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ROCQUENCOURT

Analyse multifractale d’ordre supérieur

Résumé : Nous étendons I'analyse multifractale & la description de la distri-
bution des corrélations d’ordre n des singularités. Dans cette optique, de nouveaux
spectres multifractals sont définis, et nous donnons quelques résultats généraux liant
ces spectres. Nous donnons également des expressions explicites de ces spectres dans
le cas des mesures multinomiales déterministes, et montrons que le formalisme mul-

tifractal du deuxieme ordre n’a pas lieu pour cette classe de mesures.

Mots-clé : dimension de Hausdorff, spectre multifractal, corrélations multifrac-

tales, mesures multinomiales.
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1. INTRODUCTION

Multifractal analysis has recently drawn much attention as a tool for studying
the structure of singular measures, both in theory and in applications. Efforts
have mainly been focused on special cases such as self-similar and self-affine mea-
sures, both in the deterministic case [1, 2, 3, 4, 5, 6, 7] and in the random case
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Multifractal analysis has also been
extended to a larger class of set functions, namely the class of Choquet capacities
[21]. Recent efforts have also been made to extend the analysis to point functions
[22, 23, 24].

In the multifractal scheme, the pointwise structure of a singular measure is ana-
lyzed through the so-called “multifractal spectrum”, which gives either geometrical
or probabilistic information about the distribution of points having the same sin-
gularity. Several definitions of a multifractal spectrum (of a measure) appear in the
litterature. Some are related to measure theory (Hausdorff and packing measures),
other to large deviation theory and to probability (Rényi exponents and Legendre
spectrum). The so-called “multifractal formalism” assesses that, in some situations,
all the spectra coincide. One motivation for studying this multifractal formalism
stems from the fact that both Hausdorff and packing dimensions are known to be
very awkward to compute. The other definitions are more suited to applications, as
they are easier to evaluate. The multifractal formalism is known to hold for the class

of multiplicative measures [7] but it fails in general [7, 21].

Our concern in this work is different. The full characterization of the singularity
structure of a sequence of Choquet capacities (and of measures) goes beyond the
information contained in the multifractal spectra [21]. Other tools are needed if one
wants to describe more precisely this singularity structure. A natural extension is to
recognize that the usual spectra correspond to one point statistics, and to generalize

the analysis to higher order statistics.

In this view, we introduce here the notion of multifractal correlation. We extend
the definitions of the aforementionned spectra (section 2), and give general results
relating them (sections 4 and 3). In section 5, we perform a two point statistics on
a class of deterministic multiplicative measures (namely the multinomial measures)
and show that the multifractal formalism does not hold in higher order statistics.

The random case will be treated in a forthcoming paper.

2. DEFINITIONS

In what follows, we give definitions of quantities measuring the multifractal cor-

relations between singularities of a given probability measure. The parameters we

INRIA
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consider are just extensions of the Rényi exponents and the various multifractal

spectra.

2.1. Notations. Let p be a probability measure with support in [0, 1). For n € N*,
let P, :={I}}; 0 <k <wv,} beapartitionof [0,1), P := U, cn+ Pn, and z} :=inf I}
for all k.
Throughout the paper, we assume that the conditions (C1) through (C4) are met:
(C1) lim,_,o maxo<;<,, || =0,
(C2) Vn,k, I} is an interval, semi-open to the right.
(C3) Vn, Vj, 0<j<wv, 3k such that I} g Ip~', where I§) := E.
(C4) YV a >0,

limsup [I|*k(I) <1

IeP,|I|—-0
h ™) = |I.7n| . yn+l n
where k(I}') := sup Dl LT cIyy.
k

We stress the fact that, in our case, a multifractal analysis is relative to a fixed
sequence of partitions P. In particular, if P changes, all the quantities defined below

(i.e. @, fu, f,, 7 and f;) may vary.
For z € [0,1) and n € N, let I"(z) be the interval I}* containing z.

Let p € N, € > 0, 7 := (rn)nen a sequence of (0,1)") with r, = (rl,r2,... r?)

n) ' nr”

for all n. The sequence r is such that either limr¢ = 0 for all 7, or the sequence is

constant.

Let D := lim inf D™, where D™ := [0,1 — max;<;<, 7%).
For all x € D™, set

0 (1) = log u(I"(z))
" log |I"(z)|

which is defined when p(I™(z)) # 0, and

VneN a,(z,7) = (an(z),an(z+rl),... ,a,(z+12))

VeeD ofz,r) := <limozn(x),lim ay(z+7l),...  lima,(z+ rﬁ))

when the considered limits exist.

Let r>® := (r,)nen be a sequence of (0,1)™, with r,, := (rl,72,... )72, ...), every
sequence (r!), converging towards 0 for all 3.
We define
a,(z, 7)) = (an(x),an(z+71l),... ;. (x+77),...) foralln
a(z,r*) = (lim a,(z),lima,(z+71l),...  lima,(z +17),.. )

RR n°2796
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where z belongs to liminf [0, 1 — sup, r¢).

Throughout the rest ofnthe paper, we shall always refer to the case p = 0 by replacing
the sequence r with the symbol ().

Thus,

a,(z,0) = a,(z)

a(z,) = lim o, ()

2.2. Hausdorff spectrum of order p (or Hausdorff p-spectrum). We will use
the following definition of the dimension of a set E, dim F, which is similar to that
of the classical Hausdorff dimension, except the fact that the coverings are restricted
to the elements of P .

Let

+o0
M(E) = inf{Zdiam(Ei)s JEC|JE;, diam(E;) <6, E;eP Vi}
=1 %

M*(E) = %LmoMg(E)
dimFE := inf{s / M*(E) =0} =sup{s / M*(E) = +o0}

Since the elements of P satisfy conditions (C1) through (C4), the definition of dim

coincides with that of the classical Hausdorff dimension [25].

Let a := (a07a17' .. ’ap) € (R+)p+1'

Set
E,,={z€l0,1) / a(z,r) =a}
for all a € (R*)P+1.

The Hausdorff p-spectrum of p is defined as

fu(a,r) :=dimE, ,

2.3. Large deviation p-spectrum. Let n € N and

p -

i=1
Notice that the Dy, . form a partition of D" := [0, 1 — max;<i<, 7;,), and that
D =[0,1)if p=0.
Hence, for all z € D", we note D"(z) the (unique) interval D} . containing z.
Let U™ :={z € D"; p(I"(x)) [Lie p(I™(z +77,)) # 0},

INRIA
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Set

G a,r) = {z eU" | a,(z,r) € ﬁ[ai —&,q; —|-6]}

i=1

KMa,r) = {(ku(2),ku(z+7L),...  ku(z+72)); z € GXa,7)}

where k,(z) is the (unique) integer k such that z € I}
Define, for all £,3 > 0,

S;L(O‘H& 7‘) = Z |Dk0, kp |ﬂ
(k0. kp)EKP (,T)
Se(a,B,7) = limsupS*(a,S,7)

(with the convention ), = 0).
Using (C1), it is easy to show, by analogy with the Hausdorff dimension, that there

exists a real number f¢(,7) such that
B < fla,r) = Se(a,B,7) =400
B> fila,r) = Sc(a,B,7)=0
f:(a, ) is non decreasing in €, and we note
Folayr) == lim fo(a,r) = inf f(a,7)

the large deviation p-spectrum of p.

Remark: when p = 0 (no correlation), and when all the intervals have the same
size v !, it is straightforward (lemma 4) that, for all @ € R,

. logcard {I} ; |[Ip|**° < p(ly) < |Ip|"~°}
fo(a,0) = 16%1 hmnsup log .

which is the usual quantity considered in the litterature [26][14][3].

2.4. Legendre p-spectrum. Here we extend the definitions given in [7].

Let (A,)n>1 be a sequence of positive integers such that

Z exp(—nA,) < oo for allp >0

n>0
Recall that U™ := {z € D"; p(I"(z)) [Ii=, p(I"(z + 7%)) # 0}. For all z € D™,
P vn—1 P
pI"@) [T @ +r)) = > wi) [[e(E)io, (@)
i=1 ko,kl,...,kp—o i=1

which shows that the left-hand side quantity is a step function of z.

This proves that U™ is a finite union of semi-open intervals, and hence a Borel set.

For ¢ :=(qo, ... ,q,) € RP™" and 7 € R, we can now define
og |D™ (2)] & g LoD @)
Culayrr) = [ u(I @) B [ (1 (@ 4+ ) ST (D (@)= da
un =1

RR n°2796
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and

C(q,7,7) = limsup A, *log C,(q, ,7)

We suppose that C(g, 7, 7) is not constantly equal to 0 or oo (this imposes the growth
of the sequence (A,),)-
Set

Q:={(¢,7) eR™*?* [ O(q,7,7) < 0}

One verifies that C is convex, non decreasing in 7, and non increasing in g; for all i.
A similar argument as the one found in [7] allows to show that there exists a concave

map 7 : ¢ — 7(g,7) such that
0={(q,7) € R** / 7 <7(g,7)}

((ol is the interior of €2).

We suppose that 7 is finite on an open set Z of RP*! containing 0.
We define the Legendre p-spectrum f; of u as being the following Legendre transform

of 7:
fila,r) == inlf[<q,O£ > — 7(q,7)]

where <.,. > denotes the inner product in RP*!,

Remark 1: the definition of C', can be also stated as follows : since the Dy

form a partition of D™, we can write

Calgryr) = [ DM@ neter gy

vp—1 .
' n
= Z |DZO,...,kP|Z"=0 gian(zp,)—T

ko,k1,... ,kp=0

where ' means that the summation runs through those indices ko, kq,... ,k, such
that [Ti_ u(1i,) # 0.

Remark 2: when p = 0, we have D} = I}, and we obtain the definitions consi-
dered in [7]. In particular, if all the intervals have the same size exp(—=\,) = v,

one can easily show (lemma 5) that we come up with the usual formulae

@) = ———log S ()

logva =y ) 1Tey2
7(q,0) = lin%linan(q,(I))

3. PARTICULAR CASES

The definitions given above may be simplified when, for large n, all the intervals

I* have the same size exp(—\,) = v, ! for all k, and when riv, € N.

INRIA
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Lemma 1.

. Iy of ki=ky+riv, foralli>1

kO:--- 7kp - .
0 otherwise

Proof. Assume D}, # 0, and let z € D, . Then k,(z) = ko and k,(z +
ri)=k; forall 1 <i<p.

Since riv, € N, we have k; = k,(z +7.) = k,(z) + riv, = ko + riv, (recall that
ko(z) = [va 2]). If k; = ko + 745, then D}

.........

Corollary 1.

Vz €D" Dy yko(atrt) bnorrt) = 1" (T)

Proof. Since k,(z +7%) = k,(z) + riv, for all 1 <i < p, we deduce, using lemma
L,
DZn(w),kn(z+r}L),...,kn(:z:+1'£) = Ign(z') =I1"(z)
]
Set
G (a,r) = {0<k < vy;on(z}) €[ag—e, a0 + €], an(z} +78) € [0 —g,a; +¢], 1 <i<p}
Lemma 2.
G7(a,7) = {ku(2); @ € GZ(a,7)}
Proof. Let k € {k.(z); z € G?(a,r)}. There exists z such that
a(z) € [o—e+e]
a(z+rl) € [a;—e,05+¢, 1<i<p
with k = k, (2).
Since riv, € N, we have k,(z + ) = k,(z) + riv, and
a(z+r,) = ou(zi+r) 1<i<p

Thus, k € G*(a, ).

Conversely, let k& € G™(a,r), and let z be any element of I (thus, k,(z) = k).
Then

an(z) = an(zy)
and
an(r4r)=a,(zr+r)) 1<i<p
yielding
z € G (a,r)
We conclude k € {k,(z); z € G*(a,7)}. O

RR n°2796
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Lemma 3.

K2 (oyr) = {(k k4 riwa, o k7t k€ Glar) |

Proof.
KX(a,r) = {(k, DT HTh) o ka(z+TE))s T € GE(ayT)}
= {(kn (x w(Z) F T Vny o kn(2) +720,) 5 ¢ € G2, T)}
{ (kyk+7ivn,....k+1%1,); k€ é?(a,r)} (lemma 2)
U

Lemma 4. N
log card G™(a, 1)
log v,

fo(a,r) = li%l lim sup
Proof.
Se(a,B,r) = lim sup Z II7|°  (lemmas 1 and 3)

keGr(a,r)

= limsupv?card G*(a,r)

n

) log card G™(a, )
= limsupexp | —logv, -

log v,

It is then straightforward that, for a given € > 0,
logcard G™(a, )

B > lim sup Se(a,B,7) =0

n logv,
1 d G*(a,

B < lim sup ogcard G (a,r) Se(a, B,1) = +00

n log v,
yielding R
. ) log card G*(a, )
fi(a,r) = hmnsup log v,
U

Lemma 5. fi(a,r) =inf, {<a,q > —7(q,7)} where
log 3= (T )™ TTicy (T +73)"

logvt

7(g,7) = lim inf

> meaning that the summation runs through those indices k such that (1) T10=, p(Ir+
ri) #0.
Proof. We have, using lemma 1,

Cn(q, T, 1") = Z ' |Ig|qoan($:)+zz;l gian(zi+ri)—T

P

= vp Y uIm)e [ wIy +ri)®
k =1

INRIA
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and .
log 3> p(I)% [Thy (I + 7)) %

C(q,7,7)=7— 1imninf b log vl

4. GENERAL PROPERTIES

Let us recall some properties on the “classical” spectra f,(.,0), f,(.,0) and f;(.,0).

Theorem 1. [7, 21] We have

fh(-,@) S fy(7®) S fl(,@)

Theorem 2. [21] Let

A, = {M;O§k<yn}
log | I}|
If
log card A,
im———— =90
n X,
then

fl(-,@) = f;*('7®)
where * denotes the Legendre transform. Therefore, fi(.,0) is the concave hull of
fo(.,0).
Our aim in this section is to extend these results to higher order statistics.

4.1. Comparison of f, and f,. The following result holds:

Theorem 3.
fh('7 T) < fg(" T)
for all sequence r of (0,1)?, p € N*.

Proof. Consider p > 1, @ € (R*)?*!] and assume that E,, # 0 (the case E,, =0

is trivial).

Let z € E,, and € > 0. Then there exists ng := ny(z, , r) such that, for all n > ny,
a,(z) € [ag—e,a0+¢]

an(z+7) € [oy—e,05+¢] 1<i<p

Hence, z € G*(a,7) and (k,(z),k.(z +7L),... ,k.(x + 72)) € K*(a,r). Since in

addition z € D,’:n(z)’k"(z”l),_“ Fn(otrt)) We obtain

Ve>0 zelJ() U Dy ok,

I n2l(ko,...,kp)EK?(a,r)

RR n°2796
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Set EZ,;,T = ﬂnzz U(ko,...,kp)ng(a,r) DZU,...,k,, and Sfx,l,r :=dim Ei,z,r-
Clearly, for all e > 0, E, . C U, E ;. and

a,l,r

Ve>0 dimFE,, <sups;
1

Let 5,6 € R*. For large n, we have maxs,,... x,) [ D, &, | < 8 (condition (C1)), and
thus

Hy(Eo) < X IDh = Sa,s,7)

(kos--- kp) € KT (a,r)

which yields
H* (Fi,) < Selays,7)
and

Ve>0 VI s, < fi(ar)

a,l,r
We conclude
fulo,r) < foloyr)

U
4.2. Comparison of f, and f;.
Theorem 4. Under conditions (C1) and (C2), we have
fo(or) < filsr)

for all sequence r of (0,1)?, p € N*.

Theorem 5. Assume that conditions (C1) and (C2) are met. Let p € N, and let r

be a sequence of (0,1)".

Set
A, = {M;O§k<yn}
log | I}
If
lim log card A, —0
w X,
then

fl("'r) = f;*(.,T)

where * denotes the Legendre transform. Therefore, f, is the concave hull of f,.

INRIA
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Proof of theorem 4. Let 7 € R, ¢ € RF*! ¢ > 0 and « such that f,(a,7) # —o0.
For all n € N,

vnp—1

Cilars) = 5 D e )
kosk1smnn s kp=0
> Z |DZ . |‘100‘n(ﬂ7:0)+Z:’:1 gian(zy,)—T
- 03---sfp
(ko,...,kp)GK?(a,'r)
Z Z |DZO;...,kp|Z:):0 qi(aiiE)_T
(ko,...,kp)GKg((x,r)
(choose + if ¢; > 0, — if ¢; < 0)
P
Culg,mir) > SH(o, > ai(a;£e)—7,7)
=0

Let 7 < 7(g,7). Then there exists ¢ > 0 such that, for large n, C,(q,7,7) <
exp (—cA, ), implying S.(>-¢_, gi(evi £€) —7,7) = 0, and hence % ¢;(a; £e) —7 >
[ (o, ) for all € > 0.

Letting € tend to 0 gives

<a,q>—T(q,r)2fg(a,r) vq

We conclude
fg(a, T) S fl(a7 T)
L]

Proof of theorem 5. From theorem 4, we already have f;* < f;. Let us prove the
opposite inequality.

Let ¢ := (qo,q1,--- ,qp) € RPFL.

By assumption, there exists an integer N(n) such that

N(n)

{(an(x;go),... (22 ))5 Koy-on k=0, ,yn_1} = | {ani}
i=1

with
n >\n

Let Ko i={ (kos--- k) 0ms = (a(af,),- (ol }-
Then

N(n)

CH(Q7T7 T') = Z Z |DZO,...,kP|<q’an’i> -7

i=1 (kgye.. 1kp)EKn s

Set

i(n) = argmax;=1, . n(n) Z D, [
(k0="'=kp)EKn,i

(i(n) may be not unique. In that case, take the smallest one, for instance).

This yields (set o, for a, i») and K, for K, ;@))

Culg,r,r) S N(n) > |Dj,.

(kgsenr kp) EK

| (1)

)

RR n°2796
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This inequality holds in particular for those indices n' such that C(q, 7,7) = lim, A;! log Cy (g, 7, 7)-
Furthermore, we can extract from (a,/) a sequence (c;) converging towards a limit
denoted @ := (Go, @1, .. ,&,).

More precisely,
P
Ve>0 3jo Vji>jo o5 €]]l—e a+¢
=0
Since o; € K; for all j, we deduce
Ve>0 3j, Vji>jo K;CKi(ar)
Inequality (1) reads, for large j,

Vg Cjlgm,r) < NG S |Di.

(Eoye-- ,kp)EK]

P
Cj(Q>T7T) < N(J) Sg(o_é7ZQZ(dzi€)_T7r)
=0

X |Zf:0 qi(&iﬂ:E)—T

L kp

This inequality, along with the hypothesis of the theorem, yields
P

Ve>0 7(q,r) ZZqi(&iis)—f;(di,r)
i=0

and
7(q,7) > <a,q > —f,(@,7) > fi(q,7)
We conclude

oz

5. TWO POINT STATISTICS OF MULTINOMIAL MEASURES

In this section, our aim is to compute the spectra defined in the section 2 on a
specific class of measures, namely the multinomial measures for the case p = 1. We
also show that the multifractal formalism does not hold in higher order statistics.
We first recall the definitions of such measures and some of their properties. We

close this section by giving the values of the spectra.

5.1. Multinomial measures: definitions and properties.

Let B be an integer, B > 2. Let (mg,my,... ,mp_;) € (0,1)% such that 37" m; =
1.

We construct a sequence (u,,), of probability measures on [0,1) as follows: start
with gy = Lebesgue measure. Split the interval [0,1) in B intervals of equal size,
say {I;;; 0 <i; < B}. Define a set function p; on [0,1) by ui(f;,) = m;,. A well
known theorem of Caratheodory’s asserts that this set function defines a probability
measure on [0, 1). Tterate the process on each interval I;,, so as to obtain B? intervals
{Li;iy; 91,12 =0,...,B — 1} of size B~2. Then define a probability measure p, such
that pe (I, i) = My m,.

INRIA
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This iterative construction yields a sequence (i, ), of probability measures defined on
[0,1), and a sequence {I;, ;,,... i, ; @1,82,... ,3, =0,... , B — 1} of partitions of [0,1)
in B-adic intervals such that |1, ;,. ... .| = B™", and p,(L;y iy, in) = Miy My . ..My,

This sequence possesses a weak* limit u called multinomial measure of base B, with

weights (mg, my,... ,mp_1).

The multinomial measures possess the following well-known properties [27, 26, 7] :

Proposition 1.

Consider x € [0,1) and its B-adic expansion x = Y, xx B~* withz; € {0,... , B—
1} for all k (non-terminating expansion are not considered here). For all i < B, let
vi(z) = lim card {k <n; z, =i}/n be the proportion of i’s in the expansion of
(when thig lz'o:nit exists).

The following results hold :

1. a(z) exists almost everywhere, and equals — Y 23" @i (z) logg mi.
2. For all g € R, 7(q,0) = —logz(X 2, mf).

3. fila,0) = —oco ifand only if @ & D := [Omin, Omax), With oy := — log max;(m;),
Omax = — logp min;(m;).
4. For all o Elo), 3! g, € R such that
o =7"(qa,0)

and fl(Ot, @) = Qo — T(Qm @)

5. lim 7'(q,0) = amin, lim 7'(q,0) = omax-
q—>+oo gq— —00

6. fi(a,0) = — 23" wi(a)logs wi(a) where (o(a), ... ,vp_1(a)) is a solution
of the constrained problem

min(Y75" ¢ilogp ¢i)
Yo pi=1

— > piloggms = a

where o s known (with the convention 0log0 =0).

7. fh(7(b) = fg('ﬁ([)) = fl('7 @)
Proof. See [27, 26, 7] for instance. O

Let u be a multinomial measure with weights (mg, my,... ,mp_1), where B > 2.
In what follows, we consider a sequence r := (r,), whose general term is r, :=

B~ (p(n)), being a non decreasing sequence of integers chosen such that 3 :=

lirJP p(n) exists. In the following, we consider only the case p(n) < n, the case

p(n) > n leading to a trivial analysis.
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For (a,a') € (R*)?, we shall write f,(a,a,7), f,(a,a',7) and fi(a,a’,r) for
fn((a,a'),r), fy (o, @), 7) and f; ((o, '), r) respectively. In addition, when p = 0,
the symbol ) will be omitted.

Since the computations of these spectra require several lemmas, we state the re-

sults in this section and postpone all the proofs until section 6.

We have the following results:

Proposition 2. (Hausdorff spectrum)

(e, 0) ifa=d

—00 ifa# o

fula,dyr) =

The computation of f;, is rather simple, and leads to a trivial result which does
not give much new information. For this reason, we shall compute another function,
also defined in terms of a Hausdorff dimension, which allows a finer analysis of the
measure in terms of two point statistics.

Let

Epory = {t €1[0,1); lim a,(t) = a and limsupa,(t+7,) = o/}
This aforementionned function is defined as follows:
Fu(a,a',r) := dim E’a,a/,r
Set oy = —logymo and ap_; = —logg mp_.
If mg # mp_1, set

o —« dag 1 — aag
Ai=———— and a,:=alad) =
Qg —Qp_1 ‘ o e (ap_1—ap)+ (¢ — )

Proposition 3. (F}, spectrum)
[ ] If my 2 mp_1,

fr(a) ifad =«

—00 ifa #«

Fi(a,a' 1) =

i Ifm() <mp-i,

ful(@) if (@ =a)
Fi(o,o/,m) =40 ifa=ap_; and &' < a(l — )+ Bag

—00 otherwise
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Thus, if for instance 8 = 1, all correlations between (o, a’) occur when @ = ap_

and o' € [ap_1, ).

REMARK 1: In the definition of Ea,ar,r, we could as well consider a liminf ins-
tead of a limsup. The relation between a,,(t + 7,) and «,(t) (see page 28) shows
that this is equivalent to interchanging the role of the weitghts my and mp_, in the

computation of all the three spectra.

Proposition 4. (Legendre spectrum)

b Ifmo 76 mp_1,

'(l—A) filae) ifa. € (Qmin,Omax) and A#1,A >0
f a 7;fa{:O[,e Qmin ; Emax

S alir) = 4 1(a) { }
0 ifa=ap_1 and o' = ay
[ —00 otherwise

[ ] Ifmo =mp_1,
a) if a=d
fonal r) = file) if

-0 if a#d

Proposition 5. (Large deviation spectrum)
fe= 1
REMARK 2: In particular, when mq > mp_;, we have
fulap_1,a0,7) = Fu(ap_1,00,7) = —00 < 0 = fi(ap_1,a0,7)
i.e. a second order analog of the “multifractal formalism” does not hold for multi-

nomial measures.

REMARK 3: Let B be an integer greater than 1, 4 be a multinomial measure with

weights (my, ... ,mp_1), and 1 be a multinomial measure with weights (po, ... ,pp_1).

w and 1 have the same first order spectra if and only if {mq, ... ,mp_1} = {po,... ,PB-1}

Thus, for instance if B = 2, the first order spectra do not differentiate between s
with weights M = (mqg, m,), and 1, with weights M = (my,mg). It is straightforward
to check that the second order spectra of u, and v, do differ. It is also easy to prove
that the second order spectra allow to differentiate two trinomial measures as long
as all the weights are different. More generally, we conjecture that for 2 < p < oo,
the p-th order spectra are different for all p-nomial measures, even when the sets of

weights are the same.
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6. PROOFS

In the computations of the spectra, we widely use B-adic expansions of real numbers

of [0,1). Throughout the paper, only terminating expansions are considered.

6.1. Computation of 7(q,q¢',r). Note z} := 0.a10a>...a, the B-adic expansion of
z}, with a; € {0, 1, ..., B — 1}. For sake of simplicity, let us write p for p(n).

X» can be written

Xa(q,4',7) = S w4+ B + S w(I)? p(Ip + B
z} [ap,<B-1 zy/ap=B-1
= Sg + Sl

6.1.1. Computation of Sy. In this case, only the p-th digit of z} and z} + B~?
are different (one can notice that z} + B™? remains in [0,1)). Set ¢ := a, and
IN| :=ng+mn1+...+np_y with N := (ng,n4,... ,n5_1), each n; being the number

of ¢’s in the B-adic expansion of z}. Clearly,

4+ Bry = L g
wIi + B77) = —== u(Iy)

2

and thus
B-2 ) m ]
—
—_ + 2+1
So = > > (mg°m7 mpgim;) T ( )
i=0 |N|=n—1 \ %071 mB-1 m;
22 m ¢ 1
— i+l q+q' n= q+4q" \no q+q' \n1 q+q' \np_1
= X (B) | | S (mg 7y (mg ) ()
i—0 m; |N|=n—1 TQ,Tb] 4eae B —1
B—2 B-1 n—1
! )
J— q q +
Sy, = E mimg E m;iTe
1=0 =0

6.1.2. Computation of S;. Suppose that within the first p — 1 first digits, the last [
digits have value B — 1, and that a,_;_y < B —2:

.'EZ = O.Cll...ap_l_g Ap—_1-1 \(B- 1)(3— 1)1 (B— l)ap+1...an

~”

a,—; through a,_;
When adding 1 to the p-th digit, a, changes to 0, and so do the [ preceding digits,
whereas the (p — [ — 1)-th digit changes its value to a,—;—1 + 1 < B—1:

:c}:-l—B_”:O.al...ap_l_g(pz1+1)0 .00 apy1...a,
—_——— %,_/

We are led to the following conditions on [: since we assume that there are [+ 1 digits
having value B—1, the first condition we get is [+ 1 < np_;. The second condition is

also straightforward: [+1 < p—1. Thus, we must have —1 < < min(ng_; —1,p—2)
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(by convention, the case | = —1 refers to the case a, < B — 2, which leads to the

computation of Sy). We then come up with the following result (set i :=a,_;_1):

1+1
- My M1
n P\ n
w(Iy + B77) = T p(Iy)
mB_lmi
nI . . . n_l_2 .
For a fixed [, the number of z}’s having such an expansion is with
ng,MN1;... ,NB—-1
|IN| =n —1— 2. We deduce that
B-2p—2 I+1
n—1-2 / m m:
_ nQ o0 1 np_1__I+1 q+q 0 i+1
5 -YY % (gm0 (T it
i=0 1=0 |N|=n—1—2 \ R0:P1:"B-1 mp_1M;

B-2p-2

-y % ) (gt e (e (e

=0 I=0 |N|=n—-1-2 nQ,MN15- B 1

B-2

1

. [z m<m>] 3
=0

p—2
Smims )Y ) (gt gy (e
=0 |[N|=n—1-2 \ ™0>™1:---,"B-1
rB—2 1 [p-2 B-1 n—1-2
’ 1 ! 1
_ q q A0 7, 4q 1 q+gq
= MmMygmMmp_, E m;“m; E :(mo mB—l) E :mk
| i=0 1 |i=0 k=0
rB—2 1 rB=1 n=2 p_o q, q !
’ I ’ ma m
— q q 401 q+q 0 B—-1
= MmyMmp_, m; M, E my, ] [73_1 py
L :=0 d Lk=0 1=0 k=0 mk
rB—2 1 re—1 n—2
’ 1 !
— q q 9,4 § : q+q '
- mO mB—l m; mi+1 mk ] g(p - ]-7 M(qaq ))
[ i=0 1 Lk=o0
with
' q
mim
"N 0 Mp_1
M(q7 q ) B-—-1 q+q’'
k=0 k
and
MP —1
if M#1
§(p, M) = M-1
P if M=1

Combining this result with Sy gives

Xn(g,q', B7"™) = li miqmi-il] lZ_ mZ”'] &(p(n), M(q,q"))

=0 k=0
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and

) 1 ol
(g,4,r) = — lim —logpxa(9,q', B 2(n))

n——400

= rla+a) = lim o log €(n), M(g. )

+oon
7(¢,q¢',v) = 7(¢+¢")—PFmax(0,L(q,q',7))

with L(q,q¢',7) := 7(¢+q') + qlogg mp_1 + ¢' logp me.

6.2. Computation of f;(a,a',r).
For sake of simplicity, we shall omit the sequence r in L(q, q").
Set

J(g,q) == ag+agd —7(q+4")
R = {(¢,¢)€eR?; L(q,¢') <0}

Recall that 7(q, ¢',7) = 7(¢+¢')—F max(0, L(q, ¢')). Therefore, fi(e, &', 7) = inf (. 41eq J(q, ')
The computation of f; is quite tedious, and its value depends upon whether my and
mp_; are equal. Since the infimum is seeked over @, we need to derive some pro-
perties of this set depending on the values of mg and mp_;. This is done in the

following lemmas.

Lemma 6.

1. Vie{0,...,B—1},Vge R 7(q) < —qlogy m;.
2. my = mp_1 =>Q=R2

Proof.

B-1
1. Clearly, for all 7 and ¢, > m{ > m! and thus 7(¢) < —qlogg m;.
k=0

2. mg=mp_; = L(q,q") - 7(¢+q") + (¢ +¢') logg my. From the property 1,
we deduce L(q,q') <0 for all ¢,¢' € R?.
O]

Lemma 7.

Vu € R Jq € R such that (¢,u —q) € Q.
Proof. By definition of L and using lemma 6,
L(g,u—q) = 7(u) + qlogy mp_1 + (u — g) logz my < (u — q)(logp mg — logz mp_1)

Then choose ¢ veryfing (u— q)(logz mg —loggmp_1) < 0 (if mg = mp_y, the result

is straightforward). O
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We will also need the following lemma

Lemma 8. If my # mp_1,
VueR Flg €R such that L(g,u—q) =0
Proof. Trivial. O

Let a,b be two fixed elements of [min, Omax), @ # b, and define, for all z,y €
[Omins @max] sSuch that (x —y)/(b—a) € RT \ {1},

ax — by

E A =
(B)  Awy) = 2

The following results hold:

Lemma 9.

* Assume a > b, and note (zg,yo) a solution of A(z,y) = Qmin-

Ifb 7é Qmin; (.’130, yO) = (amin; amin)'

If b = amin, (%o, yo) takes the form (Qmin, Yo), where Yo spans [Cmin, Omax) \ {a}-

The same results hold when replacing Qmin With Omay -

* Assume a < b, and note (zo,yo) a solution of A(x,y) = Qmin-
If(l 3& Qmin , (x07y0) = (aminaamin)'
If & = amin, (%o, Y0) takes the form (Tg, Qmin), where Ty SPAnS [Qmin, Amax] \ {0}

The same results hold when replacing Qmin With 0pay -

Proof.

Let us notice some properties of the mapping A:

e A is strictly increasing in z if y < a.
e A is strictly decreasing in z if y > a.
e A is strictly increasing in y if z > b.
e A is strictly decreasing in y if z < b.
o A(z,a) =a for all z # b.
e A(b,y) =0bfor all y # a.

o A(z,z) =z for all z.

Let us seek for solutions to (E) other than (@i, 0min), and under the assumption
a > b. This implies that A is defined only when y > z.
(1) If b # cmin (i€ b > Qin)-

CLAIM 1. If 25 # amin (i-e. o > Qumin), then yo < a.
Indeed, if yo = a, then b > a = A(zg,Y0) = Qmin Which is contradictory.
If yo > a, we have amin = A(Z0,%) > A(Yo,%) = Yo > a, which is also
contradictory.
CLAIM 2. 25 = Qmin-

Assume that g > min.
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* If zy < b, then ay;, = A(zg,y0) > A(zo,a) = a, which is contradictory.

* If 25 > b, and since yo > xy, we have am, = A(zo,y0) > A(xg, o) = o,
which is contradictory.

* If g = b, Qmin = A(zg,yo) = b, which is contradictory.

Thus we proved
Zo = Omin

CLAIM 3. 3y = Qmin-
Assume yy > Opin- Since Ty = omin, we have xy < b and yy > xp, which
implies o, = A(zo,%0) < A(zo, o) = 2o which is contradictory.
Hence, if b # aui,, then £y = yo = Qumin-
(2) If b = apia, one only needs to solve the equation A(z,y) = ami, which yields
Ty = Qmin and yg is any value in [ouin, Qmax] \ {a}-
The reasoning is similar when searching for solutions to A(z,y) = Quax: prove that
if @ # Qmax, then Yy # amax implies g > b, and then deduce that yg = @ma,. The
result will then follow after proving that oy # ama, cannot hold.
When a < b, the result is obtained from the previous one by interchanging the role

of a and b, and of z and y. [

If (¢,¢") in @ minimizes J, then either one of the Kuhn and Tucker conditions is met :

(H1) VJ(g,q')=0 if L(g,q') <0
(H2) 3A>0 VJ(q,¢')+AVL(q,¢') =0 if L(g,q') =0

* Assume that (H1) is satisfied. This implies

{ a—r1(g+q")

=0
o —71(qg+¢)=0

If & # o/, there are no elements in () minimizing J and satisfying (H1), and we are
then led to treating the case (H2).

If a = o/, then

fleddyr) = inf fo(g+q)—7(g+q)}
= irelﬂg {ag —7(q)} (lemma 7)
= fi(a)

* Assume that (H2) is satisfied. The corresponding equality reads

a—7(q+q)+ N7 (¢g+¢)+1loggmp_1) =0
(E) IX>0 § o —7'(g+¢)+ A7 (g +¢") +logg mg) =0
L(g,q')=0
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which gives
a+ Aloggmp_1 = a' + Alogg myg (2)

e If myg = mp_y, (2) yields @ = o’ and, by lemma 6, Q = R%.
— If @ # @/, then, as in the case (H1), the infimum is not reached, and
fila, ', 1) = —o0.
— If a = &', then

fl(av a, T) = inf {a(q + q,) - T(q + ql)} = fl(a)

(g,9")ER2

o If my # mp_4, (2) reads

A= Ao, a) = -
0y — Op-1
— If AMa,a') <0, then (E) does not hold, and f;(a, ', r) = —0c0.
- If AM(e,0’) =1, (E) implies @« = —loggymp_; and o' = —loggz my. If

these two equalities are met, then for all ¢,q', J(g,q') = ag + aq¢’' —
7(¢+q') = —L(q,q¢') =0, and hence fi(a,a/,7)=0.
If (0{, a’) 7é (_ IOgB mp-1,— logB m0)7 then fl(a7 O/7 T) = —.
— If Ma,a') > 0 and Ao, @') # 1, then (E) implies
(g +q) = oc(a,d) (3)
* If a.(a,0') € (Qmin, ¥max), then there exists § € R such that
7'(q4) = a., and thus, using lemma 8§,
3 (q,q') € 9Q such that 7'(¢+¢') =a.,§=q+¢
Furthermore, we know that (proposition 1)
filae) = a.q—7(q)
= alfg+q)—7(e+q)
= a(g+4')+qloggmp_1 +q'logpmyg

_ a+loggmp_y ;o' + logp mg

- 1— A 77125
]' 11 !

= 7 (@ +a'q +qlogpymp-y +q'logp mo)
1

= 15 (ea+ad —7(a+4))
1 !

= I_Afl(a;aﬂn)

which can be rewritten

fl(a’ Oz’,T) = (1 - A)fl(QC(o"a’))
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* If @, = Quin, then, by lemma 9, either a = o' = ay;,, which
gives fi(a,a,r) = fi(a), or & = apin and o/ > a. In this case,
fila,a/,r) = —o0. Indeed, let © € Rt and ¢, such that L(u —
¢u,q.) = 0 (as in lemma 8). Notice than ¢, < 0. Then J(u —
Qus Q) = Qmin—T (1) + (&' —Qmin ) qu, and lim, 4 oo J(u—¢qu, qu) =
limy, 4 oo f1(Qmin )+ (@' —Qmin )¢ = —00, and we conclude fi(a, o', r) =
—o00.

In the same manner, if o, = Quax, then either &« = o' = apay,
which implies fi(a,d/,7) = fi(a), or @ = @max and @' > a, which

in turn implies fi(a, o', 7) = —00.

6.3. Computation of Fj(a,a',r). Let t € [0,1), t := Yo, t;B~" with ¢; €

{0,...,B —1}, and n € N. From now on, we shall use the following definitions:

ni(t,n) == #{k <n;t, =i} fori € {0,... ,B—1}.

©;(t) = limn;(¢,n)/n when the limit exists.

[(t,n) :=n—1—max{i <n; t; < B—1} = number of succesive digits equal
to B—1, starting backwards from the (n —1)-th digit. Notice that [(t,n) = 0

ift, 1 <B—-1.
e [(t) := limsupl(t,p(n))/n.
n—-+4oo

It will be also useful to consider packets of B — 1’s in the expansion of ¢t. In that

view, we define two sequences (a,,),, and (b,), as follows:
a; :=min{i;t; = B—1} b, :=min{i > a;;t; < B—1}
and, for all n > 1,
a, :=min{i > b,_,;t; =B—1} b, :=min{i >a,;t; < B—1}

Set
0 = U{an, Gpgtly--- 0 — 1}

n>1

© is the set of indices of all packets of B — 1’s in the B-adic expansion of ¢, i.e.

1€, =B—-1

Lemma 10. Let t € [0,1). Then

lim inf M =0
n—+4o00 n
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Proof. If 8 = 0, the result follows from the property I(t,p(n)) < p(n).
Assume 3 > 0, and define the sequence (0,), as follows: oy =1, 0,41 := min{i;p(i) >

p(O'n)}.

CLAIM 1. lim 2% = 1.

On
Clearly, 0,11 > o, since p(6,41) > p(0,). Thus, lim, o, = +o0 and lim inf,, 0,4, /o, >

1.

In addition, we have

Un+1

ntl — 1
p(0n) > p(ons1 — 1) = limsup = lim sup M <1

n On n p(on)

CLAIM 2. lim}_nf@ =0.
Assume lim Jinf M

n
I(t,p(n)) > An > 0. In particular, this implies

> 0. There exists a constant A such that, for large n,

tp(g")_l = B —1

when n is large.

Moreover, since non terminating expansions are not considered here, we have
Vn dng :=ng(n) >n such that (¢, p(on,)) < P(On,) — P(Ong—1) (4)
Indeed, if (4) does not hold, then
AngVn>ng Ut p(on)) > plon) —p(on_1)
Since tp(,,)-1 = B — 1, this implies
I(t,p(ow)) = plow) = p(On-1)

and t, = B — 1 for large n, i.e. the expansion is non terminating, which is contra-
dictory.
Set w, = 0uy(n). Inequality (4) reads

(t,p(un)) _ plus) (l_p(un—l) Un, un—1>

Unp, Unp, Up—1 p(un) Unp,

We conclude

n——+00 n

liminf {&PM) 5 (1 lim “Z—l) —0
which is in contradiction with the hypothesis of claim 2. O
Lemma 11. Let t € [0,1). If op_1(t) exists, then

I(t)>0=pp.(t)=1
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Proof.
CLAIM 1. 1(t) > 0 => liminf(;—" <1
Let (0,), be a sequence of N such that
1(t) = lim &P(72)
n O—TL

and set I := {n;ty,,—-1 = B —1}. Clearly, I is not empty, nor finite. Otherwise,
I(t,p(a,)) = 0 for large n, and I(t) = 0. We can assume, without loss of generality,
that t,(,,)-1 = B—1for all n, i.e. p(o,) —1 € ©. Denote by i(n) the (unique) integer
such that

i(n) < P(0n) < bi(n)

We have
I(t,p(om)) _ P(oy) — Qi) < bi(n) — Qi(n)
(2 (2 - a/z('n,)
implying
7 . bn — Qan
0 < I(t) <limsup
n—+00 Ay,

CLAIM 2. 1im+infz—" <1=pp(t)=1

n

Clearly, lim,, a,, = +00. Otherwise, for large n, (a, ), would be constant and (¢, p(n)) =
0 for large n, yielding I(t) = 0.
Set L := lim ian—" < 1. By definition of (a,), and (b,)a,

n— -+ 00
+ n

Vn np_i1(t,b,) =np_1(t,a,) +b,—a, —1

which gives

np_i(t,b,) a_nnB_l(t,an) a, 1
bn by ay bn  bn

Since ¢p_1(t) exists, we obtain

Vn

¢p-1(t) =L pp_1(t)+1—L
which reads
ep-1(t) =1
L]

Lemma 12. Let [ € [0,8]. There exists t € [0,1) such that
ep_1(t)=1 and I(t)=1
In order to prove lemma 12, we shall first prove the following result :

Lemma 13. Assume lim, p(n) = +00. Let (U, )nen- be a sequence of N such that

® Uyi1 > Uy.

e lim, u,, = +00.

e liminf, 20 e 0,1
p(un+1)
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If the real number t :=Y",5, t; B~ is such that
ti<B—1<=3neN i=p(u,)
then
I(t) = B(1—7)
Proof. The real t has the following B-adic expansion

t=0.(B—1)...(B=1)e(B-1)...(B—1)e(B-1)...(B—1)e(B-1)...

N RN 7
~~ ~~ ~~

1 T 1
digit #p(u1) digit #p(u») digit #p(us)
where every e can represent any integer other that B — 1.
Clearly,
7 l t n . mn) n— - 1
[(t) > lim sup 1(t, p(ua)) = lim sup (p(u ) ];(u ) ) =p(1—r)

Let us prove the opposite inequality. Let k¥ € N* and set n(k) := max{i; p(u;) <
p(k)}, i.e. n(k) verifies p(unr)) < p(k) < p(Wnir)+1)-

Notice that lim; n(k) = +oo. Indeed, we have i < n(k) < p(u;) < p(k). Thus, the
inequality p(k) < p(k + 1) < p(unrt1)) gives n(k) < n(k + 1). Hence, lim, n(k) =
~+o0.

Furthermore,

[(t, p(k)) = p(k) = p(unr) — 1

and

I(t) = lim sup (p(kk) -7 (ug('“)) = %) =0 (1 — lim inf ’%)

Let us show that lim inf, % > r. The definition of n(k) yields
p

P(tn(r) o  P(Ungk))
p(k) Zp(un(k)ﬂ)

and since limy, n(k) = o0,
lim infM >r
ko p(k)
We obtain
1(t) <B(1—7)
which finishes the proof. [J
Proof of lemma 12. We shall treat the cases = 0, € (0,3) and [ = 3 separately.
e CASE [ =0.
A possible choice of ¢ is

t := 0.(B—1)0(B—1)(B—1)0(B—1)(B—1)(B—1)0(B—1)(B—1)(B—1)(B—1)0. ..

It satisfies [(t) = 0. To see this, denote by (2,),>1 the sequence of indices of
the null digits, i.e. z, == >.;; i+n=n(n+3)/2. Let £k > 1 and n(k) be the
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(unique) integer such that Zn(k) < k < Zn(r)+1- It is straightforward to verify
that limy, n(k)/k = 0. Then

n(k)—1
l(t, k‘) =k—- Zn(k) — 1< Zn(k)+1 — Zn(k) — 1= %
yields
.Ut k)
hl?l = 0
This in turn shows that
- l(t I(t
I(t) = lim sup 7( .p(n)) = lim sup 7( ,P()) p_(n) <0xpB=0
n—+o00 n n—4o00 p(n) n

The real t also satisfies pp_(t) = 1. Indeed,
nB_l(t, k) =k—- n(k)

and we conclude
1 (t7 k)

wB_lﬁ):==h312§:;;———==l
CASE [ € (0,).

)
Set r :=1-— 3 € (0,1). Let (un)nen be a sequence of N defined as
w, = mindi; p(i) > S +n} (5)
k=1

Such a sequence is well-defined, since the hypothesis 8 > 0 implies lim,, p(n) =

+00.
Thus,

Pl — 1) < 3 0r ] + 1 < plu) (6)

k=1

The sequence (u,),cn posseses the following properties:

Un+1 Z Unp, (7)
limu, = +oo (8)
lim P 9)
n p(un+1)
Inequalities (6) give
n+1 ) n
P(arr) 2 D [ +n+1> > [ +n> p(u, — 1)
k=1 k=1

Since the mapping n — p(n) is not decreasing, we deduce u,41 > u, — 1
which proves (7).

Equality (8) follows from the definition (5): u, > p(u,) > n.

To prove (9), notice that

—1 —1 —1
im P =D o opn=1) n n-1_

v p(n) o on—1 pn) n
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Inequalities (6) yield

plun=1) Y[ +n  _ p(u)
P(Uns1) Sl +n4+1  p(tsr — 1)

which gives

—1
lim sup M < r < liminf M
no P(Unir) 2 p(Upgr — 1)

Using (8), we deduce (9).

We can now use lemma 13 to deduce

() =p01—r)=1

Let us now show that ¢p_;(t) exists and equals 1.
Let £ € Nand set n(k) := max{i; p(u;) < k},i.e. n(k) is such that p(u,x)) <
k < p(Uar)+1)-

]. We have 7=t > k£ 4+ 1 and
—logr

n+1

P(Unsr) 2 D I +n+1>r D >k

=1
which yields
log(k +1
n(k) < [M}
—logr
It is straightforward that np_; (¢, k) = k — n(k), which gives pp_;(t) = 1.
e CASE [ = 3.
For n € N*,| set
uy, = min{i; p(i) > > k* +n}
k=1
As for the [ € (0,3) case, one can show that the hypotheses of lemma 13 are
satisfied, with » = 0.

Thus,
(t)y=8=1
In addition, we have gp_1(t) = 1. To see this, let £ € N* and n(k) :=
max{i; p(u;) < k}.
Choose n > [Vk]. We have
P(tng1) > (n4+ 1) > (n+1)* > k

yielding n(k) < n. Thus, for all k¥ € N*, n(k) < [V/k]. As in the case treated
above, we deduce pp_;(t) = 1.
]

Lemma 14. Let B> 2,1 € {0,...,B—1} and P := {(¢o,-.- ,¢p-1) € [0,1]%; 3 ¢; =
j<B
1}.
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1. If mp > my, for all k # I, or mp < my, for all k # I, then
Z prloggmy, =loggmr <= pr=1, v, =0 for all k # 1
k<B
2. Otherwise, there exists (¢g, ... ,op-1) € P such that Y ¢ logy my = logg my

k<B
and pr < 1.

Proof of 1. We only treat the case mr > my, for all k # I (the other case can be
easily deduced from this one).
Suppose that ¢; < 1. Then there exists j # I such that ¢; # 0. We have

Z or logg my, = Z pi logg my, < logp m;p Z pr, = logg m;p

k<B k<B;pr#0 k<B;prp#0

O

Proof of 2. If there exists k # I such that m; = my, then the proof is straightfor-
ward: choose ¢, =1 and ¢; =0 for all j # k.
Now consider the case where m; # my for all k # I, m; # max; m; and my #

ming, my. Let k, j be such that m; < m; < m;. Then choose ¢y, ¢; in [0, 1] such that
m m;
prlog — +pjlog—~ =0
mry mry
or +; € (0,1]

This guarantees that the vector (¢g, ... ,p_1), defined by ¢; = 0 for all i & {k,j, I}
and ¢; =1 — ¢; — ¢y, belongs to P, and that ), 5 ¢; logg m; =loggm;. O

Lemma 15. If E_io5, my_, N {t; @p-1(t) <1} #0, then

i —loggmp_1 3 — =di —loggmp_1
dim (E 1 () {t; ¢ 1(t)<1}) dim E_ o,

Proof. Clearly, {t; ¢p_1(t) = 1} C E_iog,mp_,, and thus, using a theorem of
Billingsley’s, dim (E_ 105, m; , N {t; @p-1(t) =1}) =0.

Since E_1og, mp_y = (E-togymn_. N {t; ©p-1(t) = 1}) U (E_10g, ma_r N {t; @p-1(t) < 1}),
we deduce

dlm (E—logB mpB—1 ﬂ {ti (PB_l(t) < 1}) = dimE—logB mpB_1

We can now turn to the proof of propositions 2 and 3.
Let t € [0,1) be such that a(t) exists. Set { :=I(t,p(n)) and i := ap(m)—i-1-
We have (see page 17)

1 B-p(n)

log(B—™)
I(t,p(n)) +1 ( mo ) 1 Mit1
n Ogp o nOgB . + an(t) (10)
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Proof of proposition 2.

Recall that f, (o, o/, r) := dim E,, ., where
Epo.r={t; a(t)=ao,lima,(t + B7?™) = o' when both limits exist}

Equality (10) and lemma 10 yield lim a,(t + B?™) = lim a,(t) whenever

n—-4o00
It
lim,, M exists. Hence, if a # o', it is clear that f;,(a,a’,7) = —oc0. If @ = &/,

n
fula,a,r) = fu(a,0). Therefore, the f, spectrum is very trivial, and a need for
another function capable of a finer analysis arise. For this reason, we have defined

the F}, spectrum (see page 14). O

Proof of proposition 3.

As mentionned in the remark at page 14, we can consider a lim as well as a lim in
the definition of Ea,a:,r without loosing in generality. Switching from one definition
to another is equivalent to switching the values of mqy and mp_;. Indeed, let us

examine the two following cases:

(1) mg < mp_y: Equation (10) gives

mp-1

liszrup a,(t+B7P™) = (t) logg + af(t)
lribrl}ilolof a,(t+B7P™) = qot) (seelemma 10)
(2) mo>mp_y:
1im4s_up a,(t+ B7"™) = aft)
lriLI_I}iIolofa"(t—i_ B*™) = [(t) logp mr]rio_l +a(t) (see lemma 10)

Let us consider the two following cases: my > mp_1 and my < mp_;.

CASE mq > mp_; Thus, by lemma 10,

lim sup o, (t + B™"™) = a(t)

n—-4o00
which leads to

i ) At at) = o} ifa=a
o 0 ifa#ad

We deduce the F} spectrum :

(@) ifa=d

—00 if a # o

Fy(a,d,r) = {

CASE my < mp_; In this case,

limsup o, (t + B™™) = I(t) ¢o + a(t)

n—+00
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where ¢y :=logg M1
mo
Set
’ —
Buer = {1 €000 = =]
Co
Clearly,

Ea,a’,r = Ea ﬂ La,a’,r

o —«

e Case ¢ [0,8]: then E, o, =0 and Fy(a, &', 1) = —00.

Co
e Case o' =«

— If @« = —logzymp_y: by lemma 12, there exists t; € [0,1) such that
¢p_1(te) = 1and I(ty) = 0. Thus E, N Laar ., # 0, and dim E, o, > 0.
Fither one of the following cases holds:

x* If mp_y >m;foralli<B—1,ormp_; <m;forallti < B—1,

we have (lemma 14)

Eo={t; pp1(t) =1}
Hence,
Fi(a,a,7) = fu(a) =0

* Otherwise, according to lemma 14, E, N {t; ¢p_1(t) < 1} # 0.

From lemma 11, we have

E.({t; ¢p-1(t) <1} C Eqar C E,

and lemma 15 yields

Fu(a,a,7) = fi(a)

—If o # —loggmp_,. We have t € FE,. Then ¢p_,(t) < 1 and, by
lemma 11, I(t) = 0, and hence ¢t € L, o, This gives E, C Ly o, and
anm = E,. We conclude

Fi(a,a,r) = fi(a)

In both cases, Fi(a, a,7) = fin(a).
o —a
€ (0,4

e Case

Co

We have

I(t > 0 emma
t e Ea ﬂLa,aI’T = ( ) . : % H (pB—l(t) = 1
wp_1(t) exists

- Ifa=—-loggmp_
Then E’a,a,,r # () by lemma 12, and since E’a’a,,r C {t; pp_1(t) =1},

we conclude Fj,(a,a',r) =0.
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—If a # —logymp_;
Let t € E,. Then @p_,(t) < 1, which gives I(t) = 0 (lemma 12). In
other words, E, ( La,a',» = 0 and

Fi(a,a/,1r) = —00
O

6.4. Computation of f,(a,a’,7). In the case of one point statistics, it is well
known that f,(.,0) = fi(.,0), and hence f4(.,0) = f,(.,0) = fi(.,0) (theorem 1, page
9. See also [21]). The f, spectrum can be computed independently of this result,
using the Gartner-Ellis theorem, and the differentiability of 7 (see for instance [3]).
In the case of two point statistics, we shall also use the large deviation technique,
despite the fact that the function 7 is neither differentiable nor steep (the vectors
(g¢,q') where 7 has no derivatives are exactly the elements of 9Q)). Nevertheless, a
close look at the proof of Ellis’ theorem [28] shows that these conditions on 7 are
not necessarely required in our case. We will discuss this point in more detail later

in the computation of f,.

Let X be a random variable uniformly distributed on [0, 1), and define

You(X) = (= logp u(I"(X)), —logp p(I"(X) + 7))

and, for all e > 0, set F. :=[a —e,a+¢] X [@/ —¢&,0 +€]. Then
lim —logPr (L € FE) = lim —log card K7 (o, 0/, )
n——+oo 1, n n—-+oo 7, Bn

= IOgB (f;(aa O{’,T') - 1)

Let (61,6;) € R?. The moment generating function M, (6;,8,) of Y, (X) is

M, (61,6,) := B(e<fr02).¥a(X)>)
= B (u(I"(X)) %5 u(I"(X +7,)) 777 )
B" -1 0 .
= BT Y u(Ip) = u(lf +r,) T
k=0

1
Set ©n(01,02) = - log M,,(61,65). Since 7 exists, we obtain

. 01 02
=1 = - - -
(61,062) :=1lim g, (61,0,) = —log B (HT( log B’ logB>>

Clearly, ¢ is a convex and continuous on R?.

Now consider the rate function I(s,t) := sup,, 4,(s61 + t0s — (61,6,)). Notice that
I(s,t) = —log B (fi(s,t,r) —1).

Ellis’ theorem asserts that, if the supremum in I(s,t) is reached on F, for ¢ suffi-

ciently small, then
1 Y, (X
lim inf — log Pr (L € FE> > — inf I(s,t)
n

+ o
T n (s,t)EF,
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which yields

fg(a7 05,7 T') 2 hH(l) sup fl(s7 t7 7")
E— o
(s,t)EF.
which, combined with theorem 4, gives

hI% sup fl(37t7 7‘) < fg(Oz,O[’,T') < fl(oz,o/,r) (11)
(s,t)EFo'g

In what follows, we will prove that 1111(1) sup fi(s,t,r) = fi(a,a',r) by examining

(s,1)EF-
all the possible values of & and o' as in proposition 4.

First of all, let us treat the trivial case fi(a, o', 7) = —oc. Theorem 4 gives f,(a, o', r) =

—00, and hence f,(a, o', 1) = fi(a, 0/, 7).

e CASE a =da'.
Then fi(a,a',r) = fi(a) = fu(a) = fu(a,a’,r) and, by theorems 3 and 4,
fo(a,a,7) = fila, !, 7).

e CASE o' # a, myg # mp_;.

— Assume that o, € (Qmin, ¥max), A # 1, A > 0. Let € > 0 be small en-
ough such that, for all (s,t) € F., we have a.(s,t) € (Qmin, ¥max)- In
addition, choose € < —|ag—ap_; +a—a'|. This condition ensures that
for all (s,t) € F., we have A(s,t) # 1 and A(s,t) > 0.

Thus, for all (s,t) € F,, the infimum in fi(s,t,r) := inf, ,{sq + t¢' —
7(q,q',7)} is reached (see the computation of fi(.,.,r) in this case, page
21).

Since fi(s,t,7) = (1—=X) fi(a.(s,t)) (see page 15), fi(.,.,7) is continuous
on F..

Using inequalities (11), we conclude f,(a,a’,7) = fi(a, ', 7).

— Assume that @« = —logg mp_; and o' = —logz my (then A = 1). Take
0 < e <|ag—ap_1|/2. This ensures that, for all (s,t) € F., A(s,t) > 0,
and that the infimum in f;(s,t,r) is reached (here again, see the com-
putation of f; for the case A(s,t) > 0, page 21).

Since fi(.,.,r) is continuous on F,, we conclude f,(o, &', r) = fi(a, o/, 7).

This finishes the proof of proposition 5.
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