Confluence and Preservation of Strong Normalisation in an Explicit Substitutions Calculus

Abstract : Explicit substitutions calculi are formal systems that implement $\beta$-reduction by means of an internal substitution operator. Thus, in that calculi it is possible to delay the application of a substitution to a term or to consider terms with partially applied substitutions. This feature is useful, for instance, to represent incomplete proofs in type based proof systems. The $\lambda_{\sigma}$-calculus of explicit substitutions proposed by Abadi, Cardelli, Curien and Lévy gives an elegant way to deal with management of variable names and substitutions of $\lambda$-calculus. However, $\lambda_{\si- gma}$ does not preserve strong normalisation of $\lambda$-calculus and it is not a confluent system. Typed variants of $\lambda_{\sigma}$ without composition are strongly normalising but not confluent, while variants with composition are confluent but do not preserve strong normalisation. Neither of them enjoys both properties. In this paper we propose the $\lambda_{\zeta}$-calculus an we present the full proofs of its main properties. This is, as far as we know, the first confluent calculus of explicit substitutions that preserves strong normalisation.
Type de document :
Rapport
[Research Report] RR-2762, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00073929
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:06:36
Dernière modification le : mardi 17 avril 2018 - 11:25:25
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:24:44

Fichiers

Identifiants

  • HAL Id : inria-00073929, version 1

Collections

Citation

César Augusto Munoz Hurtado. Confluence and Preservation of Strong Normalisation in an Explicit Substitutions Calculus. [Research Report] RR-2762, INRIA. 1995. 〈inria-00073929〉

Partager

Métriques

Consultations de la notice

173

Téléchargements de fichiers

647