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Une méthode de décomposition de domaine pour
I’équation de Hemlholtz et les problemes de controle
optimal associés

Résumé : Nous présontons une méthode de décomposition de domaine itérative pour ré-
soudre 1’équation de Helmholtz et les problémes de controles optimal qui lui sont associés. La
preuve de la convergence de cette méthode utilise des estimations d’énergies. Cette méthode
produit des algorithmes efficaces pour la résolution numérique de problémes de propagations
d’ondes en régime harmonique en milieu inhomogénes et leur controle.

Mots-Clés : Décomposition de Domaine, Equation de Hemlholtz, Ondes Harmoniques,
Controle Optimal, Guides d’Ondes, Conditions Absorbantes
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1 Introduction

The numerical resolution of the Helmholtz equation and related optimal control problem
in heterogeneous media at high wave number is a challenging problem. This model finds
applications in electromagnetic and acoustic wave propagation. Because of the oscillatory
character of the solution, the necessary fineness of discretization (at least ten points per
wavelength, also known as ’rule of thumb’) leads at high wave numbers to very large non
hermitian (possibly non-symmetric) complex linear systems exceeding the current computer
memory capabilities. It therefore rules out direct methods to solve the direct problem. It
makes the resolution of optimal control problems for which gradient type methods need to
solve a sequence of such direct equation and similar adjoint equations even harder.

Integral methods [13] [37] [30] or fictitious domain methods [1] [7] do not apply to het-
erogeneous media. Iterative methods such as preconditioned GMRES [36] or bi-conjugate
gradient [12] have hieratic numerical convergence and there is actually no theoretical proof
of convergence. A domain decomposition for non-symmetric and indefinite problems is also
discussed in [9] [10]. For very high frequency, asymptotic methods is an efficient solution
[8] but still of delicate use. There is nevertheless a need for the resolution of the Helmholtz
equation under their range of validity.

The present domain decomposition method is a general and efficient solution. It moreover
extends to the numerical resolution of optimal control problems for systems governed by the
Helmholtz equation. Solving such a problem classically require to iterate the resolution of
direct and adjoint Helmholtz problems in order to compute descent directions for a gradient-
type method.

The idea is to split the domain into smaller subdomains and solve a sequence of similar
subproblems on these subdomains. The boundary conditions are adjusted iteratively by
ad-hoc transmission conditions between adjacent subdomains. The number and size of
subdomains can now be chosen so as to enable direct methods to solve the subproblems.
In the case of optimal control, we decompose the coupled system made of the direct and
adjoint Helmholtz equation and the optimality condition which variationally express that
the control is optimal. This method actually solves at the same time the equations and the
optimization problem whereas classical methods require to iterate the resolution of direct
and adjoint problems in order to compute descent directions for a gradient-type method.

The method is easily implemented and naturally adapted to parallel computers, which
use is a major trend in modern scientific computing.

The aim of this paper is to give in a unified framework a formal presentation of the
algorithms and the energy estimates that lead to the proofs of convergence. Comprehensive
mathematical studies can be found in [17] [16] [15] [3].

We focus on these energy estimates since:

i) These estimates are not standard in the context of elliptic coercive problems.

ii) They help to understand why the algorithms converge.

iii) Slight modifications of this technique can be used in various cases of boundary con-
ditions and equations.
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4 Jean-David Benamou , Bruno Després

We will use a continuous formulation of the equations throughout the paper. The domain
decomposition method can also be applied to the discretized equations with corresponding
energy estimates and convergence proofs (see references in section 6).

We present in section 2 the domain decomposition method for the resolution of the
Helmholtz equation. A proof of convergence is given based on energy estimates. Section
3 deals with the optimal control of systems governed by such equations. Different ’cou-
pled’ transmission conditions are introduced. Convergence is again obtained using energy
estimates but the arguments differ from section 2. We present in section 4 two variants of
this algorithm. One is based on a relaxation of the transmission condition, the other uses
the optimal control transmission conditions to solve the direct problem. Section 5 discuss
the application of the domain decomposition and its variants presented in section 4 to the
inhomogeneous case and various boundary condition. A test case is solved numerically in
section 6 where we briefly discuss numerical issues.

2 DDM for the Helmholtz problem

2.1 The Helmholtz equation and the truncated domain

Let Q be a sufficiently smooth bounded open set in 2 or 3 containing an obstacle. The
boundary T' = 0 is divided into an interior boundary T';,: (the boundary of the obstacle)
and an exterior boundary I'cy (see fig 1 for example).

Figure 1: geometry of the diffraction problem: the resonator obstacle

INRIA



DDM for Helmholtz and related Optimal Control Problems

Ot

The out-going normal is denoted by v. In a scattering problem the source term uy,.,
called the incident wave (usually a plane wave), illuminates the object located inside T'jye.
The scattered wave is the complex solution of :

CV@EVu) —w?pu=f i Q
a%u = _8%“2'716 on Fint (1)
a%u + W ﬁu =0 on Fe:cta

where w is the frequency of the harmonic oscillations. The coefficients g and p are strictly
positive bounded, possibly discontinuous, real functions characterizing the non dispersive
medium. Their physical interpretation vary according the modeled physical situation [37].
The source term f is given and arise from these inhomogeneities.

The boundary condition on I'.;; is an absorbing boundary condition, of the first order
(following [2]). It approximates the outgoing character of the scattered wave on the truncated
domain. In the exact model, the solution is defined in all space and satisfies the Sommerfeld
radiation condition (expressed in polar coordinates, r is the radius):

1
%u—}—iw\/gu:O(r—z) when r goes to 4+ oo. (2)

This approximate boundary condition is introduced to bound the domain for actual
computations. It is important to notice that the first order boundary condition on I'c;:
plays a fundamental role in the well posedness (i.e. existence and uniqueness of a solution)
of (1) (see [24] [17]).

The Neumann boundary condition imposed on I';,; simulates the presence of a "hard’
object. If one ever wants to study the scattering by a ’soft’ object, one has to use a Dirichlet
boundary condition u = —u;,.. Impedance boundary conditions :

8_1/u +iwzu = _3_1/umc + 1wz Uipe (3)
where z is a complex number are also possible. Re(z) > 0 is a necessary condition to obtain
well posedness. This is a compatibility condition with the first order absorbing boundary
condition. Impedance boundary condition can be derived from the Leontovitch boundary
condition [8] for electromagnetic waves.

Higher order boundary conditions for Tey: exist [2] [23], which lead to better approxi-
mations of the transparency nature of the exterior boundary. For example a second order
boundary condition is given by :

0 . 1
a—yu + Z(.d('u + 2('0—2A tangential u) = 0 (4)

One may also want to use non-local boundary conditions on ['¢;;. For waveguide com-
putations, for example, an exact outgoing boundary condition can be derived at the exit of
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6 Jean-David Benamou , Bruno Després

the waveguide by mean of a modal decomposition. The boundary condition now takes the
form

9
-u+T(u) =0 (5)

where T is an integral operator which involves sine or cosine transforms on I'.;; which
represents here the exit of the wave guide [32].

Finally let us mention the recent Perfectly Matched Layer technique [6] which consists in
adding an absorbing layers around the computational domain. These PML are remarkable
because they generate (for the continuous equations) no artificial reflections at the interface
between the domain and the layers. Their numerical discretization and implementation for
the Helmholtz equation have been studied with good results in [6] [34]. We briefly describe
these PML in a simplified situation. We consider the homogeneous (i.e. p=p =1, f =0)
case in 2. Let (z,y) denote the space coordinates. Suppose we want to solve the problem in
the half space z < 0. We extend the problem to the union of the half plane and an absorbing
layer defined as a strip 0 < # < §. We solve in this added layer the modified equation :

— 82, u — dBy(dOyu) — w?u =0 (6)
1w

w+o
sign of o determines the in-going/out-going character of the scattered wave.

where d = and o is a real parameter which is responsible for the absorption. The

2.2 The Domain Decomposition Method

We simplify the description of the method by restraining ourselves to the homogeneous case
(i.e. p=p =1, f =0). The extension to the heterogeneous case is discussed in section 4.2.
The equation is now

—Au—wlu=0 in Q
au——au- on [
B_ — B; mnc nt (7)

I +iwu=0 on [y,

2.2.1 Transmission conditions

Let us consider a trivial case where € is split into 2 sub-domains £, and €25 such that the
frontier of Q5 has an empty intersection with 9Q (see fig 2).

We denote by u; and ug the restrictions of u (solution of (7)) in respectively €21 and Q.
uy and uy satisfy the following interface conditions on 0Q; N 0L :

ui = uy (8)

0 0
a—yll,L1——a—V2U2 (9)

where v; 1s the exterior normal to €;. If aiyzm is given, u; satisfy the equation :

2

—Auy —w?u; = 0, with the boundary conditions (9) above.

INRIA
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Figure 2: simple decomposition

It is well known however that this problem may be ill-posed due to the existence of
eigenvalues of the Laplace operator [33]. We propose instead to combine linearly equations
(8) and (9) to get the following equivalent boundary conditions :

— Uy + WUy = ——uy + twuy (10)

Jvs a1

and

6_1/1u1 + dwu; = —8—1/2'112 + fwus. (11)
The sub-problem on Q; together with condition (11) is now well posed. This sub-problem is
of the same type as the global problem which is well-posed thanks to the absorbing boundary
condition (see above). These mixed (or 'Robin’) boundary conditions play an important role
in the definition of our domain decomposition method.

2.2.2 The basic algorithm

We describe the domain decomposition algorithm. The idea is to adjust iteratively the
boundary conditions at the interfaces between subdomains to obtain the transmission con-
ditions of the type (10) (11).

We introduce some notations. Let us split Q into a finite number of non-overlapping
sub-domains Q, 1 < k < K, with sufficiently smooth boundaries. These sub-domains have
interfaces denoted by Xp; = X, = 0Q,N0Q;. They may also have a part of their boundaries
impinging on I'. So we write Ty cot = Qk NTege and Ty jne = 0Qk Ny (see figure 3). The
out-going normal for Q is v.

RR n"2791



8 Jean-David Benamou , Bruno Després

Qk Xt
int
j.k T ext
Q]

Figure 3: A decomposition of the domain

We now define the following iterative procedure using Robin transmission conditions (the
superscript denotes the rank of the iterative procedure)
Initialize u) for all k ,then, iterate for n > 0 :

—Auz+1 — w2uz+1 =0 n Qp

Ia/k uZ‘H + iwuZH = —a%u? + dwuf on Xg;

Ia/k uZ'H + iwuZ"’l =0 on Ty crt (12)
aaTkuZ+l = muinc on Fk,int-

The boundary condition on I'y, ;,; for the subproblems is determined according the boundary
condition on T, of the global problem (7) (i.e. uZ'H = Ujne on 'y i, for a soft obstacle
and so forth ...). When I'y jn: = (0 or Ty eot = (,i.e. Qf is an ’interior’ subdomain, the corre-
sponding boundary condition is simply ignored. This algorithm is an Helmholtz adaptation
of the well known Schwarz algorithm for elliptic problems described in [28]. Thanks to the
Robin transmission conditions, the sub-problems are well posed. Notice that, at each step
of the iterative procedure, the resolution of each subproblem is explicit and independent of
the other subproblems.

2.2.3 Convergence

We are able to prove the convergence of the procedure (12) under various hypothesis on
the regularity of the solution [17]. We do not want to go inside the mathematical details
of the proof. We instead assume enough regularity on the global solution of (7) and of the
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initialization (ul) of the iterative procedure to be able to define a ’'pseudo-energy’ linked
with the algorithm. Let us define the error

euy = up — u.

It satisfies equations (12) with u;,. = 0. The ”pseudo-energy” at iteration n has the form
(].] is the complex modulus):

Z/E |—euk|2+w2 jeup ) do (13)

k#£j

We call that quantity a ’pseudo-energy’ because it is not a conventional energy. However,
if £ = 0, then both eu} and %euz are equal to 0 on Xj;. This implies that (see [13])
eup = 0in Q.

The domain decomposition algorithm turns out to decrease this ’pseudo-energy’. We
have:

Proposition 1 The "pseudo-energy” satisfies

Ertl — pn 2w2 upt? + Jeu | do 14
k

Tk ext

The proof comes from the following computations. First we see that

2
Ertl = Z/ ‘a—eu”H + iweuz+1| do—
k57 Pki (15)
2(.022 |euk+1| do.

Ok, ext

Indeed, using the equation on each subdomain and integrating by part against the conjugate

of iweuZ“, we have :

9 -
e < euZszeukHdU) (16)
EIer® al/k
= e (—iw(/ |Veul T2 — w?|eu) T2 )dm) =0
Qp
Then, using the boundary conditions on Ty jn¢, [k ezt, We recombine in (14) the integral on

the the boundary of each subdomain to express the missing cross products in (15).
Using the transmission conditions we get :

pntl — Z/ ‘—B—euk + tweup
ukj

2w? euy n+1)? do.
| k
k YOk ext

da'—

(17)
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10 Jean-David Benamou , Bruno Després

We finally use the analog of (16) at step n to obtain (14).

We deduce from proposition 1 that :
i) (E™) is a bounded sequence.
i) > ka em|6‘uZ|2dU goes to 0 as the generic term of a convergent serie.

This is enough to prove the convergence of the domain decomposition method. We
establish that the error is null in the subdomain bordering I';; and show the same property
for the interior subdomain by an iterative progression.

The convergence theorem is (see [17]) :

Theorem 1 For all k, we have
/ |Vu — Vul? + |ul — u|? dz goes to 0 with n.
Qp

We want here to point out the importance of the first order absorbing condition in the
convergence process. It is used in the proof to obtain the quantity ), ka 1|euZ|2 do in

the right hand side of (14), which decreases the pseudo-energy of the error.

An impedance boundary condition on I';,¢ (3) will turn this term into —ﬂ%e(z)frk - leur|?do.
Hence the importance of the sign of z stressed in section 2.1. )

An other choice of boundary condition on I'¢;; such as a second order absorbing boundary
condition (4) or a non-local operator T as for wave guides (5) does not allow to prove
convergence of the algorithm. This point is discussed in section 5.2.

3 DDM for the optimal control

3.1 The optimal control problem

We consider the problem of the optimal control of a system governed by the Helmholtz
problem (7) of section 3.
The boundary T',; of the scattering obstacle is now split in two parts (see figure 4).
One part on which we have the previous scattering boundary condition and still denoted
Tint. A second part called T'epr (between the dots on figure 4) on which we add a control
variable v, complex valued function, in the boundary condition :

0 0
('3_1/u = _(‘3—1/umc + v on Ley (18)
The solution u(v) of the scattering problem (7) (18) now depends on the control v which
models artificial emission of surface currents for electro-magnetic waves or forced vibration
for acoustic waves.
We want to solve the optimization problem:

5%%1 J(u(v),v) (19)

INRIA
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Figure 4: New decomposition of the boundary of the scatterer

where U is a closed convex set of admissible controls and J a given cost functional.
The simplest example of such a cost function is given by

J(u,v) = {/ L de + 5/ v|? do} (20)
a2 2 Jre,
a is a strict positive penalization parameter. The first part of the above functional is a
norm of the scattered field. We try to make the scatterer invisible to the probing incident
plane wave. The penalization part takes into account the norm of the control. Adjusting
the penalization parameter a, we can make a compromise between the minimization of the
energy of the scattered field and the cost of this minimization. As we only control a part of
the boundary of the scattering object and because of the penalization term, the solution is
not trivially v = —u;pe.

Thanks to the strict convexity of the functional, the optimization problem has a unique
solution. It is characterized by the following adjoint problem :

—Ap—wlp=u in Q
%p =0 on Fint U Fctr (21)
5P~ wp =0 on [epe
and optimality condition :
/ Re((p + av) (w—v))do >0, Yw e T, (22)
Letr

which provide a variational expression of the gradient of the functional. For more general
formulations of optimal control problems see [27].

RR n"2791



12 Jean-David Benamou , Bruno Després

3.2 The Domain Decomposition Method

We present in this section the application of the domain decomposition algorithm to the
resolution of the coupled system (7) (18) (21) (22).

3.2.1 The iterative algorithm

The domain 2 is decomposed as in section 2.2. We keep the same notations and add
Fk,ctr = an N Fctr-

We define a family (Ux) of closed convex sets of admissible local controls on each I'y c¢r
satisfying compatibility conditions with U :

Yv e U, vlr,., €Ur and

Yup € U, v, such that v|p, , = v Yk, belongsto U. (23)

These conditions are satisfied by the usual local constraints on the control variable. A typical
example is :

U={v, &(x) <v(x) <& (x) forae. €Ty} and

Ur = {wk, &o(z) <wvp(x) <& (z) for ae. @ € Th v}

£0a£1 € L (Fctr)

Conversely, global or state constraints do not a priori satisfy (23).
We now describe the method, as in section 2.2,
Initialize u), py for all k, then iterate for n > 0 :

—AuZ'H — w2uz+1 =0 in Qp
ag—kuzﬂ + iwuZH =0 on 'k ert
0_yn+t = 0 4 on [k int (24)
6? k 5k inc ,in
ay_ku;H_l = Uk Ujne + 'U;H_l on Fk,ctr
—aApIZ+1 — w‘?pZH = uZH in Qg
mpzﬂ — ipr+1 =0 on Tk ot (25)
%kakH-l =0 on Fk,int U Fk,ctr
/F Re((ppt + avp ) (we — v 11))do > 0, Yy € Uy. (26)
k,ctr

These subproblems are simply the restriction of our original problem to the subdomains.
The unknowns are uZ‘H , pZH and a local control variable 'UZH for the subdomains bordering
the control boundary, i.e. such that 'y ¢ # .

We need to specify the transmission conditions on the interfaces ¥ ; between subdomains
in order to ensure that the sequence of local solutions of these subproblems converges to the

solution of the global problem.

INRIA
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3.2.2 The transmission conditions

For the Helmholtz equation we used transmissions conditions in the form of Robin boundary
conditions :
9 b 9 . 4 iou®
— iwu = ——u” + iwu
Ovg k ov; 7 7

If we try to apply the same transmission conditions to the direct and adjoint equation which
are both Helmholtz equations, i.e. :

Son+l n+1 __
Uy

a n+41

n+1l _
aljkpk

3]
+wp, T = —a—yjp;} + wpy
we cannot prove the convergence of the algorithm using the energy technique of section
2.3. The reason beeing the coupling between the direct, adjoint and control variable in the
equations.

This same coupling suggested the introduction of coupled transmission conditions in [3]
for the optimal control of systems governed by scalar elliptic equations. We show here that
this is also a suitable choice in the case of systems governed by the Helmholtz equation. The
coupled transmission conditions take the form:

6 n+1 n+l __ 6 n n
alf_kuk+ -|-)\pk+ —BTjuj —1—)\pj on Yy;,

sk

(27)

_%p? — )\u? on ogj,
with A a real positive parameter.

3.2.3 Decomposition in local optimal control problems

The algorithm (24) (25) (27) (26) is now well defined, i.e. it can be shown that the subprob-
lems are well posed. They can actually be reinterpreted as local optimal control problems.

Let us define the local functional
Q Tk ctr

k he (28)
[ U0 + 17y

J

where 4y, pg are functions of ¥ and solution of the coupled subproblems (24) (25) (27)

with ug, Pk, Ur instead of uZH,pZH,vZH. This functional is of course only defined for

subdomains Qp such that I'y c;r # (). The other subproblems simply consist of two coupled
Helmholtz equation and have no control variable.

The optimality condition for the minimization of the functional Jg can be written:

Je (). (w — ) > 0, Ywg € Uy, (29)

RR n"2791



14 Jean-David Benamou , Bruno Després

where vy is the optimal control.

Let us define dvy = wy — U5. We denote by (dug, dpg), functions of duy, the solutions of
the linear equations (24) (25) (27) with dug, dpk, vk instead of uZH,pZH, 'UZ+1 and with
every source term set to 0.

With these notations (29) may be rewritten as

%e(ﬂk,M) dx + a/ ?}Ee(ﬁk,m) do+
Ty ctr
5 5 _ (30)
Z)\/ %e(ay—kﬁk, ay—kfﬁ?k) + Re(pr, opr)do > 0, Vv, € Uy — .
PR

Qg

On the other hand, using the Green formula applied to pZ‘H and dvy, and the above equations
we obtain:

[owprmmde = [ @t S
Tk ctr

Qp
MG G5 + 0 S
PR

(31)

Taking the real part of the above quantity, we see that (30) (31) reduce to
/ %6(}% + o v, wg — 'ﬁk)d(r >0 Ywg € Ug.
Tk ctr

We recognize (26). Therefore, g, pg, Uk solve the subproblem (24) (25) (27) (26). This
subproblem is equivalent to the minimization of Ji given above.

This local cost function is composed of two terms. One term is simply the restriction to
the considered subdomain of the original global cost function. The other term arise because
of the coupling introduced in the transmission conditions (27). It aims at minimizing the
Neumann and Dirichlet boundary values of pZ'H. This makes sense as we intend pZ'H to
converge to p on Qf and therefore to the smallest possible value as p provide an expression
of the gradient of [, |u(v)|? dz, the scattering term of our cost function J.

This interpretation of is only valid for the particular form of the cost function (20) and
for the subdomains on which a control is applied. In a boundary and observation control
case, for example the one described in section 3.2.5 where we use the functional (38). The
observation u(v) will act on the subdomains bordering I'.t while the control will be split
on the subdomains satisfying 'y o # (). The geometrical domain decomposition may be
such that these two class of subdomains have an empty intersection in which case the first
term of the functional (28) disappear. It is natural to believe that such a decomposition will
have some influence on the rate of convergence.

We finally note that whatever the problem, the optimization process will be restricted
to the subdomains with non empty intersection with the support of the control variable.
The number of degrees of freedom on which an actual optimization will be performed can
therefore be greatly reduced compared to the global optimal control problem.

INRIA
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3.2.4 The convergence result

Let (u,p,v) denotes the solution of the global optimal control problem (7) (18) (21) (22).
We define the errors of our approximate sequence with the exact solution by :

n _ ,n p n __.n n _ .n
€U = U — U, €Pp =P — P, €V =V — V.

These errors satisfy the linear equations (24) (25) (27) (26) with u;pe = 0.
Using (22), (26) and the compatibility conditions (23), we obtain the estimate (just
substract) :

—/ |€UZ+1|2dO'Z/ Re (epZHevZH)dU (32)
Fk ctr Fk ctr

which is to be used in the proof of convergence.
As in section 2.2.3, we define a pseudo-energy :

m=3 / B R RS AR N CD)

ukj

This is a natural extension of (14).
The domain decomposition algorithm decreases this 'pseudo-energy’. Indeed we have:

Proposition 2 The "pseudo-energy” satisfies

B < BT -2 leupt|2de +/ vt Pdo
k Qk Fk,ctr (34)

—1—/ |euZ|2dr—|—/ lev|?do).
Qp Tk ctr

Let us proceed to the proof of this proposition. Using the equation on the errors we obtain

§Re< - agk epk+1)\eu"+1 32k euk+1/\6pz+1da)
k

= RelA A VeppT'Veuptt — Veup ' weppt! 4 w? (epZ‘HeuZ+1 euZHepkde)
k
+)\/ leup t1 |2 dz
Qp
= leup 2 dz.
Qp
(35)
Note that the terms which vanish on the right hand side of this equality precisely do because
u and p solve adjoint equations. Using the boundary conditions on I'y ;5 and 'y o, and

[k int, we replace in the left hand side of (35). The boundary terms on I';,; and I'.y: again

RR n"2791



16 Jean-David Benamou , Bruno Després

vanish because of the adjointness of the the boundary conditions. This is a general feature
of the algorithm which will prove useful in different situations (as we will see in section 5.2).

d ontiy_ i _ 0 . n+ly_ ntl
Re <Zj/2k.3_€pk Aeuy, By—keuk Aepy, dO’)

)

= Re )\/ (epZ+1euZ+1 + eu”"'lepk'"lda)
Tk ext

(36)
—1—)\/ leup ™ |2dz + Re )\/ epZ+1euZ+1dU
Qk Fk,ctr

= )\/ leup ) 2de — Re /\/ eppTlevpitdo | .
Qk Fk,ctr

We can now rewrite the pseudo-energy

Entl = Zk#/ |a€ .w}chLl )\ep"+1|2+| 0 epZ+1+)\epZ+1|2da+
Sy Uk

Yo | Re )\/ epitlevitldo —)\/ leuptt|?dz | .
Tk ctr Qe

The transmission conditions (27) and a equation at step n similar to (36) give

Ertl = Ery 57 (Re ( / epZHeuZ“'ldo-) —)\/ leup tt|2dz+
r Qp

k,ctr

Te /\/ epfevido | — X [ |eu}t|*dx)
Tk ctr Qp

It is time to use the optimality conditions , that is, the estimate (32). Substituting into the
above expression, we finally prove (34). It can be straightforwardly deduced that (34):

i) (E™) is a bounded sequence.
i) > fﬂk leu? |*da goes to 0 as the generic term of a convergent serie.

i) Y, ka,C:Jevada goes to 0 as the generic term of a convergent serie.

The convergence theorem now is

Theorem 2 For all k, the following quantities

/ |Vu — Vul|® + |uf — ul*dz,
Qp

IVpi = Vpl* + |p} — pl* de,
1973

|vf — v|? do,
Tk ctr
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go to 0 with n.

The proof, relying on i), i7), ¢4¢) is similar to the proof of theorem 1 detailed in [17] (see also

[31)-

The interested (and courageous) reader will actually see by making the computations
himself that the classical Robin boundary condition of section 2 cannot yield the same
convergence result (because of the coupling, see remark in section 3.2.2).

Inequation (34) indicates a different behavior of the algorithm for the optimal control
problem compared to (14) for the plain Helmholtz problem. The decrease of the pseudo-
energy does not depend anymore on the boundary condition or even on differential operator
used in the direct problem but only on the second hand term of the adjoint equation. This
will prove useful in section 5.2 where we discuss different problems and boundary conditions.

3.2.5 Minimization of the Far field

The above method apply to a wide class of linear optimal control problems (see [27] for a
review of such problems).

We focus in this section to the case of a non-local cost function involving the expression
of the far field (used to define the radar cross section) which turns out to be more interesting
from the application point of view. We take

Ju). o) = [ F1CE.0F o + 5 [ o doy (57)

where, in 2-D, A is a given subset of [0, 7] and

_—Z/F (%U(M)+z’w(y.cf)u(M))e—inMd‘da(M).

1
2w? cont

C(u,8) =

C is the far field in the direction . [.,,¢ is a contour surface containing the scattering
obstacle (see figure 5), M is a point running on T¢ent, O is a fixed point inside this contour
and d = (cos(f), sin(f)). u is given by equations (7) (18).

If we choose I'cont = Ieze and if this absorbing boundary is far enough to the obstacle
with respect to the wave length, an approximation of the cost function is simply

@) do + 5 [ ol do) (39

ctr

N | —

Jute), o) = [

Pext
The adjoint equation, analog of (21), is

—Ap —wp = in Q
a3,P = 0 on Fint U Fctr

50— wp = u on .t
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The optimality condition (22) is unchanged and the domain decomposition and proof of
convergence easily adapted.

If we decide to keep the exact formulation of the far field as given in (37), the adjoint
equation is now

—Ap —w?p = C*(C(u)) in Q
aa_p =0 on Fint ) Fctr
aé—;p —wp =0 on [egpt

where C* is the adjoint operator of C' and the optimality condition (22) is still unchanged.
A mathematical study of existence and uniqueness of solutions for such a problem can be
found in [22].

We now discuss the application of our algorithm to this problem. We modify accordingly
our algorithm and (25) becomes

—Ap T - Wit = O (Culgh)) in (39)

Where for all &, u?otllt = uZ'H on 'y cone with the evident notation I'y cone = 0Qk N Leont
(see figure 5).

Figure 5: decomposition of the contour

Convergence of the algorithm with the same coupled transmissions condition (27) can
be proved using the same kind of arguments.

Nevertheless due to the non local character of the functional C' we see that the resolution
of the subproblems set in subdomains having non empty intersection with I';,,: is non longer
explicit but are coupled through the right hand side of equation (39). A simple solution to

INRIA



DDM for Helmholtz and related Optimal Control Problems 19

this problem is of course to decompose the domain £ such that I'c,,: be fully contained in
only one subdomain.

One could also try to relax the coupling term by replacing it by C*(C(u?,,,,
available from the previous iteration. In this case, we cannot prove convergence.

)) which is

4 Variants of the algorithm

We present two variants of the algorithm for the direct scattering problem. One is a simple
modification of the transmission condition, the other uses an optimal control’ like algorithm.
They will be used to solve more general problem in section 5.2.

4.1 Under-relaxation

A slight modification of the basic algorithm generates a new algorithm with which has a
much better rate of convergence in applications [18]. We call it the under-relaxed algo-
rithm because of the introduction of a real parameter r €]0.,0.5] which may be viewed as a
relaxation parameter.
For the direct problem it simply consists in the following modification of the transmission
condition in (12) :
iu"+1 +iwuptt = (1 - r)(—iun +iwul) + r(iu" + twul) on X (40)
6l/k k k &/j 7 J al/k k k ki
We find (after some computations) that the new law for the decrease of the ”pseudo-
energy” (13) is now given by

En+1 — fn —2(.02 (E/ |6UZ+1|2 do — (1 — 27’)/ |eu’Z|2 dU)
k Fk,ezzt Fk,ezt

(41)
—2r(1 — r) Z/Z |62—k6uz + a%eugﬁp +w2|euz - 6u§?|2 do
kj v Eki

In addition to the usual norm of the error on the external boundaries T'y cq¢ (first line of
(41)), the ”pseudo-energy” is decreased by a new factor which depends on the relaxation
parameter (second line). This new quantity turns out to be a norm of the error ([17]).
Indeed, if this term is null, the error satisfies an Helmholtz equation on the whole domain
with homogeneous boundary condition. This implies that the error is zero everywhere.

The same modification of the transmission condition and remark on the behavior of the
under-relaxed algorithm also hold for the optimal control case.
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4.2 Using the optimal control algorithm to solve the plain direct
problem

In this section we explain how the ’Optimal Control’ algorithm can be used to derive to
solve the plain direct Helmholtz problem.

We first remark that we can add a fictive adjoint problem to the direct scattering problem.
Instead of solving simply (7) we also consider the problem

_Ap —w'p=u in Q
a-p = 0 on Fint U Fctr (42)
5P~ wp =0 on Leypt

This ’adjoint’ problem is well posed and depends on u. It is similar to the optimal control
problem of section 4 except for the absence of control variable v and optimality condition
(22).

We now apply the domain decomposition (24) (25) (27) of section 4 (where we ’forget’
the control variable ’UZ+1 and the optimality condition (26)) to solve the coupled problem

(7) (42).

The proof of convergence is similar to and actually simpler than the proof of section
3.2.4 ( there are no optimality conditions (22), (26) and hence no estimate (32). The law of
decrease for the pseudo-energy is still given by (33) :

Ertl = g )\Z(/ leu + 1|2 + |eul |*dz).
koSS

5 Solving other problems

5.1 The inhomogeneous case

We now come back to the inhomogeneous problem (1) with non-constant coefficients p and
p. These coefficients are supposed to be piecewise C*, so that the problem is well posed.
We modify the domain decomposition algorithm as follows

—V (VT —w?pult = 0 in Qp

bk ag—kuzﬂ + iﬁkw'uZH = —pp a%uy + ifjwuf on Xg;

n . n 43
/Lgala/_kuk*-l +alﬁkwuk+1 =0 on Fk,ext ( )
ay—k’uz+1 = ay—kumc on Fk,int~

pr denote the value of p in Q. We necessarily have pp = p; on Xg;. The (Bx)s are real
positive coefficients to be determined. They must also satisfy 8, = £;.
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A study of the dimensionality of 3 indicates that  has to be similar to \/up. A possible
choice for B (and §;) on Xy; is

1
Bk = 5(\/ukpk + VEiP)

the arithmetic mean value of . /ugpg on the interface.
The pseudo-energy has to be modified accordingly

Bn = Zﬁ (ﬁ%‘“k%euz
k#j

ju ik
119 n
Zk:/ark emt(ﬁk ‘8yk6Uk

The proof of convergence now follows the same steps as in section 2.

2
+ Brw? |euZ|2)d0'—|—

2 2
+ Brw? |eup|”)do.

The optimal control case generalizes likewise to to inhomogeneous case.

5.2 Other boundary conditions

We already pointed out the importance of the first order absorbing condition in the con-
vergence process (section 2.2.3). This section explains how to deal with different boundary
conditions.

5.2.1 Waveguide transparent condition

We present here a wave guide problem which involves a non local transparent boundary
condition. For more details and comments on this formulation and more general cases see
[32]. The wave guide is made of an infinite 2-D stripe Q defined by 0 < y < L in a space
described with cartesian coordinate (z,y) (see figure 6)

If we consider the homogeneous Helmholtz equation (7) inside € and Neumann boundary
conditions ;—yu =0on y =0, L, the solution u can be decomposed on an infinite number of
modes. More precisely we write

u(z,y) = Z &l(r)cas(%—y)

1=0,00

The lieth mode @ satisfies the 1-D Helmholtz equation (we normalize L to 1 for simplicity)
32
— gzl (Pr?—w) iy =0 (45)

for which an exact analytic solution can be derived.
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ext

Figure 6: A wave guide.

If we decide to close the exit of the wave guide (on the side > 0) by a transparent
boundary T'ey: (see figure 6), we can derive an exact transparent boundary condition mode
by mode. We have two possibilities :

First, if I < w, the mode is propagative. We know the exact form of the outgoing
solution of (45). It satisfies

i‘&l +ivVw2 — P24, =0 on Degs. (46)

Oz

Secondly, if Im > w, the mode is evanescent and the boundary condition is
g . .
3_ul + V272 — w2 =0 on Lege. (47)
=

An analogous transparent boundary condition can be defined on the z < 0 side. If we
decide to decompose the waveguide in successive slices in z (figure 7)
we can try to apply the domain decomposition method (section 2) on this example. The
modal decomposition of the transmission condition (see (12)) is
a .
9z Lk
We immediately see on the proof of convergence that the boundary condition (46) for prop-
agative modes will pose no problem as this boundary condition has the form of a first order
absorbing boundary condition. Indeed the corresponding pseudo-energy for the lieth mode
satisfy the decrease law

fndl _ nt1 -
EpTY = B — 2w 2/ 677;: |2 + |e;fk|2 do.
k

n+1 s oan+l ~n N ) .
+ 1w Uy = a-up +iwug; on Yij-

Oz

Tk ext
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r k, ext

Figure 7: Decomposition of the wave guide.

Conversely, for the evanescent modes and because of the real coefficient v/1272 — w? in (47),
the pseudo energy is stationary :
.
Eptt = Ep.
The plain domain decomposition of section 2 does not converge for evanescent modes.
The variants of the algorithm described in previous section can remedy to this situation.

If we use an under-relaxed transmission condition (section 4.1) i.e.

8 ~n+l

.o J . .o ) .
FPA 'y +iw u;f;:l =(1- r)(——uﬁj + iw u;f]) + r(—uﬁk + iw u;fk),

31/]' 3I/k
the decrease law for the pseudo-energy of the evanescent mode E'f is a modification of (41)

. o 0 . d ., o
Ef*t = BP = 2r(1 - 7’)(2/2 |%el,k + Wﬁld’lz +wlély — érl* do)
ko O Pk !

There are no terms supported by Teq: because of the evanescent boundary condition (47)
but the additional terms induced by the under-relaxation guarantee convergence.

We can also use the ’optimal control’” variant of section 4.2. The fictive adjoint subprob-
lem associated to (45) (47) is (the problem is actually auto adjoint)

0 ~n ~n ~n

— wp,y;:l + (1271'2 — wQ)pl;l = ulyljl on Qp, (48)
4 an+1 2,9 2 n+l
8_1‘]9[ i HVIET? —w Dy = 0 on Ieypt. (49)
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We then add the modal decomposition of the coupled transmission conditions (27) :

Uk L = =g + A on S,

0 ~n+41 ~n+l 0 -n nn .
a_ykplyk —)\uhk —_a_yjpl,j_)‘“l,j on og;.

This procedure converges as outlined in section 4.2 and the decrease of the pseudo-energy

defined as

EA'I”’H — Z/ |a%eﬁu;f:1|2+)\2|eﬁu;f:1|2 + ai@?:lp‘i')ﬂ@?:lﬁdm
kg Bha Ok vk
is given by (34).
The introduction of a fictive adjoint problem allows to deal with the embarrassing terms
on the boundary (as well as the non coercive terms in the Helmholtz equation) and add a
coercive term on the right hand side of (48) which will guarantee the decrease of the pseudo
energy and hence the convergence.

The arguments developed in the section also hold for other choice of non local boundary
condition on ey such as a second order absorbing boundary condition (4).

5.2.2 PML absorbing layers

In the case of PML (6) the absorbing layer replaces in some sense the absorbing boundary
conditions. Let us note that, unlike for classical absorbing boundary conditions, it seems no
trivial to prove existence of a solution to the system with PML layers. So in this section we
simply postulate the existence of the solution with a PML layer.

We now go a bit faster and simply examine the behavior the algorithm on subdomains
consisting of infinite vertical stripes. This will formally be enough to point out convergence
failures and possible cures.

The subdomains are infinite stripes in the z direction. The interfaces Y ; are now lines
of equations z = cst.. We assume that d is constant on the subdomains contained in the
absorbing layer. For such a subdomain the pseudo energy has to be modified (as in the
inhomogeneous case) and uses terms of the form

/Ekj(

The key point of the demonstration (section 2.2.3) with the simple transmission condition
(see (12)) is to evaluate the cross products

fe </ dieuzﬂiweuzﬂdo)
o0, Ok

P 2
d—eu}| +w?|eu}|*)do.

dy
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which expresses the quantity which decreases the pseudo-energy. We integrate by part an
equation of the type (6) for the error and obtain an equivalent of (16) :

Fe </ dieuzﬂzweunﬂdo)
o0, Ok

1
= Re <—iw(/ p 68 uptt|? —|—d| euZ+1|2 |eu”+1|2)dl)

In (16) the right hand side was vanishing. Now d is a complex number and we immediately
see that the real part on these different coefficients are going to be of opposite sign.

It is therefore not possible to prove the convergence of the classical domain decomposi-
tion method. Nor does it seem trivial to use an under-relaxed variant of the algorithm or
more general transmission conditions with an arbitrary complex parameter instead of the
pure imaginary iw. Conversely, the ’optimal control’ algorithm can solve the problem.

As in section 5.2.1 we define a fictive adjoint of equation (6). As d is a complex parameter
we consider

— 02,p — ddy(dd,p) — w’p = u, (50)

then the domain decomposition described in section 4.2 is easily applied to solve (6) (50)
and the proof of convergence gives the same law of decrease for the pseudo-energy.

6 Numerical resolution

6.1 Discrete formulation and Implementation

In the framework of the domain decomposition method, various strategies are possible with
regard to the shape and number of subdomains, discretization and method of resolution of
the subproblems.

It is possible to work on a discrete formulation of the global problem. Mixed hybrid finite
elements (see [21] [31] on this technique) are for instance well suited to our algorithm for it
uses in particular, as degrees of freedom, the fluxes of the normal derivative and the average
values of the trace of the direct and adjoint states on the interfaces which are the natural
unknowns of our transmission conditions. It allows in particular a direct transcription of the
domain decomposition algorithm and the proof of its convergence to the discrete formulation.

A massively parallel strategy has been implemented on a Connection Machine (see [4]
[5]). In this approach each finite element is taken as one subdomain. Thank to the small
number of degrees of freedom in each subdomain, the subproblems can then be solved an-
alytically beforehand. The algorithm then reduces to explicit formulae and transmission of
data between subdomains. We were able to solve an optimal control problem for the 3-D
Helmholtz equation with about 5 10° tetrahedrons in less than 4 hours on a 16k CM200.
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The memory limit of this machine would allow to treat optimal control problems up to
1.5 10° finite elements.

We emphasize that all the material presented in this paper can be generalized to the
Maxwell’s equation in the frequency domain.

We applied these techniques [20] on a parallel CRAY T3D computer to solve the direct
3-D Maxwell’s equations. Without going into the details, we mention that it was possible to
take into account more than 15 10° tetrahedrons in the finite element approximation and to
solve the system in less than 1 hour. The domain decomposition was coarse and a conjugate
gradient algorithm was used for the resolution of the subproblems.

6.2 A numerical experiment

We illustrate this paper by the resolution of the problem described in section 2 for the direct
problem and section 3 for the optimal control problem. We consider the unconstrained case,
i.e. the control v is free to take any value. A plane wave arrives from the right. Top of
figure 8, there is no control, we see the multiple reflection caused by the hard resonator. At
the bottom the optimal control solution generated by our algorithm. Reflections are ’killed’
inside but not outside as the control only acts on the inside boundary of the resonator. Small
oscillations persist inside of the resonator. Two possible explanations for this phenomenon
are : first the edges of the resonator which still scatter the incoming wave, secondly the
penalization term in the cost function which takes into account the energy of the control
and therefore acts as a constraint on it.

7 Conclusion

This method has motivated several studies and extensions.

It was extended to the Maxwell equations in [19] and used for 3-D computation of
electromagnetic scattered fields. Non local transmission operators have been studied in
[35]. A ’Gauss-Seidel’ variant of the transmission condition has been studied in [29] for the
Maxwell equations [20]. The method has inspired more sophisticated numerical algorithm
such as conjugate gradient like iterative algorithm [14] [18] and a new weak formulation of
the Helmholtz equation [11].

The method is easily applied to dispersive media [25] and coercive elliptic equations [17]
[26] [3]

Let us finally mention the existence of a related work in [38].

The extension to optimal control problem described in this paper has been used to
solve 3-D acoustic problems [5]. Its application to electromagnetic active control is under
investigation.

The application of these techniques to the computation of electromagnetic waveguide is
also studied.

INRIA



DDM for Helmholtz and related Optimal Control Problems 27

Scattered field, real part Scattered field, imaginary part

Figure 8: Scattered field, a plane wave arrives from the right.
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