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MEDAF, Risque et Choix des Portefeuilles dans des Marchés
“Stables”

Résumé : L'objectif de ce travail est de généraliser le Modéle d’Evaluation d’Actifs Financiers (MEDAF,
ou CAPM) dans le cas ou les rentabilités de ces actifs suivent conjointement une loi a-stable, avec 1 < a < 2.
Pour justifier cette hypothése, nous sommes amenés a mettre en évidence la structure fractale du marché
des actions & travers des tests empiriques d’auto-similarité et de stablilité. Ces tests nous permettent de
modéliser les variations des prix par des distributions a-stables. Nous montrons que les taux de rentabilité
d’équilibre de tous les actifs risqués sont fonctions de leurs covariation avec le portefeuille de marché.
Le CAPM “Stable” met en évidence une nouvelle mesure de risque, qui peut étre interprétée comme un

coefficient “beta” généralisé.

Mots-clé : Lois stables, Covariation, Codifférence, Mesure spectrale, Gestion de portefeuilles, Modéle

d’Evaluation d’Actifs Financiers.
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1. INTRODUCTION

Most economic and financial phenomena are modeled using probability distri-
butions with finite variance. In particular, Capital Asset Pricing Model (CAPM)
theory has been developed by many authors in a Gaussian framework (see e.g.
Sharpe [Sha63, Sha64], Mossin [Mos66], Lintner [Lin65], Black [Bla72], Fama-MacBeth
[FM73] and Blume-Freind [BF73]). However, the assumption of Gaussianity is in
general not verified empirically. It has been shown in many studies that asset re-
turns exhibit a fat tail in their empirical distributions. Mandelbrot [Man63] and
Fama [Fam65] proved that empirical distributions of asset returns such as stocks,
foreign currencies, etc ... conform better to stable distributions than to the normal
distribution. Asset returns may thus be naturally modeled by random variables de-
fined on a complete probability space LP(2,F,P) with 1 < p < 2. This implies
that the mean is assumed to be finite but it is not necessary so for the variance. In
this context, the classical mean-variance approach for optimal portfolios selection
does not make sense. Its use leads to discard important information about the risk
structure of different investment portfolios and may result in underestimating the

quantity of risk and the risk premium.

Several authors have thus proposed to use stable Paretian distributions to model

returns on securities. This raises the following questions :

(1) how should one measure the dependence between returns?

(2) how can one characterize financial risk ?

Such questions are studied by Press [Pre72], Lee-Rachev-Samorodnitsky [LRS90],
Rachev-Xin [RX93] and Samorodnitsky-Taqqu [ST94].

Following these investigations, we shall extend in this paper the concept of market
equilibrium in order to develop the CAPM when asset returns have a joint stable
distribution. It will be shown that the equilibrium rates of return on all risky assets
are functions of their covariation with the market portfolio. This is a natural ge-
neralization of the results obtained in the “classical” case, where the asset returns

are modeled with Gaussian distributions.

INRIA
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We mention here that Fama [Fam70] was the first who developed the CAPM
under the “stable” assumption but he did not give a practical expression of the
coefficient “beta”. Arad [Ara75] already considered the problem of the CAPM under
the hypothesis of stable distribution in a particular case, “the stable index model”,
which assumes a special structure of dependence ( all securities depend on a common
factor or on a number of common terms).

In section 2 we briefly state some well known definitions and properties of mul-
tivariate stable distributions. In section 3 we experimentally check the property of
stability, i.e. the closure under summation, of stocks market. We show that the cha-
racteristic exponent a is invariant with respect to changes of "time yardsticks” and
that the scale parameter follows an empirical scaling law with é In sections 4 and
5 we recall some useful results concerning the measure of dependence and financial
risk when one deals with heavy tailed multivariate distributions. In section 6 we
shall define the generalized market line in the mean-scale space for a given a (as

defined below) and derive the CAPM under the following assumptions :

(1) All investors have homogeneous expectations about asset returns.

(2) The common probability distribution of asset returns is joint Levy-stable
and satisfies a symmetry condition (see section 5).

(3) All investors are risk averse.

(4) An investor may borrow or lend unlimited amounts at the risk free rate.

(5) There are no market imperfections.

In the last section we present an experimental study and results on real data, and

draw some practical consequences of the generalized CAPM.

2. DEFINITIONS AND PROPERTIES

For the definition of stable multivariate distributions we essentially make reference
to Rachev-Xin [RX93] and Samorodnitsky-Taqqu [ST94].

Definition 1.

A random variable X is said to have a stable distribution if there are parameters
0<a<2,v>0, -1<B<1and u € R such that its characteristic function has
the following form

Wi (t) = exp {ipt —°|t1° (1 — if sign(t)W(a,t)} ¢ € R (1)

where - fotl
an & ifa
W(e,t) = ? (2)
—2loglt] Hfa=1

RR n°2776
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The four parameters characterizing a stable random variable are sometimes refer-

red to as :

e The characteristic exponent a, 0 < a < 2. It describes the shape of the
distribution or the degree to which it is long tailed.

e The index of skewness 3, 8 € [-1,1].

e The location parameter u, p € R.

e The scale parameter v, v € R™.

Notation 1.

x < Sa,p(7, 1) indicates that X follows a stable distribution with parameters a,
B, v and p (as defined above).

Property 1.

x < Sa,p(7, 1) is symmetric if and only if 3 = 0 and p = 0. It is symmetric about
u if and only if B = 0.

Notation 2.
X ~ SaS indicates that X follows a stable distribution S, o(7,0)

From now on, X will denote a d-dimensional random vector.

Definition 2.

X follows an a-stable multivariate distribution (0 < o < 2) of there exists a finite
measure I' on the unit sphere Sq of R% (S, = {s, ||s|| = 1}), and a shift vector
p° € R? such that:

Ux(A) =exp {i()\,,uo) - /; [(A, $)]*(1 — 1 sign((A, s))W(a,s,)\))F(ds)} ,AeR?

' (3)

where (.,.) denotes the inner product and

tan ©* fa#1

W(a,s, )=
Ziog|(As)| ifa=1

The pair (T, u°) is unique.

The measure I' is called the spectral measure of the a-stable random vector X.
It replaces both the scale and skewness parameter that enter in the description of
the univariate stable distribution.

As in the case of random Gaussian vectors, any linear combination of the compo-

nents of an a-stable vector is an a-stable random variable:

INRIA
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Property 2.

Let X be an a-stable random vector with characteristic function given by (3) and

letY =(0,X), 0 € R%. Then Y has a univariate a-stable distribution Su p,(7e, te),

where
w = ([ e ds) (5)
Jo, 1(6, )| sign((8, s))I'(ds)
& I, 106, )T (ds) (6)
o = (0,1°) ifa#1 )

(0,1°) — 2 [5,(0,5)log (6, 5)[I'(ds) if a=1
Proof. See Samorodnitsky-Tagqu [ST94].

Property 3.

X is a symmetric a-stable vector in R?, 0 < a < 2 if and only if there exists a

unique symmetric finite measure I' on the unit sphere S® such that

Eexpi(A, X)=exp {— /Sd |()\,s)|af(ds)} , AeR? (8)

Thus X is symmetric if and only if the shift vector u° = 0 and the spectral measure

I' is symmetric.

3. EXPERIMENTAL VERIFICATION OF THE LEVY STABILITY: FRACTAL
STRUCTURE OF STOCKS MARKET

A fractal approach for analyzing the market consists in studying price changes at
different scales, with different degrees of resolution and to compare and interrelate
results in order to look for a statistical similarity. Using different ”time yardsticks”,
from hourly to monthly and yearly, we find that the statistical properties of price
changes are the same, except for a scale factor which is power function of the yard-
stick size. Moreover, we show that the fractal nature of the stocks market takes the
form of a stable distribution, all distribution functions of price changes having the
same type, for all interval sizes. The fractality of the market is thus associated with
the Lévy stability under summation property. This behavior was already described
in [Man63].

To verify such claims, we look at the variation of the estimated index of stability
with respect to the length of the time interval of observations. In other words, the
empirical verification of the existence of a scaling law consists in estimating the value
of the parameters and in verifying that they are independent of the scale.

For each asset, the Koutrouvelis [Kou80] method was used to estimate the a-
value. Walter [Wal94] shows that the Koutrouvelis method is the best among several

alternatives.

RR n°2776
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The data consists in 2060 observations representing the closing prices for the some
chosen stocks with the CAC40 index, ranging from 09/07/87 to 31/05/95. The data
were provided by Crédit Lyonnais.

We performed two kinds of test:

e Tests with the complete series with different time steps.
o Tests with constant size samples, obtained through a moving window proce-

dure.

3.1. Stability tests on samples with decreasing size.

Define

J
p

i log X! ., —log X/

r ip+t (i—1)p+t
with:

e p: time interval from 1 to 10 days;

t: first price of the series, t = 1, ..., p;

i: index of observation 7 = 1, ...,2060;

X}, 442 price on a security j at time ip +¢;
i
Pit,i”

r period return on a security j.

There are thus p series for each time interval p. Increasing the time interval results
in reducing the size of the sample. We fix a maximum time interval in order to have
a statistically significant size for the sample.

Inspection of the estimated value of the parameters shows that the characteristic
exponent a remains approximately constant and that the scale parameter v follows
a scaling law.

More precisely, table 1, in appendix A, show that the characteristic exponent
ranges from 1.6 to 1.8. In average, a is approximately equal to 1.7. This value is
close to the value found by several authors on different markets (see e.g. [Man63]
and [Wal95]).

Table 2, figure 2 and figure 3, in appendix B, evidence an empirical scaling law,
with exponent %, for 7. If 7, is the standard scale corresponding to one time unit,

then the standard scale after ¢ time units will be

Ve = 1it=

1

where = L
o

is referred to as the self-similarity exponent. = is in relation with the
Hausdorff dimension: let D denote the dimension of the path of an a-stable process
with 1 < a < 2. It may be shown (see Falconer [Fal90]) that D = 2 — . Thus an
estimation of a permits an estimation of D.

From these results, we can conclude that increasing the time interval of obser-
vation from 1 to 10 days does not change the behavior of the market as far as the

parameters a and 7 are concerned.
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Let us mention here that some authors (see Olsen et al. [0al93], Bouchaud et
al. [Bal95]) show that other commodities do not share the same stability. More
precisely, it seems that some commodities exhibit a stable behavior for time periods
lower then a given cross-over value. Beyond this value, price changes are modeled

by a Pareto law with a different index.

3.2. Tests with constant size sample.

In contrast with the previous method which induces a sampling error due to
the decreasing of the size of the sample, the second kind of test is more significant,
because it deals with fixed size samples. Its main drawback is its high computational
cost.

The test consists in building from a subsample of the initial sample with constant
size, several series defined with respect to time yardsticks of different size and esti-
mate the values of parameters on each series. The number of series increases as the
size of the subsamples decreases.

Let N denote the size of the initial sample, n the size of a considered subsample
and p the time interval. The total number of builded series with time interval size p is
N —np. By varying p between 1 and p* where p* = [%], we construct p* N —nw
series.

More precisely, we built the following series:

J

rg;,t,z’ = log Xz'jp-l-t — log X(i—l)p+t

where:

e p: time interval from 1 to p* days;

e t: first price of the series, t =1,..., N — np;
e i: index of observations ¢ = 1, ..., n;

° Xfp_l_t: price on a security j during ip + ¢;
e 7)., period return on a security j.

If we fix, for example, n = 300, p* will be equal to 6, and we shall estimate & and
~ on 6060 data series for each stock.

This second kind of tests gives, approximately, the same results as before: a ranges
from 1.6 to 1.8 (see e.g. figure 4, in appendix C, for ACCOR) and « follows a scaling
law with exponent % (see e.g. figure 5, in appendix C, for ACCOR).

4., DEPENDENCE MEASURE

The dependence structure of a Gaussian random vector (e = 2) is completely
specified by its autocovariance function. There is no such simple description when
a < 2, because covariance does not exist. But the notions of covariation (when
a > 1) and codifference (when 0 < a < 2) prove to be very natural measures of
dependence when one deals with heavy tailed multivariate distributions such as the

stable one.

RR n°2776
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4.1. Covariation.

The notion of “covariation” is due to Miller [Mil78]. It is designed to replace the
covariance when 1 < a < 2. We list some of the useful properties of covariation (see

Samorodnitsky-Taqqu [ST94] for the proofs).

Definition 3.
Let X, and X, be jointly SaS with a > 1 and let I be the spectral measure of the

random vector (X1, X,). The covariation of X; on X, is the real number

(X1, X,]o = / 5155% T (ds) (9)

S

where a<*~1> is the “signed power” defined by a<*~1> = |a|*"'sign(a).

Properties.

1) [X1, Xa]s = cm;()gl,xz)

2) [ X1, Xs)a # [X2, X1]a in general

3) [aX1,bX;5]q = ab<* 1> [Xy, X,], for every a, b€ R

4) the covariation is additive in the first argument i.e. for (X1, X1, X3) jointly
Sas and for every a, b € R

(
(
(
(

[aX; + bX,, X35]a = a[ X1, X3]a + b[ X3, X3]a

(5) the covariation is not additive in general in its second argument i.e. for
(X1, X5, X3) jointly SaS

(X1, X2 + Xslo # [ X1, Xolo + [ X1, X3]a

(6) If X1 and X, are jointly SaS and independent then [X1, X3], =0
(7) Let X; and X, are jointly SaS with 1 < o < 2. Then

(X1, Xo]a| < [IXalall X157

(8) the covariation induces a norm || ||, on the linear space S, of jointly SaS
(o« > 1) random vartables. The norm || ||, is defined for every X, € S, by
[| X1]|la = ([Xl,Xl]a)é = Yx,, where v, 1s the scale parameter of X;.

4.2. Codifference.

Although we are not going to use the notion of codifference in this work, we give
some basic facts related to it because it could well be useful for solving the kind of
problems we deal with.

The codifference function is derived from the difference between the joint cha-
racteristic function and the product of the marginal characteristic functions. It was
first introduced by Astrauskas [Ast83]. and is defined for all 0 < a < 2.

INRIA
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Definition 4.

The codifference of two jointly SaS random variables X and Y equals :
mxy = || X|[G + Y[ = [X = Y[ (10)

where || X||2, ||Y||2 and || X —Y||2 denote respectively the scale parameters of X, Y
and X - Y.

Properties.

(1) Txy = Tr,x
(2) if a =2 then Tx,y = Cov(X,Y)
(3) e if X and Y are independent then 7x y = 0
o iftxy =0 and 0 < a <1 then X and Y are independent
(4) o Txy < || XS+ [Y][S

[ ]
0 Fo<a<l

X,y >
(=22 X|lg+1IY[l8) Ffl<a<2

(5) let (X1, ..., X4) be a SaS random vector.

Then the matriz ¥ = (T7x, x,, %, § = 1, ..., d) is non-negative definite.

For more facts and proofs of the properties listed above see Astrauskas [Ast83],
Levy-Taqqu [LT91] and Samorodnitsky-Taqqu [ST94].

5. “STABLE” RISK MEASURE AND EFFICIENT SET

When it exists, the variance is the statistic most frequently used to measure the
risk. But we should note that there are other statistics which, in some situations,
may be more appropriate : for instance the range, the semi-interquantile range, the
semivariance and the mean absolute deviation have been considered (see Copeland-
Weston [CW83]).

The Gaussian assumption leads to an optimal strategy depending on the means
and variances of portfolios returns. However, when the distribution is a-stable with
1 < a < 2, the second moment does not exist, and an approach based on an
empirical mean-variance computation discards important information about the risk
structure of different investment opportunities. It can lead to the selection of non-
optimal investment portfolios. In our context, the measure of risk will be the scale
parameter of an appropriate multivariate symmetric stable distribution.

Let R be the vector of considered asset returns and E(R) = u°. We assume that
R — p° follows a SaS law with e > 1. Press [Pre72| give several reasons for the

assumption that a > 1 :

(1) for an investment setting, it is convenient to be able to speak of “expected
returns” ;

(2) this assumption is in general confirmed by empirical evidence ;

RR n°2776
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3) although the distributions depart from Normality, they do not deviate “too
(3) g p y, they

much”.

Finally, the symmetry assumption allows positive and negative price changes to
be weighted in the same way.

The investors’ preferences can then be represented by a utility function defined
over the mean and the scale of a portfolio return R, = Ele 0;R;, where R; is the

return of the asset 7 and 6; is the amount invested in the asset <.
E(R,) = (0,1 (11)

IRl = ([ 10.00T(as) (12)

R~

6 is the d-vector of the portfolio weights and u° is the d-vector of asset return

means.

5.1. Efficient set with risky assets.
An efficient portfolio was defined by Markovitz [Mar59] and Sharpe [Sha63] as

a portfolio of risky asset which can not achieve greater expected return without
increasing risk.
In the absence of a riskless asset, a portfolio P on the efficient frontier is defined

as a portfolio solution of the following optimization problem ! :

min/; (0, 5)[°T(ds)

ocR?

subject to :

(0’/‘0) = RP
(0,e) = 1

where p® is the d-vector of assets expected returns, R, is a fixed level of portfolio
return, and e denotes an d-vector of ones.

As shown by Press [Pre72] and Arad [Ara75], the efficient set is convex. This
means that the efficient frontier is the locus of all convex combinations of any two

efficient portfolios.

5.2. Efficient set with one risky and one riskless asset.

In this subsection, we obtain a new and simple relation between the risk and
return for efficient portfolio of assets.
Assume now that there exists a risk-free asset F' and all investors can borrow

or lend unlimited amounts at the riskless rate Rs. The investors satisfy their risk

1this problem will be studied in detail in a forthcoming paper.

INRIA
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preferences by considering the portfolio P combining 8, 0 < 8 < 1, of risk-free asset
and (1 — @) of a risky asset I. Then

E(R,) = O0R;+(1-0)E(R;)
1Bl = (1 =0)%[[Ril[3

which leads to:
(E(R:) — Ry)

E(R,) = R; +
v [1Ri |

|1y ] (13)

This relation shows that the efficient set in the presence of a riskless asset is repre-

sented by a line connecting R; to the risky asset.

6. DERIVATION OF THE CAPM

In this section, we derive a new expression that yields the CAPM in the case of
stable multivariate distributions.

If all investors have homogeneous expectations and they all can borrow or lend
at the same rate, they will perceive the same efficient set (see figure 1).

In equilibrium, the portfolio of risky assets that an investor tries to combine with
the risk-free asset will be identical to the combination held by any other investor?.
This portfolio must be the tangency portfolio M usually referred to as the market
portfolio. The risky assets are held according to their market value weights®. All
investors will prefer combinations of the risk-free asset and the portfolio M on the
same efficient set called the capital market line (see figure 1).

According to (13), this line provides a simple relationship between the risk and
return for efficient portfolios of assets. Therefore, the equation of the capital market
line will be
(E(Rm) — Ry)

E(RP)IRJ‘+ ||R ||

[ Ryl (14)

where R,, is the market portfolio return.

6.1. The single period ”stable” CAPM.
We now derive a single period model under the assumptions (1), (2), (3), (4) and
(5) described in the introduction.

Let us consider a portfolio with 6 invested in a risky asset I and (1 —#) in the market
portfolio M. Thus P = I + (1 — 8)M. The return of P is then

R, =0R; + (1 —0)R,, (15)

Zwe note that in equilibrium, all assets must be held, i.e. the excess demand of any asset

will be zero.

3equal to the market value of each asset divided by the market value of all risky assets.

RR n°2776
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E(Rp)

R¢

I Rp [l

FiGUrE 1. the opportunity set provided by combinations of risky

asset and the market portfolio

We know from property (2) that since R, — E(R;) and R,, — E(R,,) are jointly

Sas with a > 1, the mean and the scale parameter of R, are respectively

E(R,)=0E(R;))+ (1 -0)E(R.,) (16)
1B Iz = [ 1051+ (1= 0)s2|"I(ds) (a7

This leads to:
OB(Ry) _ pRy) - E(R,) (18)

00
0| Rylla w10l Bplla a
ag = a||RP||a ! ag = a\/SZ(SI - 52)(031 —I_ (1 - 0)82)< 1>F(d$)
then
Rplla 1 /" <a-1>

A Sz(sl —52)(0s1 4+ (1 — 6)s2) I'(ds) (19)

At point M, 8 = 0 and ||R,||o = ||Rm||a ; thus,

O|| Ry 1 /‘ <o
= — 81 — 849)85¢ ds
90 o = [Rla Js, (5t T o)s A

1 N )
B W(/stlsi 1>7(d8)—/52 827(ds)>

1 (s
= R ([Ris Bmla — || Rmll2)

The slope of the risk-return trade-off (curve IM I') evaluated at point M, in market

equilibrium, is

OE(R,) _ g ||Ru|la  [B(R:) — E(Rn)] (20)
Ol Ryl[o — 21l [Ri, Bl — || B I3
Plia 20 %y +“lm]a m||a

INRIA
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This slope should be equal to the slope of the capital market line given by (14) (see
figure 1). Combining (14) and (20) we get

E(Rm) — Ry _ ||[Rulla” " [E(R:) — E(Rn)]

||Rm||a [RiaRm]a B ||Rm||g
(BR) - Ry) = 5 (B (R, ~ By) (21)

(21) may be written in the form:

(E(R:) — Ry) = Bi( E(Ry) — Ry) (22)
where
ﬁ' — [Ri:Rm]a (23)
" IRallE

The fundamental equation (21) is the generalized equilibrium relationship between
risk and return for a given security. It is the generalization of the CAPM, which
is usually defined for Gaussian distribution, to the case of stable distribution. We
will refer to it as the “stable” CAPM. It may also be called the generalized security
market line. The return over the risk free rate, E(R;)— Ry, is called the risk premium
for a security I. E(R,,) — R; is the price of the risk. §; is the “generalized beta
coefficient” which measures the volatility of the security’s rate of return relative to

changes in the market’s rate of return. §; is interpreted as the quantity of risk.

Remark.

If instead of assumption (2), we assume that asset returns have a joint normal

distribution (o = 2), then by property (1) of the covariation we obtain

Cov(Ri, R)

(E(Rl) - Rf) = VGT(Rm)

(E(Rm) - Ry) (24)
which is the well known standard form of the general equilibrium relationship for
asset returns often referred to as the Sharpe-Lintner-Mossin form of the CAPM.

6.2. Properties of the “stable” CAPM.

(1) The only risk which investors will pay a premium to avoid is the covariation

risk which is referred to as the systematic risk.
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(2) Let P = Y7, 6,Y;. The portfolio generalized beta coefficient, denoted S,,
is a linearly weighted combination of the individual asset generalized beta

coeflicients g;:

d
=1
Proof. use property (4) of the covariation.

6.3. The ez post form of the “stable” CAPM.

Assume again that the vector R of the per share portfolio follows a multivariate

stable distribution with characteristic function

Eexpi(A, R) = exp {— /; (A, $)|°T(ds) + i(A,#O)} . (26)

where I' is symmetric.

This is equivalent to saying that R — u° follows a Sa§ distribution. The assumption
a > 1 implies that u° = E(R).
If the rate of return on any asset is a fair game, the ez ante form of the “stable”

CAPM given by equation (21) can be transformed into
Rz' = Rf + (Rm — Rj)ﬁz + € (27)

where

¢ ¢; is a random error term independent from R,, with zero mean,

e [3; is as defined in (23).

7. STATISTICAL ESTIMATION OF THE GENERALIZED “BETA” COEFFICIENT

The main complication introduced when using the “stable” CAPM instead of the
classical “Gaussian” one is not only of theoretical order, but also of practical one.
Indeed, if one wants to apply equation (21) in real situations, one has to estimate
the covariation of R; on R,,, instead of simply the covariance of R; and R,,, for
which well known estimators exist.

We present in the following three methods for estimating the generalized “béta”

coeflicient.

7.1. Best Linear Umbased Estimator (BLUE).

Instead of estimating [R;, R,,]o, Which is not easy task, an alternative approach
is to use a BLUE.
The model defined by (27) may be viewed as a linear model of the form:

Y = P, + uy t=1,..,n. (28)
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where gy, is the shifted return of a given asset at ¢, ; is the shifted market return
at t, and the w;’s are independent, identically distributed SaS random variables
with a > 1, mean zero and scale parameter v. The u;’s have an infinite variance.
Hence, the Gauss-Markov theorem, which demonstrates the minimum variance of
least squares, is not applicable.

Following the suggestion of Wise [Wis66] to generalize the concept of BLUE when
disturbances are generated by a symmetric stable law, Blattberg and Sargent [BS71]
have written down the following analytical expression of such estimators:

>

<1
5 D1 ® Ty
Va>1, pla)= —Z:tl_i |;t|<ﬁ>

(29) is derived as a solution of the following optimization program

n
min || Zet?/tHa
t=1

(29)

0:€R

subject to :

z”: iz, = 1
t=1

However, this does not give in general satisfactory results, because the u; are

supposed to be independent. We thus present now two means to directly estimate
[Ri, Rna-
7.2. Moments estimator.

The following lemma (see Samorodnitsky-Taqqu [ST94]) is useful for deriving a

p-moments estimator of 3.

Lemma.

Let (y,z) be SaS with o > 1. Then forall 1 < p<
Eya:<p_1> _ [y7 :E]a (30)

Elzlr— [z]lg

where ||z||, denotes the scale parameter of .

Consistent p-moments estimators ,C:I(p) of 2:2l= will then be:

ll=llg

n <p-—1>
A N Et:l Yy

A= e oy

Note that, in contrast with (30), this estimator is defined for all p > 1 (see
Gamrowski-Rachev [GR95] #).

Remarks.

(1) ﬁ(f) ts the BLUE of Blattberg-Sagent [BS71].

1

(2) B(2) is the Ordinary Least Squares (OLS) estimator.

4[GR95] gives an alternative derivation of the SaS CAPM and a generalized version
(Lp-CAPM) for Ly-returns.
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A nice feature of ﬁ(p) is that it does not require a lot of data. However, its practical

use is still an open issue, in particular because there are no methods that allow to

choose an optimal value for p. ﬁ(ﬁ) is optimal but only in the restricted case of a

linear model with independent disturbances (independent specific risks).

7.3. Spectral estimator.

The Cheng-Rachev estimator [CR95] of the covariation [R;, R;]™) is given by:

R B = [ si(6)s;(0)< 1 d, (6) (32)
Qq
where
e (p,0) are the polar coordinates of R;
e s5;(0) denotes the i-th component of s = (sy, ..., 84) € §4 in polar coordinates;

Q= [Oaw]d_z X [0727‘-];

@, is an estimator of the index a chosen using the family of estimators given

by:

B log 2
1Og(pn—k+1:n) - log(pn—Zk-[-l:n)

o, (k) (33)

where k = (k,),>1 is a sequence of integers satisfying 1 < k,, < 5, kn — 00,
% — 0 as n — oo and py., is the k-th order statistic from (py, ..., pn). The
choice of the optimal value of k,, is based on an empirical rule to be described
below;

®,, is an estimator of the distribution function of I' on 4, obtained through

the following steps

8,(6) = pu(6), (11, (34)
where
= (r,..,m27)€ Qq, 6 =(04,....,04_1),
B (11) = £ pi (35)
n - npn—k:n
and
1 n
on(0) = A Z To:<6 , pi>pu-rsin) (36)

i=1

Cheng and Rachev [CR95] showed that:

(1)
(2)

if IL — 00 as n — oo then a.s. a, — «;
oglogn

if @ — 00 as n — oo then a.s. ¢,(0) — p(8) = %(% :
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Under additional conditions, it may be shown that the a-covariation estimator is
asymptotically normal.

In the bivariate case (d = 2), the a-covariation estimator will take the following
simple form [RX93]

27
(X1, X, = /0 cos §sin <*+~1>dd,,(8) (37)

A consistent estimator for the generalized “beta” coeflicient for asset 7 will be

3 Ri7 Rm Sln)
[Ros Ron)ex

8. EMPIRICAL STUDY

In our study, we have used a sample of nine French stocks chosen from the CAC
40 Index: ACCOR, CAMP. BANCAIRE, CARREFOUR, CR. FONC. FRANCE, GEN.
DES EAUX, HAVAS, LEGRAND, MICHELIN, THOMSON CSF. The CAC 40 Index is
considered as a “proxy” of the market portfolio.

The data consist of 2059 observations representing the successive differences of
the logarithm of daily closing prices for the nine chosen stocks along with the CAC
40 Index, ranging from 09/07/87 to 31/05/95.

The optimal k for the estimator of a was selected using a clue given by Mittnik
and Rachev ([MR93]). The best value of k is set so as to agree with the estimated
marginal index of stability of each asset: we first construct the graph yielding a,, (k)
versus % We then estimate the marginal index &. The optimal &* is the one such
that a,(k*) = & ( see e.g. figure 6 in appendix D).

For the data considered here, the estimated value of the marginal index & was
found to be near 1.7. The corresponding optimal value of k is given in table 3 * in
appendix D. In order to compare between different kinds of modeling (e.g. Gaussian
vs stable non Gaussian), we also computed optimal k’s corresponding to “virtual”
values of a of 1.3, 1.5 and 2 (this last value corresponds to a “classical” modeling
with Gaussian distribution).

A relevant test to assess the quality of the § estimator is to compare the value ﬁil
obtained for & = 2 using (23) with the value B;; computed using a classical estimator
in the Gaussian frame (namely empirical covariance divided the empirical variance).
These comparisons are presented in table 6 in appendix E.

For all stocks, ﬁlﬁ_% is lower than 12% and for 67% it is lower than 3%.

Table 4 and table 5 in appendix E show that the covariations and the “beta”

coeflicients increase as a tends to 1. The average increase of the “beta” coeflicients

®values corresponding to the estimated index appears in bold face.
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is about 6% when a decreases from 2 to 1.7, with a maximum increase of 9% for
CR. FONC. FRANCE.

To stress the significance of this result, let us take the example of the THOMSON
CSF and the ACCOR stocks. In the classical Gaussian frame, the estimated “beta”
coeflicients are respectively 1.17 and 0.91. If we use the more realistic value a = 1.7,
they increase up to respectively 1.23 and 0.98, i.e. increases of 5% and 8%. In other
words, the sensibilities of the THOMSON CSF and ACCOR stocks to the market
portfolio are markedly greater than the ones estimated with the “Gaussian” CAPM.
The same phenomenon is observed for all others stocks but with different variations
of the coeflicient. This has two important consequences: when building an index
replicated portfolio with a = 1.7, the proportion of each stock will not be the same
as in the “Gaussian” case. Assuming wrongly that asset returns have a joint normal
distribution thus results both in an underevaluation of the “beta”of the stock (and
consequently of the risk premium) and in a non optimal portfolio allocation.

To summarize, the classical CAPM based on the mean-variance approach is gene-
rally misleading because it discards important information about the risk structure
of different investment opportunities. This means that the MV-efficient portfolio is
not efficient in the “stable” CAPM context. It is thus necessary to generalize the

notion of efficiency from MV-efficiency to stable-efficiency.

9. CONCLUSION

The “stable” CAPM derived here represents a generalized model for evaluating
both the risk and the expected return of alternative portfolios. Since, as was shown
in section 3, price changes seem to approximately follow a-stable laws with a = 1.7,
this stable CAPM offers a valuable alternative for measuring the risk. It differs from
the classical one by its ability to deal with high risks induced by strong variations
of markets. It should then be a useful and convenient tool for fund managers and
investors who seek to maximize their trade-off between risk and return. Indeed, the
Gaussian model of portfolio optimization underevaluates the real risk, because it is
based on a theoretical framework not well fitted to the real market. On the contrary,

the generalized CAPM allows to adequately price the risk in the real world.

INRIA



AriM, sk AnaG £Oorijoito oEelection in olavie MNMATRELS

1J

APPENDIX A. RESULTS OF STABILITY TESTS UNDER SUMMATION ON 9 STOCKS

CHOSEN FROM THE CAC40 INDEX.

| Frequency (days) || 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

| Sample size | 2050 | 1020 |686 [514 [411 [343 [204 [257 [228 [205

ACCOR 167 [171 [169 [170 [175 [169 [177 [177 [173 | 1.73
(0.01) | (0.01) | (0.04) | (0.04) | (0.03) | (0.06) | (0.02) | (0.05) | (0.06) | (0.06)

C.BANCAIRE || 170 [175 [177 [1.83 |1.82 [177 [1.75 [1.80 |1.84 |1.79
(0.03) | (0.02) | (0.07) | (0.02) | (0.05) | (0.07) | (0.08) | (0.08) | (0.06) | (0.08)

GEN.D.EAUX |/ 170 [176 |1.76 |1.82 |1.80 |184 |1.84 |1.85 |1.85 |1.83
(0.01) | (0.01) | (0.05) | (0.02) | (0.05) | (0.05) | (0.04) | (0.03) | (0.03) | (0.06)

THOM.CSF 170 [173 [176 |18 [181 [1.79 [1.82 |18 |1.79 |1.74
(0.03) | (0.01) | (0.02) | (0.02) | (0.03) | (0.06) | (0.04) | (0.04) | (0.05) | (0.05)

HAVAS 165 |173 [176 [179 [175 |179 [177 [1.78 [ 175 | 1.79
(0.06) | (0.01) | (0.02) | (0.02) | (0.06) | (0.03) | (0.07) | (0.04) | (0.06) | (0.03)

CR.FONC 160 [164 |1.67 [170 |[1.65 |1.64 |1.69 |172 |1.75 |1.71
(0.07) | (0.05) | (0.04) | (0.03) | (0.07) | (0.09) | (0.07) | (0.06) | (0.05) | (0.07)

MICHELIN 171 168 |[170 [1.73 [160 |[176 |[1.73 |1.80 [1.77 [1.77
(0.02) | (0.07) | (0.07) | (0.02) | (0.07) | (0.03) | (0.06) | (0.04) | (0.08) | (0.05)

LEGRAND 169 |168 [1.68 [170 |[171 |176 |1.75 |1.77 |[1.78 |1.79
(0.09) | (0.03) | (0.05) | (0.03) | (0.04) | (0.07) | (0.08) | (0.06) | (0.08) | (0.04)

CARREFOUR || 171 [1.80 |[182 [1.84 |178 [178 [1.80 |1.84 |1.81 |1.83
(0.04) | (0.01) | (0.02) | (0.02) | (0.05) | (0.06) | (0.05) | (0.04) | (0.05) | (0.05)

CAC 40 175 [177 [1.75 [1.80 |18 [177 [1.81 |18 [176 |1.72
(0.01) | (0.03) | (0.07) | (0.02) | (0.04) | (0.07) | (0.03) | (0.03) | (0.06) | (0.06)

TABLE 1. Estimated o-values for samples defined with respect to time intervals of

different size. The values enclosed in parentheses are the standard deviations of .
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APPENDIX B. RESULTS OF SELF-SIMILARITY TESTS ON 9 STOCKS CHOSEN FROM
THE CAC40 INDEX

| Frequency (days) || 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Sample size | 2059 | 1020 [686 [ 514 [411 [343 [204 [257 [228 | 205 |
ACCOR 091 [1.40 [1.79 | 2.13 | 2.47 [ 2.75 | 3.02 | 3.28 | 3.50 | 3.68

0.91 ( 1.38 | 1.75 | 2.08 | 2.38 | 2.66 | 2.91 | 3.15 | 3.38 | 3.60
C. BANCAIRE 127 | 1.89 |2.45 | 2.84 | 3.20 | 3.49 | 3.77 | 4.09 | 4.40 | 4.63
1.27 | 1.90 | 2.42 | 2.86 | 3.26 | 3.63 | 3.98 | 4.30 | 4.61 | 4.91
GEN.D.EAUX 089 | 138 |1.77 | 209 |238 |264 |284 |3.03 |3.19 | 3.37
0.89 ( 1.34 | 1.70 | 2.02 | 2.30 | 2.56 | 2.80 | 3.03 | 3.25 | 3.46

THOM.CSF 125 (1.8 |2.33 | 2.76 | 3.06 | 3.37 | 3.64 | 3.87 | 4.06 | 4.26
1.25 | 1.87 | 2.38 | 2.82 | 3.22 | 3.58 | 3.92 | 4.25 | 4.55 | 4.84
HAVAS 097 | 152 | 191 |226 |256 |282 |3.03 |3.22 |336 | 3.54
0.97 | 1.48 | 1.90 | 2.26 | 2.58 | 2.89 | 3.17 | 3.44 | 3.70 | 3.94
CR.FONC 099 | 154 | 192 |225 |250 |277 |3.08 |3.41 |3.66 | 3.92
0.99 | 1.53 | 1.97 | 2.36 | 2.71 | 3.04 | 3.35 | 3.64 | 3.92 | 4.19
MICHELIN 121 (184 |2.29 | 2.64 | 3.00 | 3.32 | 3.63 | 3.93 | 4.22 | 4.46
1.21 | 1.81 | 2.29 | 2.71 | 3.09 | 3.44 | 3.77 | 4.07 | 4.36 | 4.64
LEGRAND 085 | 131 | 163 |186 |2.15 | 235 |2.54 |272 |291 | 3.07

0.85 | 1.28 | 1.63 | 1.92 | 2.19 | 2.44 | 2.68 | 2.89 | 3.10 | 3.30
CARREFOUR 088 | 136 |1.70 | 2.01 | 224 |246 |2.70 |292 |3.12 | 3.30
0.88 ( 1.31 | 1.67 | 1.97 | 2.24 | 2.49 | 2.73 | 2.95 | 3.16 | 3.36
CAC 40 068 |1.03 |1.29 (152 |1.75 192 |2.11 |2.25 | 2.38 | 2.48
0.68 | 1.02 | 1.28 | 1.51 | 1.71 | 1.90 | 2.08 | 2.24 | 2.40 | 2.54

TABLE 2. Estimated v-values for samples defined with respect to time intervals of
1

different size. The bold face values are the “theoretical” ones, i.e. y9t& where t is the

frequency in days, & are the estimated values of & for ¢ = 1, and ¢ the estimated v value

fort=1.
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"Estimated-value” ——
"Theoretical-value" ----
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05 | 1

0 I I I I I I I I

5
frequency (days)
FIGURE 2. Evolution of the “CAC40” scale parameter as a scaling law with % where

& = 1.75. Dotted line: theoretical values. Dashed line: estimated values.

4 T T

"Estimated-value” ——
"Theoretical-value" ----

35 | 1

scale parameter

05 - b

0 I I I I I I I I

5
frequency (days)
FIGURE 3. Evolution of the “CARREFOUR” scale parameter as a scaling law with

% where & = 1.71. Dotted line: theoretical values. Dashed line: estimated values.
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ApPPENDIX C. RESULTS OF STABILITY TESTS WITH CONSTANT SIZE SAMPLE

T
"alpha_accor"

25 b

characteristic exponent

05 | 1

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

FIGURE 4. Estimated a-values for 6060 series defined from a subsample of size 300
of the initial sample with respect to time intervals of different size. Each point represents

an estimation of o for an ACCOR series.

4 T
"echelle_accor"

35 | 1

25 |

scale parameter
N
T

15 B

05 - b

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

FIGURE 5. Estimated v-values for 6060 series defined from a subsample of size 300
of the initial sample with respect to time intervals of different size. Each point represents

an estimation of v for an ACCOR series.

INRIA



AriM, sk AnaG £Oorijoito oEelection in olavie MNMATRELS

APPENDIX D. OPTIMAL CHOICE OF K-VALUES

6 T T T T T T T T T

"ban_cac" ¢

o o S5&0 oo
0.
s el

alpha(k)
w
503

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
k/n

FIGURE 6. The estimator an as a function of k for the BANCAIRE-CAC40 data.

| OPTIMAL VALUES OF k

Values of marginal o
Stocks a=20|a=17|a=15|a=13
(ACCOR,CAC40) 329 391 455 527
(BANCAIRE,CAC40) 306 370 413 490
(GEN.D.EAUX,CAC40) || 286 404 466 546
(THOM.CSF,CAC40) 247 328 409 516
(HAVAS,CAC40) 270 360 452 532
(CR.FONC,CAC40) 287 373 430 519
(MICHELIN,CAC40) 249 376 434 535
(LEGRAND,CAC40) 316 425 472 525
(CARREFOUR,CAC40) || 307 380 457 548

TABLE 3. Optimal values of k for o = 2,1.7, 1.5, 1.3
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APPENDIX E. RESULTS OF COVARIATION AND BETA ESTIMATION ON 9 STOCKS
CHOSEN FROM THE CAC40 INDEX

| «-COVARIATIONS

Values of marginal o
[X;, Ym]a a=20|a=17|a=15|a=1.3
ACCOR,CAC40], 0.033 | 0.126 |0.306 | 0,782

BANCAIRE,CAC40], 0.041 161 | 0.402 | 1.026
GEN.D.EAUX,CAC40], || 0.035 134 | 0.337 | 0.855
THOM.CSF,CAC40], 0.042 157 | 0.390 | 0.975
HAVAS,CAC40], 0.038 140 | 0.343 | 0.847
CR.FONC,CAC40], 0.033 128 | 0.307 |0.789

MICHELIN,CAC40], 0.042
LEGRAND,CAC40], 0.026
CARREFOUR,CAC40], || 0.034
CAC40,CAC40], 0.036

159 0.326 0.993
092 0.238 0.634
123 0.293 0.750
128 0.300 0.750

TABLE 4. Estimated values of a-covariations. The units are 10~3.

“BETA” COEFFICIENTS

Values of marginal o
Stocks a=20|a=17|a=15|a=13
ACCOR 0.91 0.98 1.02 1.04
BANCAIRE 1.14 1.25 1.34 1.37
GEN.D.EAUX || 0.97 1.05 1.12 1.15
THOM.CSF 1.17 1.23 1.30 1.30
HAVAS 1.05 1.09 1.10 1.13
CR.FONC 0.92 1.00 1.02 1.05
MICHELIN 1.17 1.24 1.32 1.33
LEGRAND 0.72 0.72 0.79 0.85
CARREFOUR || 0.94 0.96 0.99 1.00

TABLE 5. Estimated values of generalized “beta” coefficients

“BETA” COEFFICIENTS

Stocks Bir | Biz Bu—Piz
Bi1
ACCOR 0.91 | 0.88 3%
BANCAIRE 1.14 | 1.14 0%
GEN.D.EAUX || 0.97 | 0.95 2%
THOM.CSF 1.17 | 1.18 0.8%
HAVAS 1.05 | 0.96 8%
CR.FONC 0.92 | 0.93 1%
MICHELIN 117 | 1.17 0%
LEGRAND 0.72 | 0.81 12%
CARREFOUR || 0.94 | 0.83 11%

TABLE 6. Comparison between the two estimations of 3.
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