B. W. Boehm and W. Humphrey’s works [2, 9] for more thoughts on this topic.
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SendUser RecUser
i {
l o
- SR
Sender Receiver
“¢ rs

Figure 1: Architecture of the Alternating Bit Protocol

;

body sender_body for Sender;
const retran_time = 1;
var data_buffer : data_segment; bit_buffer : tbit;
state idle, wait_ack;
initialize to idle begin bit_buffer := 0 end;
trans
from idle to wait_ack when 1sap.data_req(data) name data_request:
begin data_buffer := data; output psap.mess(data, bit_buffer) end;
from wait_ack when psap.ack(bit)
provided (bit_buffer = bit) to idle name confirm_indication:
begin alternate_bit; output lsap.confirm end;
provided (bit_buffer <>bit) name retransmit:
begin output psap.mess(data_buffer, bit_buffer) end;
from wait_ack delay (retran_time) name timeout:
begin output psap.mess(data_buffer, bit_buffer) end;

end;

Figure 2: An Estelle description of the Sender body for the Alternating Bit Protocol
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protocol users are represented by two other distinct modules (SENDUSER and RE-
cUsER). We have also considered that the system behavior is tested with respect to
a global property of sequencing service primitives (Data Request, Data Indication
and Data Confirm). In a validation system such as Veda [12], this is modeled by the
presence of an observer having probes on the protocol modules.

The architecture of this system and the description of the sender module written
in the Estelle FDT are given in figures 1 and 2. It is assumed that the reader is
familiar with such descriptions.

3.2 The OMT analysis

To formally describe the architecture of our Alternating Bit Protocol system, we
choose to use the OMT method [19]. The OMT analysis model is made of three
components:

e the object model (based on classes, associations, and grouping constructs)
shows the static structure of the real-world system through abstract or physical
classes and their relationships.

e the dynamic model (based on events and states) shows the temporal behavior
of the objects in the system.

e the functional model shows the constraints between the objects in the system
(and between inputs and outputs).

Figure 3 represents the OMT object diagram of our system. Protocol entities
(each layer) appear on the left side of the figure, and protocol data units (the events)
on the right side (greyed boxes correspond to classes independent of the Alternating
Bit Protocol).

Classes are represented as rectangles labeled with the class name. A single line
represents simple relation between two classes (like data sending between SENDUSER
and SENDER). Relation between more than two classes is marked by a diamond.
A triangle symbolizes the inheritance relationship (for example SENDUSER inherits
from PrRoTOCOLENTITY). A black circle at the end of a relation line marks the
multiplicity of the relationship.

Using the graphical syntax of the OMT dynamic model, figure 4 shows us the
automaton associated with the Sender protocol entity, which corresponds to the
Estelle code of figure 2. The OMT functional model is omitted here because it is
mostly irrelevant to our discussion.
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Observable Protocol_entity Event
receive
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Sender Receiver \ \ \
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Port BitatData BitaltAck
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Figure 3: The OMT Object Model of the Alternating Bit Protocol

Sender

nitialize

?BitaltAck [OK
/confirm_indication

Timeout / retransmit
?Data / data_request

?BitaltAck [notOK]
[ retransmit

L)
)

Figure 4: The OMT Dynamic model of the Sender Object
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3.3 A Design Framework Integrating Validation Technology

A framework consists of a collection of classes together with many patterns of collab-
oration among instances of these classes. It provides a model of interaction among
several objects that belong to classes defined by the framework. As abstractions,
patterns often cut across other common software abstractions like procedures and
objects, or combine more common abstractions in powerful ways [4]. The term pat-
tern applies both to the thing (e.g., a collection class and its associated iterator) and
the directions for making a thing. In this sense, software patterns can be likened to
a dress pattern: the general shape is in the pattern itself, though each pattern must
be tailored to its context.

We describe here the example of the VLOOP framework (Validation Library for
Object Oriented Protocols), whose purpose is to allow protocol designers to keep
the underlying model provided in a classic FDT such as Estelle and to use related
formal validation technology, while benefiting from the OO seamless life-cycle and
openness. For example, although Estelle communications are only possible using
FIFO, the flexibility of the OO framework allows us to offer many more possibili-
ties for communication semantics: e.g., communication by procedure call between
adjacent layers of a protocol stack.

As an Estelle module is naturally associated to each layer of the Alternating Bit
Protocol system, a class can be associated to each layer. Moreover classes and Es-
telle modules use the common notions of dynamic creation and deletion of instances
(module variables in Estelle), and dynamic connection to other objects/modules.
Variables of an Estelle module correspond to class instance variables (attributes).
Transitions between states can be represented as object methods, driven by a proto-
col engine (see below). An Estelle module state is represented as an instance variable
which can take as many predefined values as there are states in the automaton.

The passage to the OO technology adds the possibility to structure a system
through inheritance. Thus, similar characteristics of classes are abstracted away
and are grouped in a super class. The layered structure of our system allows us to
illustrate this phenomena. Since each layer (PORT, SENDER, SENDUSER, etc.) may
have a lower layer and an upper layer and be able to send informations to these
layers, this common behavior can be factorized into the abstract class PrRoTOCO-
LENTITY (see example 3.1). Some actions, having a specific behavior depending on
the actual layer level, are not described in the class PRoTOCOLENTITY but in each
subclass corresponding to a different layer level (for example the method receive in
Example 3.1).

RR n"2808
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Example 3.1

indexing
description: "Abstract notion of a Protocol Entity"
deferred class PROTOCOL_ENTITY
feature
initialize is
—— Setup the initial step of this Protocol Entity
lower layer, upper layer : PROTOCOL_ENTITY

connect lower layer(new lower : PROTOCOL_ENTITY) is
—— set a new protocol entity under the current one
ensure lower layer = new_lower

—— set a new protocol entity above the current one
ensure upper layer = new_upper

insert_on_top_of(other : PROTOCOL_ENTITY) is

require not_void: other /= Void
ensure
new _lower is other: lower layer = other

send_ down (m: MESSAGE) is

—— send the message to the lower layer

send up (m: MESSAGE) is

—— send the message to the upper layer

receive (e : EVENT) is
—— process an input event
require e not_void: e /= Void
deferred —— heirs must provide an implementation
invariant

end —— PROTOCOL_ENTITY

—— protocol layers under and above the current one

connect_upper layer(new_upper : PROTOCOL_ENTITY) is

—— insert this protocol entity on top of the other one

new_upper is_old_other upper: upper layer = old (other.upper layer)
require low_connected: lower layer /= Void; m_not_void: m /= Void

require up_connected: upper layer /= Void; m_not_void: m /= Void

symmetric: upper layer /= Void implies (upper layer.lowerlayer = Current)
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Example 3.2

indexing
description: "The abstract specification of sender protocol entity"
deferred class SENDER SPEC
inherit
PROTOCOL_ENTITY
undefine initialize end
feature
idle, wait_ack : INTEGER is unique
state : INTEGER
altbit : BOOLEAN
initialize is
—— nittalize the sender state
deferred —— no implementation provided

end —— initialize
data request(new_data : USER_DATA) is
—— transmit a new user data
require idle: state = idle
deferred —— no implementation provided
ensure wait_ack: state = wait_ack
end —— data_request
confirm indication (ack : BITALT ACK) is
—— transmit a confirmation SDU
require wait_ack: state = wait_ack; reception ok: ack.altbit = altbit
deferred —— no implementation provided
ensure idle: state = idle ; alternated bit: altbit /= old (altbit)
end —— confirm_indication
retransmit (ack : BITALT ACK) is

—— retransmission of the buffered data

deferred —— no implementation provided
ensure same state: state = old (state)
end —— retransmit

end —— SENDER SPEC

ensure then idle: state = idle —— nitialize must lead to idle state

require wait_ack: state = wait_ack; reception not_ok: ack.altbit /= altbit
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In this framework, the transitions of the OMT dynamic model (corresponding
to the Estelle automaton) are translated to methods of an OO language according
to the following design rules:

e the triggering event of the transition (if it exists) is transformed in a method
parameter,

e the starting state, plus optional conditions on the event parameters or other
conditions on local variables, are specified in the precondition (in Eiffel, this
consists in a set of assertions introduced with the keyword require),

e the arrival state is specified in the postcondition (assertions following the key-
word ensure),

e the method body can be either implemented (in this case, it is similar to an
Estelle transition body) or left abstract (specified in Eiffel with the keyword
deferred, equivalent to a pure virtual function in C++).

After all the specifications of the features, we can add an invariant clause (key-
word invariant) which must always be satisfied (except during the invocation of a
feature). Figure 3.1 shows us the specification for the class PRoTocoLENTITY. For
each feature, only the precondition and the postcondition are displayed.

In our system example, the receive method, invocated by extern objects, is the
engine of the protocol layer (objects derived from class PRoTOCOLENTITY). It pro-
cesses actions depending on both the received event type and the state in which the
object is when the method is invocated. The implementation of such a method needs
a double dispatch operation that has several well-known implementation methods [8].

From this design framework and the OMT analysis diagrams, it is possible to
generate the specification of PROTOCOLENTITY subclasses. Example 3.2 shows the
definition of class SENDERSPEC, which is the class describing the specification of the
Sender layer of the Alternate Bit Protocol.

4 Validation in the VLOOP Framework

Within this framework, a validation process may be carried on a seamless way. The
idea is to validate successive refinements of the system according to a set of abstract
properties, until the actual implementation has been obtained.

INRIA
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4.1 Specializing the VLOOP framework for the Alternating Bit
Protocol

First, we have to design a specialized version of observer (called BITALTOBSERVER,
see Example 4.1) implementing the test of the global property introduced in Sec-
tion 3.1.

Example 4.1

indexing
description: "To observe properties on the Alternate Bit Protocol"
class BITALT OBSERVER
inherit
OBSERVER 5
creation
make
feature
attente, message en_transit, message transmis : INTEGER is unique
state : INTEGER 10
make is
—— nittalize the observer
do
state := attente
ensure state = attente 15
end —— make
data sent is
—— data has been sent by the sender

require attente: state = attente
do 20
state := message en_transit
print("sender: data_sent%l")
end —— data_sent
data received is
—— data has been received by the receiver 25
require message en_transit: state = message en_transit
do
state := message _transmis
print("receiver: data_receivedfN")
end —— data_received 30

confirm received is
—— a confirmation has been received by the sender

require message transmis: state = message_transmis
do
state := attente 35
print("sender: confirm_receivedN")
end —— confirm_received
end —— BITALT OBSERVER

RR n"2808
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Then we have to provide some implementation details to the protocol entity
specifications obtained as output of the OMT analysis stage. For example, the
class Sender (see Example 4.2) is a suitable implementation of the Alternating Bit
Protocol Sender specification presented as Example 3.2. Note that the Eiffel lan-
guage constrains the methods of a subclass (here SENDER) to respect the precondi-
tions, postconditions and invariants of their specifications in the ancestor class (here
SENDERSPEC).

At this stage, we still have to provide the system with a suitable environment,
which is basically made of a set of drivers and stub classes modeling the upper and
lower layers of the Sender and Receiver modules. Stub classes are easy enough to
derive from their OMT specification, whereas we use the VLOOP notion of activable
objects to implement the drivers (i.e. the traffic generator and the network inter-
faces). An activable object (e.g., a SENDINGUSER in Example 4.3) is just an heir
of the abstract class ACTIVABLE, which features an entry point called action® that
may be called from time to time by, e.g., a scheduler, provided the method activable
returns true. The network interfaces (modeled through the class PORT) come in
several flavors (that is, subclasses) in the VLOOP library. This is to model both
perfect media and subclasses loosing or corrupting data.

4.2 Applying various validation techniques

Since our system can now be compiled to a reactive program offering a set of tran-
sitions (guarded by activation conditions) located in the activable objects, we have
many opportunities to apply the basic technologies that have been developed in the
context of FDT based formal validation.

If we want to try the model-checking road, we can use a driver setting the system
in its initial state and then constructing its reachability graph by exploring all the
possible paths allowed by activable transitions.

For larger systems, an intensive simulation (randomly following paths in the
reachability graph) would probably be a more fruitful avenue. Running such a
simulation involves the use of a scheduler object (see Example 4.4 taken from the
VLOOP library) implementing a redefinable scheduling policy among the activable
transitions (e.g., random selection).

It is also possible to observe the system, using an observer, as in Veda [12].
An observer is a program which permits to catch and analyze informations about
execution. It can see every interactions exchanged in the system, and also every

®This abstraction would be modeled with a spontaneous transition in an Estelle description.
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Example 4.2

indexing
description: "A sender protocol entity implementing the SENDER_SPEC"
class SENDER
inherit
SENDER SPEC
creation
initialize
feature
initialize is
—— nittalize the sender state
do
state := idle
end —— initialize
data request(new_data : USER_DATA) is
—— transmit a new user data
local pdu : BITALT MESS
do
data := new data —— buffer the data in case of retransmission
!'pdu.make(altbit,data); send_down(pdu)
state := wait_ack
end —— data_request
confirm indication (ack : BITALT ACK) is
—— transmit a confirmation SDU
local conf : CONFIRM
do
!!conf; send_up(conf)
state := idle; altbit := not altbit —— alternate but
end —— confirm_indication
retransmit (ack : BITALT ACK) is
—— retransmission of the buffered data
local pdu : BITALT MESS
do
!'pdu.make(altbit,data); send_down(pdu)
end —— retransmit
feature —— on event reception
receive (e : EVENT) is
—— process an input event
do —— body omitted for the sake of brievity
end —— receive

feature {NONE}

end —— SENDER

data : expanded USER DATA —— sending buffer used in case of retransmission
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Example 4.3

indexing
description: "A protocol entity sending USER_DATA and waiting for CONFIRM"
class SENDING_USER
inherit
PROTOCOL_ENTITY
ACTIVABLE
OBSERVABLE
redefine my observer end
creation
initialize
feature
activable : BOOLEAN
—— are we ready to send data?
action is
—— send a USER_DATA
local data : USER DATA
do
!!data; send_down(data)
activable := False
debug("0BSERVATION") my_observer.data sent end —— debug
ensure then waiting confirm: not activable
end —— action
receive_confirmation (sdu : CONFIRM) is
—— recetve a confirmation SDU
require waiting confirm: not activable
do
activable := True
debug("0BSERVATION") my_observer.confirm received end —— debug
ensure activable: activable
end —— receive_confirmation
feature —— on event reception
receive (e : EVENT) is
—— process an input event
local confirm sdu : CONFIRM
do
confirm sdu ?= e; receive_confirmation(confirm sdu)
end —— receive
feature {OBSERVER}
my observer : BITALT OBSERVER
end —— SENDING USER
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Example 4.4

class SCHEDULER
creation
make
feature
make is
—— Initialization
do
!!process_table.make(1,0)
end —— make
register (new_process: ACTIVABLE) is
—— register a mew process to manage
require not_void: new_process /= Void
do
process_table.force(new process,
process_ta.ble.count+l)
end —— register
random run(cycles, seed : INTEGER) is
—— Randomly call registered processes
local
n, p : INTEGER
random generator : RANDOM
do
!'random generator.set_seed(seed)
from n := 1; random generator.start
until n > cycles
loop
p := (random generator.item
\\ process_table.count) + 1
if process_table.item(p).activable then
process_table.item(p).action
end —— if
random _generator.forth
n:=n+ 1
end —— loop
end —— random_run
feature {NONE}
process_table : ARRAY[ACTIVABLE]
invariant
end —— SCHEDULER
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internal states of a module. In our example, the class SENDINGUSER is observable
and its observer is from the class BITALTOBSERVER. SENDING USER (example 4.3),
inheriting from the class OBSERVABLE, may invoke features from its observer after
each action we want to observe. An object from the class BITALTOBSERVER (exam-
ple 4.1) can take three states: wailing, transiting-message and transmited_message.
The reception of a message (invocation of feature) from the class SENDINGUSER
makes it pass from a state to another, and display indications about the evolution
of the system. If a message m is received when the observer is in a state z and no
m-transition is available from the state z, this expresses a system fail (for example
if it receives a data_sent message when it is in the state transiting-message).

A protocol sequencing error is thus detected as a precondition violation on the
observer. The Eiffel execution environment then allows the user to precisely locate
and delimit the responsibility of the error.

For more abstract or complicated properties to be checked on real systems (e.g.,
that a service behaves like a FIFO and it is live), the observer object could be
derived automatically from higher level specification languages (e.g., temporal logic
specifications). The Eiffel runtime system would then only serve to trap and identify
the error.

4.3 Towards the Implementation

Going from the validated system to the implementation just involves replacing the
simulation scheduler with another one specialized for an efficient implementation,
and the Port class with an heir implementing the actual network interface. The
service offered by the classes SENDER and RECEIVER may then be made available
to real users in the VLOOP framework, which has transparently been transformed
to an efficient implementation environment featuring among others procedure calls
between layers without copying of data, and up-calls on the arrival of messages.

The code that is used in the implementation (SENDER and RECEIVER classes)
could thus be actually validated, helping towards the goal of a seamless software
development life-cycle producing validated software.

5 Conclusion

We have shown the interest and feasibility of integrating formal validation techniques
in an established OO life-cycle for the construction of open distributed software
systems. We choose the OMT method, but our approach would have been similar
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with other popular OO methods. On the well known Alternating Bit Protocol toy
example, we have described how a continuous validation framework can be set up
to go smoothly from the OO analysis to the OO implementation of a validated
distributed system. But this approach is not limited to toy problems: it has also
been used on real systems, e.g., the implementation of a parallel SMDS server where
it has allowed us to detect non trivial problems at early stages of the life-cycle [7].
Future work will concentrate on the design of a comprehensive OO library to help
the construction of VLOOP like integrated validation frameworks for OO distributed
software systems (probably in the context of CORBA), and the interfacing of the
framework with open validation tools such as the CADP environment [10].
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