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Un probleme d’optimisation de forme pour ’equation de
la chaleur stationnaire

Résumé : Dans cet article, nous nous intéréssons a ’optimisation de la forme d’un
arc chauffant. Nous modélisons tout d’abord le probleme en faisant intervenir une
mesure de Radon, dont nous allons chercher, en particulier, & optimiser le support.
Nous montrons I'existence d’une solution optimale, d’abord en un sens classique,
puis en un sens généralisé en relaxant le probleme. Nous écrivons aussi les conditions
d’optimalité du premier ordre.

Mots-clé : 'optimisation de la forme, arc chauffant, mesure de Radon, I'existence
d’une solution optimale, les conditions d’optimalité du premier ordre



Domain Optlimization Problem for Stationary Heal Fqualion 3

DOMAIN OPTIMIZATION PROBLEM FOR STATIONARY
HEAT EQUATION

A. HENROT*, W. HORN'
J. SOKOLOWSKI?

1. Introduction

In this paper we will consider a problem related to the following. Given a flat piece
of material — a pane of glass in a window for example — we attach a heating wire to
one surface of this material. This wire is modelled as a continuous curve connecting
to fixed points A and B. We want to investigate which curve would optimize the
temperature distribution on the opposite surface at a given time?

To elaborate the problem we use the following mathematical model:

Let Q be a region in 2-dimensional Euclidean space. Define

Y=Qx(0,d), d>0,

and

QQIQX{O}, \QlIQX{d},

and

I'=0Q x(0,d)

the “vertical” boundary of . Let ug and uq be positive functions on g and €4,
A = (®g,y0) and B = (z1,y1) two distinct points in Qg, and v : [0,1] — Qg a
continuous curve of finite length in . Let U be the solution to the stationary heat
equation

~AU =0,

on X, with boundary values

(?nUlr - O,
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4 Antoine Henrot, Werner Horn, Jan Sokolowskz,

&IU|Q1 =U —u,
and
a”U|Qo =U—wu— fy,

where f, is a positive function concentrated along the curve 7. One could think as
fy to be an approximation of a delta-function at 7. The problem can now be stated
as follows: Given a target function U™ on €4 find v such that

|16, - o[,

becomes minimal in a suitable Banach space X.

The crux of the matter is to find a suitable admissible set for the curves v, as
well as a convenient metric on this set of curves. First of all, it would be tempting
to replace any curve by its parametrization in order to have a Banach structure on
the set of curves. However, it is obvious that this point of view is not convenient,
since a parametrization is not “intrinsic” enough to measure distances of two curves,
as the following example illustrates. Let

and
() =t
72'{ y(t) = 0

Both of these parametrizations give the same curve, but

1
[ 1@ = 220 @t > o,

showing that this integral does not define a metric on the set of curves.
A more classical idea is to work with the Hausdorf metric. For two curves para-
metrized by y1(t), ¢ € [0,1] and 74(t), ¢ € [0,1] this distance is defined by

d(v1,72) = max { max ( min_|y1(t) — 72(5)|) , max ( min_|y1(¢) — 72(5)|) } .

tef0,1] \ s€[0,1] s€[0,1] \ ¢t€[0,1]

This metric has good compactness properties. For example, for any sequence of
compact sets K,, which are included in some large ball, there is a subsequence which
converges in the Hausdorf metric to a compact set K. Unfortunately, for a sequence

INRIA



Domain Optlimization Problem for Stationary Heal Fqualion 5

of curves K,, the K does not have to be a curve, as the following example illustrates.
The curves K,, = {y = sin(nz),z € [0, 7]} converge to the set K = [0, 7] x[-1,1]. It
therefore seems natural that one has to impose some additional constraints on the set
of curves considered. These constraints could be on the length or on the Hausdorff
measure of the curves. The following sections will elaborate on these ideas.

It is well-known (see, for example, Ziemer ) that if v, is a sequence of continuous
curves whose Hausdorfl measure is uniformly bounded by a number M, and if v,
converge to 7 in the Hausdorfl metric, then v is also a continuous curve. However, it
is not generally true that the Dirac-measures d,, converge weak* to ¢, (see section
3). But this is exactly the kind of convergence necessary to prove the continuity of
the solution of the problem above with respect to curves.

We are faced with a classical situation in shape optimization: the Hausdorfl
distance has very good compactness properties, but is not strong enough to ensure
that the cost functional is lower semi-continuous.

Finally, we want to point out, that the results of this paper also hold if the
Laplacian is replaced by more general uniform elliptic operators.

2. Existence of a classical solution

We assume that  is a simply connected domain in IR? and let ¥ = Q x (0,d). We
denote Qp = 2 x {0}, 2, = Q@ x {d} and I' = 9Q x (0,d). Therefore

0¥ =QuUQul

Given a curve v C Qg parametrized by s € [0, 1], we assume that A = 7(0) and
B = 7(1) are fixed points in Qq. For the stationary heat equation 7 is the heat
source. Let us consider the following elliptic equation.

—Au = 0 in Q

du
= = O on F
- an
(P1(7)) _g_z = u—1u on
_g_z = u—ug— 0, on g

where ug, u; are given L? functions, and é., is a Dirac mesure supported on the curve

y.
The variational formulation of the stationary heat equation is given as follows.

Find w € H'(X) such that for all functions v € HY(X)

(P2(7)) a(u,v) = L(v)

RR n2788



6 Antoine Henrot, Werner Horn, Jan Sokolowskz,

where

a(u,v) = /Vu-Vvdw—l—/ wvdo + [ uvdo (1)
by 1921 Q0

/ ulvda—l—/ uovda—l—/vd'y (2)
2 Qo vy

In order to have the problem well defined it is sufficient to show that the linear form

67:v|—>/vd7
2l

b~

—
<

SN
Il

is continuous on the space H'(X). We are going to define the set of admissible curves

~ in such a way that the linear form is continuous.
To this end we denote by @ the cube = (0,1) x (0,1), by I C @ the interval

I= [—%,%] x {0}.

Definition 1. A given curve v is called admissible if there exists a one—to—one
mapping F : @ — O, where O denotes an open neighbourhood of 7 in g such that

rQ)=0 F(I) =9 (3)
1w Q) < L I lwree(0) < Lo (4)

Prescribing uniform bounds I = L; = Ly > 0 and assuming that the following
compactness condition is satisfied

(H) Given a sequence Fj, which satifies uniformly the latter bounds, there exists a
subsequence, still denoted by F, such that

11
B0 [F(0) weakly in 22 (=5.5) . 5)

we define an admissible family
Fr, = {7 is admissible [(#) is satisfied, || F|ly1, () < L and HF_1HW1,00(O) <L}
where L > 0 is a given constant.

Remark 1. Without the assumption () on the family F7, we cannot expect that
for any sequence {v,} C Fr, there exists a subsequence, still denoted by {7,} such
that

by, — Oy weak—(*) in the space (H'(X))" .

INRIA
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A counterexample can be constructed using F.(z,y) = {z,y + %sin(nx)}.
Our problem becomes now:

Minimize the cost functional

J(7) = Juy = uall

where u., denotes a solution to the stationary heat equation for any v € Fy, and the
Dirac measure ¢, in the boundary conditions, u4 is a given function, and || - || is a
norm, or a seminorm on the space H'(3) which will be specified later.

Remark 2. We use the above definition of a set of admissible curves Fj,, since
we want to apply an appropriate trace theorem on 7. Such a definition is better
suited for our applications than the simple definition of curves parametrized over an
interval.

Remark 3. We can replace Definition 1 by a more general notion of a Lipschitzian
manifold, where the existence of a global parametrization is not required. We prefer
to work with the global parametrization for the sake of simplicity. The same result
can be obtained for the more general setting of a Lipschitzian manifold, provided
that the uniform bounds are prescribed with the same Lipschitz constant for any
collection of charts. Using a partition of unity the problem can be localized in a
standard way.

Remark 4. Some classes of admissible curves in the plane are introduced by
LI. Daniliuk (Daniliuk, 1975) in the framework of integral equations in non-smooth
domains.

On the other hand, it seems to be possible to use some families of admissible
curves defined by using capacity type constraints, which probably assure the exis-
tence of a solution in a slightly wider class. But this approach is rather complicated
and it is not evident that such families of admissible curves can be of any interest
for the numerical methods. We refer the reader to the monograph (Ziemer, 1989)
for the definition and properties of capacity, and to (Bucur, Zolesio, to appear) for
some results in the case of admissible domains with capacitary constraints for ho-
mogeneous Dirichlet problems. In the present paper we rather use the notion of a
generalized solution to the problem defined in section 3.

Proposition 1. For any admissible curve v € Fr, the linear form

(by,0) = /wvdv

RR n2788



8 Antoine Henrot, Werner Horn, Jan Sokolowskz,

15 continuous with the norm wn the dual space bounded
1641« < CP(7)
where Coy = Cy(L,X) and P(y) = [, dv 1s the length of 7.

Proof.  For an element ¢ € H'(Y) the trace on Qg is also denoted by ¢ and the
trace satisfies ¢ € H%(Qo), we refer to (Adams, 1975) and (Lions, Magenes, 1968)
for a proof. A first important question is, whether or not it is possible to define a
trace on v for any element of the space H2 (). The positive answer is obtained by
applying the theorem of Besov—Uspienskii (Adams, Thm. 7.58):
The injection of the space H%(]RQ) into L?(IR) is continuous.

Let us show that if uis in H%(Qo) the funtion @ = uwo F' defined on @ belongs to

the space H%(Q) Hence, it is sufficient to prove that the following integral is finite

I = //( |x—yéy)|) dzdy (6)
- L,

We denote z; = F(z),y1 = F(y), |DF~!| the determinant of Jacobian DF~!, hence

(y )I2

Since the mapping F is Lipschitz,

LiF~ (z1) = F~ )| = Lale —y| > [F(2) = F(y)] = |21 — 1] (8)
and IDF~Y <C = 2I3 (9)

thus

I<2LL3//| |$1—y1 u)[* dridy < o0

since u € H%(Qo).

The trace operator maps H%(Q) into L?(Qo) by the theorem of Besov and Us-
plensku is defined by means of the mapping F, as a trace operator for the space
Hz (O) into the space L*(7), furthermore,

I#llz2¢y < ClIell 41 o) < Cliell s

H2 (0) Qo)

INRIA
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with C' = C(Ly, Ly), Ly, Ly are the Lipschitz constants of F and F~!. In particular
L =1Ly =Ly forvy e Fp. In view of the continuity of the trace operator Hl(E) —

H%(Qo) it follows that

1ellL2() < Cllellms) (10)
with a constant C' = C'(Ly, Ly, ¥). Therefore

[
/

which completes the proof. [ |

< P(7) (L @Qd’y)% < CP)lellms)

An admissible curve is defined in the parametric form

a(t - 11
{ygt; = Fz(t,og te|-5.3]

where F' = (Fy, Fy) is bi-Lipschitz mapping. For v € Fp, it follows that

[
=
—
“@k

o

1 1 : 2 : 2 3
[z 2 2 [z (0F 0F, ?
P(fy)_/_% 22(1) + y (t)d.t_/_% (8—30 (1o)+ 52 (t,())) dt < V3L
therefore the length of admissible curves in the set Fp, is uniformly bounded, but
the uniform boundedness of the length is a weaker condition for a curve than the
condition to be a member of Fy.
The class Fp, is sufficiently small to obtain an existence result for the problem
under considerations.

Proposition 2. Given a sequence of curves v, wn Fr,, there exists a curve v € Fp,
and a subsequence vy, such that

O, — by weak—(x) in the space (H'(X))'

Tnpg

1.e€.,

(b, 1) = {6y, 0) for all o € H'(X)

Proof. Given v, = F,,(Qo) € Fr, we have

|Eullwio <L and  ||E7 Y |wre <L

RR n2788



10 Antoine Henrot, Werner Horn, Jan Sokolowskz,

By the theorem of Ascoli there exists a function £ which is continuous over ) such
that for a subsequence F7,,

F,,(z) — F(z) uniformly over @ .

The functions F,, are uniformly Lipschitz continuous with the constant L, the same
remains valid for F, thus F € WH*(Q) with || F|ly1,. < L. We denote v = F(Qo).
Furthermore, the inequality || £, ||jy1,0 < L implies that

|Fo(@) = Faly) > 1z —3]  Ve,yeQ (11)

hence taking the limit it follows that

[F()~ F) > Tl —3|  VeyeQ (12)

which shows that F is one-to—one. We denote O = F(Q)), thus there exists the
inverse mapping F~! : O — @, F~! being Lipschitz continuous with the constant
L in view of the latter inequality. Therefore v € F..

For the sake of simplicity we denote by 7, the subsequence 7, .

We are going to show that é,, converges to é,. To this end we assume that there
is given a continuous on X function ¢, henceforth

O R A2 CON AT

o=

The sequence F), satisfies uniformly (4), using the assumption (#) it follows that

11
|F/(-,0)] = | F'(-,0)] weakly in L? (—5, 5) .

Since ¢ is continuous, hence uniformly continuous on g,

P (Fu(0) = o (F(0) in £ (=3, )

thus
(o) =+ [ @ (F(LODIF(,0)dt = (5, 0)

NI

The same result can be obtained for an arbitrary ¢ € HY(X) since C(X) N HY(X) is
dense in H(). |

INRIA
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Let us consider a sequence of admissible curves v, and the admissible curve ~
such that 4., converges to ¢, weakly in (Hl(E))/. We denote by w,, u solutions to
(P1) or (P) for the boundary data é.,, ¢, respectively. We are interested in the
convergence u, — u.

Proposition 3. Let {y,},v € Fr, be given, such that 6., — 6, weakly in (Hl(E)),.
Then
Uy, — U in H'(Y) weakly and in L*(X) strongly .

Proof. w, is the unique solution to the following variational problem,
a(ty,v) = Lo(v) Vo€ HY(Y) (13)

where

En(v):/Q uwda—}—/ﬂ uovda—l—/ vdy,
1 0 n

From the proposition 1 it follows that ||£,[« < C', where the constant C' is inde-
pendent of n = 1,2, ... The bilinear form a(-,-) being coercive by the inequality of
Friedrichs—Poincaré, we obtain directly from the variational formulation that

ol gy < alun, wn) = Ln(n) < Cllunllm s

therefore the sequence u,, n = 1,2, ...,is bounded in H'(¥). There exists a subse-
quence of the sequence u,, still denoted w,,, such that

Uy — u" weakly in H'(X) and strongly in L*(X)

the strong convergence follows by an application of the Rellich theorem. We show
that v* = u.

By the weak convergence of the sequence {u,} in H!(X), since the trace mapping
is linear and continuous, we have the following convergence of the traces

Uy —> u” in L*(Q) and in L*(94)
hence for any fixed test function v € H'(X)

a(tn,v) — a(u*,v)

/ vdy, —>/vd’y
Tn v

and with our assumptions

RR n2788



12 Antoine Henrot, Werner Horn, Jan Sokolowskz,

whence

Ly(v) = L(v) .

We obtain
a(u*,v) = L(v),

and the solution to the problem (Py(7y)) being unique, it follows that «* = w which
completes the proof. [ |

Remark 5. In order to show that u, — u strongly in H*(X) it is sufficient to have

the following convergence
/ Undy, — / udy (14)
n el

since, using the variational formulation of the problem (P;), we obtain

/|Vun|2dx—>/ Vu|?da (15)
h) p)

Using the above results we are in position to prove an existence result for the
optimization problem under considerations. Assume that there is given a functional
J(+) continuous with respect to uw = u(7) in the norm topology of the space L*(%) or
weakly lower semicontinuous on H(X). Let us consider, as an example, the following
cost functional

I = [ W) = wada + [ [Va(y) - Vaol* da (16)

Theorem 1. There exists a solution to the minimization problem

inf J 17
Jnf J(7) (17)

Proof. Let {7,} denote a minimizing sequence, then for a subsequence, still denoted
by {v.} we have
w(y,) = u(7y) in H'(Y) weakly (18)

hence

lim inf J(7v,) > J(7)

INRIA
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which completes the proof of theorem. [ |

Let us present another formulation of the problem which furnishes a smooth
solution. We denote by D C IR? = C the unit disk. We denote by © the collection
of holomorphic functions defined on D with values in {2,

O(z) = Z anz" a, € C the serie convergesin D, ®(z) € Qq
n=0

The curve 7 is defined by the following parametrization

> 11
(1) =Y ant" L€ [——, —]
fort 272

In fact, by the theorem of Stone-Weierstrass, any curve located in {2y can be ap-
proximated by the curve of this form.

Using the set O we obtain the existence of the solution for our problem since if the
sequence {(I)p}pe]N is a minimizing sequence, using the theorem of Montel it follows,
since Qg is bounded and ®,(z) € Qp, that there exists a subsequence which converges
uniformly on any compact, along with all derivatives. In this case the assumption
() is satisfied. In particular @} converges to the limit @' on the interval [—l l]

272
which implies that é,, — &, weakly in (HY(%))'.

3. Generalized solutions to domain optimization problem

We start with the classical definition of a solution v € WP(X), 1 < p < %, to the
system (Pp) in the form

—Au = 0 in Q

du
= =0 on T
an
(771(,“)) _gz = u—wu on Ql
—g—z = u—ug—p on g

where p is a Radon measure supported on €.
We are going to prove the existence and uniqueness of the solution to Py(u).
First, we recall the Friedrich’s type inequality related to our problem.

Lemma 1. Let Q@ C RY be a bounded simply connected domain with smooth boun-
dary I' = 0Q, 7 C T a given set with |7 = [5 dU'(z) > 0. Then there exists a constant

RR n2788



14 Antoine Henrot, Werner Horn, Jan Sokolowskz,

C =C(Q,7%,p) such that

1
P

dv |P 1
de + / (o[ dT(x) Vo € WP(Q)
Y

N

From lemma 1 it follows that the equivalent norm in the space W1P(Q) can be

defined by
N .
ov |P
Il = [ .o

We can evaluate the norm || - ||; , by duality, where ¢ satisfies 11_9 + % =1,

N ;
%)
v][1,p = sup { /ﬁia—vdx—l—/vﬁodf(x)} (20)
&1,.6neL(Q) ;=170 xz; 5

E0ELY(R) '

N
> lléillpe=1
1=0

vl ey < C

1
P

dw+L|v|de(x)] . (19)

We denote by || - || rg,(r,) the norm defined by

_ | pdv|
HVHMb(Fo)— sup
©eCY(T) lllloo
»#0

Proposition 4. Let @ ¢ RN, N > 2 be a bounded simply connected domain with
smooth boundary I' = T'oUT'y, || > 0, u a bounded Radon mesure supported on T'y.

There exists the unique solution uw € WHP(Q), for all p € [1, %) to the problem

—Au = 0 n Q

ou
(’PM) . 0 on Fl

g—z = u—u on I'y
moreover

HUHWLP(Q) < HMHMb(ro)

Proof. Let us first consider dv = ¢dI'(z), ¢ € C(I'y), and afterwards we use the
density argument.

INRIA
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There exists the unique solution uw € H'(Q), satisfying u € W'?(Q), to the
problem Py in the variational form

/ Vu - Vodz —I—/ wodl'(z) = / Yodl(z) Vo€ HY(Q)
Q To Lo

Given & € C*(Ig) and {&1,...,EN} € (D(Q))N, we denote by v the unique solution
to the following elliptic equation

N
“Av = Y g
! =1 ’
(P¢) g—fb =0 on I'y
g—fb = ¥Y—vw on I'y

Let ¢ > N be fixed, by the injection theorem of Sobolev, taking into account the
variational formulation of ('P{b) and the definition of the norm by duality, it follows
that

[ollzee) < Cllellwrra <C(2H&Hm +H€oHLq(ro)) :

Furthermore

N ou
;/ﬂ&ﬁ—xidx + /Fo Soudl'(z) = — /Q uAvdzr + /Fo &oudl'(z)

= / Vu - Vovdz —I—/ wodl'(z) = / (0_u + u) vdl'(z)
Q I I a’n

hence for all &g, ..., &N,

dm—l—/ Eoudl'(z H——I—u

v o
ey Tl

<C'H——|—u

N
. (;H@um) ¥ H&JHMO)) .

For p the conjugate of ¢, p < NL_ since ¢ > N, by the definition of the norm by

1
duality, it follows that

lullwrp)y < C H— +u = Cll¥llnr o) = CllYl Mmyro) -

L1(To)

RR n2788



16 Antoine Henrot, Werner Horn, Jan Sokolowskz,

Since the space C(I'g) is dense in the space My(Ty), this completes the proof of
proposition. [ |
Furthermore, we have the following variational formulation

/QVu-Vfdx—l— /FO uldl(z) = /5@ V¢ € D(RY) (21)

For N = 3 the latter formulation remains valid, by density, for an arbitrary test
function £ € H%(Q), since by the Sobolev imbedding theorem H%(Q) C C(Q) and
the integral [ £du is well defined.

From proposition 4 we obtain the following result.

Proposition 5. Given a sequence {j,, } of Radon measures supported on T'o, ||ftn|| pmy(rg) <
C, there exists a subsequence, still denoted {p,} and a Radon measure p € My(T'g)
such that

pn — i in My(To) weak — (%) ,
u, —u  in WHP(Q) weak — (%),

7
P

n = m LP(Q), 1 ,
u w in LP(Q) <P<y 3

where by u,, we denote a solution to the problem Py(piy,).

The proof of Proposition 5 is omitted here, it uses the theorem of Banach—Alaoglu
and the same argument as in the proof of Proposition 3.

We shall consider the admissible measures of the form

H:¢6W

with some regularity properties imposed on the density ¢» € L°°(y) and on the curve
~ =suppp. The reason to consider such a class is the following, it is easy to construct
a sequence 7, such that the length of the curve 7, is uniformly bounded, and the
following convergence takes place 6., — 6., weak—(x).

Example 1. Let us consider the family of curves, n = 1,2, ...,
T = A2a(t), yu(1)} t €[0,1]

where

sin 3nmz, 1

0, t e
e =1, ya(D) = { 1 )

n

INRIA
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It can be shown that
b, — b, weak—(x)

where

and

with I = fol V1 4+ cos? wtdt > 1. ]

Let us recall that for a sequence of Radon measures {y, } such that
Pn — 1t weak—(x)
we have in general the only information on the support of the limit
suppp C lim sup supppiy
n—co

where the lim sup is taken in the sense of Kuratowski.
For the choice we make yu = é.,, since

/wMzAwWWWMU

it follows that
llag, < DOl s where L(7)= [ do

~

i.e., L(7) denotes the length of the curve 7.
Now let a > % and M > 0 be given constants, we introduce the set of admissible
Radon measures of the following form

M = {u = 0|y = {a() ()} € [WH2(0,1)]

/0 1 («"(0) +v*(1) " dt < 0, /0 o), g0 + g2t < M)

Theorem 2. Given a sequence pu, € M, pm, there exists a subsequence, still denoted
by i, a mesure p € My(8) and a curve v such that

Pn = b 1 Mp(Qo) weak—(*)

RR n2788



18 Antoine Henrot, Werner Horn, Jan Sokolowskz,

where
7= suppp = {2(),y()} € [ (0,1)] .

Furthermore, if the following conditions are satisfied,
. p+l
|Vnllpr(ye) £ € for some p>1, withC < M2

and e?() + y*(t) > B3>0 forae te(0,1)

then there exists a function ¢ € LY(v) such that
p= by

Proof.  First, since {z,},{y.} are the bounded sequences in the Sobolev space
W122(0,1) which is a reflexive Banach space, by the theorem of Rellich compactly

imbedded in the space of continuous functions, it follows that there exist elements
z,y € WH22(0, 1) such that for subsequences, still denoted by {z,},{y.},

Ty, =T uniformly in [0,1] and weakly in L**(0,1) (22)
Yn — Y uniformly in [0,1] and weakly in L**(0,1) (23)

By lower semicontinuity of the norm we obtain
1 &3 1 &3
/ («"2(1) + (1) dt < limin / (a2 + 0,2(0) dr < M
0 0

thus the curve v = {z, y} is the admissible support for the measure we are going to
construct.
On the other hand, the sequence {¢,} is bounded in L!(7,),

[ ntan®, O 20) + 0 <

i.e., the function ¢ — ¥, (2,(1), yu(t))\/242(t) + y,%(t) is bounded in L'(0,1). We
denote by pu, the measure defined in the following way,

[ vditn = [ oan(t), 30 nla 0, O a0+ 20y

INRIA



Domain Optlimization Problem for Stationary Heal Fqualion 19

for any v € C(Qp). Therefore, there exists a subsequence, still denoted by {u,},
such that

/vd,un — /vd,u for any v € C(Qo)
where the limit mesure satisfies
suppy =7
since
v(2,(t), yn(t)) — v(2(t),y(t)) uniformly on [0,1] .
Let us show the second part of the theorem. To this end we observe that by

our assumptions the sequences {¢,()}, { o) + yﬁ()} are bounded in LP(7,),

o : 1
L*(0,1), respectlvely, where p > 1 and a > 3.

Set = —%L— since p > 1 and 2a > 1 it follows that 3 > 1 and we verify that the
sequence {wn(xn,yn)\/mf + y{f} is bounded in L?(0,1). Let
20 — 1 20 — 1 1 1
:p—l-ia andm*zp—l_ia so that — 4+ — =1,
2a p—1 m  m*

by an application of the Holder inequality it follows that

<4
2

/01 Wn(xn(t)a?/n(t)ﬂﬁ (x;ﬁ(t) + yﬁ(t)) di

ap—a

< ([ 1ttt (20 20) 5 ) ([ o0 70) B

1 1

! 1 o m*
- (/ |Q’/)”(m”’yn)|p\/mdlﬁ) : (/ (xf + yﬁf) dt)
0 0

= P o
= ¢l By - 20" + 91, HLa oq) S Cm M

the latter inequality follows by our assumptions, hence

a1 —1
12, 9n )V 202 + 952 L5 (0,1) < CPiM»5 =CM» <M.

Therefore, there exists an element ¢ € L7(0,1) such that

G,y )\ 207 + yi? = o weakly in L7(0,1),

RR n2788
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20 Antoine Henrot, Werner Horn, Jan Sokolowskz,

llell s,y < liminf [[¢n(@n, yn) e+ 3/7/12”L13(0,1) <M

[ vitn = [ on(t), 300, O a0+ 20y

= [ou= [ o0, v)ew

and

so that we define

with ¢ € L*(v) and

1 1
kuwn=4|¢wuxmwﬂ W%Q+M%WRIZ;WUWﬁSHMMWmﬁ5M

thus
,u:f(r/jé’)’eMa,M .

Conclusion. According to theorem 2, there exists a solution to the minimization
problem
min J
pemin J(w)

for a class of cost functionals, e.g. J(p) = [x(u—u)?dz, u being a solution to Py (p).

4. Optimality conditions
We start with the auxiliary results on the differentiability of the following shape

functional
7%/GM-
v

We assume that the function G € L'(y) may depend on the curve y. We use the same
approach as in the case of thin shell, where we consider a curve v on the manifold,
here Qg is flat set.

INRIA



Domain Optlimization Problem for Stationary Heal Fqualion 21

Let the sufficiently smooth mapping F, : IR*® — IR? be given, s € [0,8) is
a parameter, such that Fy = F;g for any s € [0,0) satisfies the assumptions of
definition 1, i.e.

F(Q)=0 Fy(I)=~
1 Esllwree (@) < L1 1E; w0y < Lo

Given parametrization {zs(%), ys(?)}, ¢t € [0,1], of the curve 7,5, we denote

/gsdvs /gs 25(1), s(0) \/22(1) + y2(1)dt
The derivative takes the form

i) = [ {52 +v6, s<)ys<t>>-£s<t>} o2 (0 + 0

[ G ) S

_ _(=®)wi@) ; 4
where 7,4(t) = NC OO the unit tangent vector to y and &5(t) = 7= (2,(1), ys(t)).
Under regularity assumptions, after integration by parts the latter integral can

be rewritten in the following form

[ 6 a0 i) et

drs

:_/01{Vgs(-fs(t)vys(t))-(.Ts(t)a?/s(t))TS(t)-£S(t)+gs(-fs(t),ys(t)) —2(1) - &,(t )} dt

+Gs (25(1),95(1)) 75(1) - €5(1) = Gs (5(0),95(0)) 75(0) - £5(0)

On the other hand, we can use the material derivative method to obtain the same
derivative j'(s). Namely, we introduce the vector field
0F,. _
V(s,z,y,2) = ( 888 o F; 1) (z,y,2)
and assume that the support of the vector field is included in a small neighbourhood

O(7) of the curve v in IR®. Furthermore, we assume that for (z,y,2) € O(y) and
sufficiently small z € (—¢,¢), € > 0, the field is of the following form

(s,2,9)
(s,2,9) | =V(s,2,y,0)
0

Vi
Vis,z,y,2)=| V1

RR n2788



22 Antoine Henrot, Werner Horn, Jan Sokolowskz,

The shape functional we consider takes the form

J(7) = / Gdy .
¥
With the vector field V' we associate the mapping
T,(V) : R® —» R?,

in particular, under our assumptions on the support of the field V', suppV C O(v),
it follows that Ts(V) = I on IR®\ O(7), where I denotes the identity mapping.
Let us define the Eulerian semiderivative

4 (4 V) = lim ~(J(Ty(7)) = J(7)) -

For

it follows that
7'(0%) = dJ(y;V)

and therefore, by an application of the structure theorem for the shape gradient, we

arivy= {5 #VOa.0)- €0 | e+

+ [ 60,9 G0
+6 (1), (1) 7(17) (1) = G (2(0), 9 (0))(0%) - 0)

since V (s, z(t),y(t),0) = (&(1),0) for t € [0,1], and the vector 7(¢) € Qq, ¢t € (0,1),
is tangent to v. If v(¢) € Qg, t € (0,1), denotes the normal vector field on v, the
equivalent form of the first integral reads

obtain

[H%E 4G .m0 €m0+ o

Js |s=0

= /01 {865 + [Vg($(t),y(t))-y(t)]£(t).V(t)} 22(t) + y2(1)dt

Js |s=0

INRIA
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since the integral part of dJ(y;V’), by the structure theorem, depends only on
the normal component V(0,z(t),y(),0) - n = &(t) - v(t), t € (0,1), of the field
V(0,z(),y(t),0). We denote

AGdV - /01 { '8g;|520 + VG (z(t),y(t)) - E(t)} \/mdt

[ o7 var = [ atw.v) G0 oy
(0,0 = 1) (@0, 5(0) = (50,0)

Proposition 6. The shape funtional J(7) = fw Gdvy 1s shape differentiable, the

Fulerian semiderivative takes the following form
dJ(y;V) = / Gy + / Gr'-Vdy + G(z1,y1)m(z7, y1) - V(0,21,91,0)
¥ ¥

_g(:EO’ ?JO)T(@"EI)—’ y(—)l—) : ‘/(O,l‘o, Yo, O)

where G denotes the material derivative of G in the direction of the vector field V.

Remark 6. In particular for G =1, J(v) = [y = [, d7,
dJ(v;V) = / 7DV -7dy .
~

We have the property

el =1L = [ dna= [ dy 5= 1)

Ve

provided that the vector field V satisfies the equation
/ T ‘/dv + T($1_7 yl_) ' ‘/(07$17y17 0) - T($EJ+_7 Z/(-)F) ’ V(07 L0, Yo, 0) =0
¥
|

Now, we are in the position to obtain the shape differentiability of solutions to

the problem Py(7).
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We denote X, = Ts(X), us € WHP(X;) the unique solution to the following
integral identity

/ Vus-VgodES—l—/ usgodas—l—/ uscpdas:/ uoapdas—l—/ ulapdas—l—/ wdvs
N Q3 Qs Q3 Qs Ve

for all ¢ € WH1(X;), where QF = T5(2;), i = 0,1, 75 = Ts(7).

The integral identity is transported to the fixed domain 3, so we denote u® =
us 0Ty € WHP(E), set ¢ = vo T, !, and by standard change of variables it follows
that «® is the unique solution to the following inegral identity,

/<A( IE Vus,Vv)]Rng—}—/ u’ow )da—l— u’ow(s)do
D)

:/ ung(s)da—l— ulvw da—}—/vp
Qo

for all v € WH9(X), where the matrix A(s), the boundary terms w(s), p(s) are given,
sufficiently smooth functions of space variables and s € [0, ),

A(s) = det(DT,)DT;'-*DT !

w(s) = ||det(DT)*DT; - n||ps

1
o200+ 920\ *
s) = (22 /T Is Y 1), y(l v = Ts(v), t € (0,1) .
(s) (W(t) L) s en. =T e 0.

By an application of the implicit function theorem for solutions of the latter
integral identity we obtain the existence of the weak material derivative in W1P(X),
1<p< %

1
:1 “(u’ — .
u ;%S(u U)

The material derivative & € W1?(3) satisfies the following integral identity

/ Vi - VodY + / (A'(0) - Vu, Vo) gadS + wvdo + uvw'(0)do + wodo
) ) Q20 Q0o 2

+ [ ww'(0)do = / (o + uow'(0))vdo + [ (u1 + wiw'(0))vdo + / vp'(0)d7y ,
951 Qo 194} ¥

where we denote

=
S~
o
N—

I

divV(0)I — DV(0) - *DV(0)
divV(0) — (DV(0) - n, n)ps
p'(0) = 7-DV(0)-1

E\
—
(e}
~—

Il
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Finally, the weak shape derivative ' = @ — Vu -V in LP(X), 1 < p < 2, satisfies the
following integral identity

- [ wavde =~ [or'-Vdy+ elangr(er.sr) - V010.0)
) ¥
B ’U(.’E07 yO)T(.fEI)—, y(-J}—) ’ V(Ov Zo; Yo, 0)
for all test functions v € W29(X), 22 =0on T, 22 + v =0 on Qo U Q4.

Theorem 3. A solution to the minimization problem

£ J(v
&4,

satisfies the first order necessary optimality conditions
I3 V) =0
for all admissible vector fields V', where
dJ(v;V) = 2/ ) — uq udE—}—Q/ (Vu(y) — Vug, Vi) dX
= 2 [ DV V() = ), V(u(y) = ug)) s S

/z <|V(U(”r’) —uq)* + Ju(y) — ud|2) divVdy

-+

Remark 7. For any vector field V' such that
V(0)-v=0o0onvy, V(0,4)=V(0,B)=0

it follows that dJ(7y;V) = 0, therefore we obtain the following Green formula for
such fields

0 = 2/ ) — ug) Vau - V(0)dS
b2 / (Va(7) = Vg, V(Va - V(0)))pe dS
- 2/ DV -V(u(y) - ug), V(u(7) - ug))ped=

+ [ (|V(u(7)—ud)|2+ Ju(7) = ual?) divVax

RR n2788
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Remark 8.
In the particular case of the cost functional I(y) = fq, (u(7) — ug)? dS, it follows
that

dI(v;V) =2 | (u(y) —ug)u'(y; V)dS.
951
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