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Abstract: Theasymptotic behaviour of aclosed BCMP network, with n queuesand
m, clients, isanalyzed when n and m,, become simultaneously large. Our method
relies on Berry-Esseen type approximations coming in the Central Limit Theorem.
We construct critical sequencesm?, which are necessary and sufficient to distinguish
between saturated and non-saturated regimes for the network. Several applications
of these results are presented. It is shown that some queues can act as bottlenecks,
limiting thus the global efficiency of the system.
This report contains and extends the results obtained in [2].
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Etude asymptotique et charge critique pour les
grandsréseaux fermés a forme produit viale
ThéoremedelaLimite Centrale

Résumé: Onanalyselecomportement asymptotiqued’ un réseau BCM Pfermé com-

portant n files et m,, clients, lorsque n et m,, tendent vers I’infini simultanément.

Notre méthode s apparente aux approximations detype Berry-Esseen, liéesau Théo-

reme delaLimite Centrale. On construit des séquences critiques m?, qui Separent de

fagon nécessaire et suffisante lesrégimes de saturation et de non saturation du réseau.

Plusieurs applications sont présentées, incluant des cas d’ engorgement local.
Cetravail reprend et étend les résultats présentés dans [2].



Asymptotics and scalings for large closed product-form networksviathe CLT 3

1 Introduction

In many applications (telecommunications, transportation, etc.), it is desirable to
understand the behaviour and performance of stochastic networks as their size in-
creases. From an engineering point of view, the problem can be roughly formulated
asfollows:

Consider a closed network with n nodes and exactly m.,, customerscir-
culating inside. Find a function f, such that m = f(n) yields an inter-
esting performance of the system asn increases.

In this study, we start from the so-called product-form networks, which play an
important role in quantitative analysis of systems. Although the equilibrium state
probabilities have then a simple expression (see for example Kelly [4]), non-trivial
problems remain, due to an intrinsic combinatorial explosion in the formulas, es-
pecialy in those involving the famous normalizing constant. To circumvent these
drawbacks, the idea is to compute asymptotic expansions of the characteristic val-
ues of the network, when m and n both tend to infinity.

Thisapproach has been considered by Knessl and Tier [5], Kogan and Birman [6,
7, 1] and Malyshev and Yakovlev [10]. However, it relies on purely analytical tools,
which are difficult to use in amore general setting and, in our opinion, do not really
give a structural explanation of the phenomenainvolved.

The method proposed hereafter has direct connections with the Central Limit
Theorem: instead of representing the values of interest as complex integrals, we ex-
pressthemin termsof distributions of scaled sums of independent random variables.
Besides giving a clear interpretation of the computations, this allows to handle di-
rectly the general case of single-chain closed networks. We show by construction the
existence of critical sequences m?, in the following sense: the network saturatesiif,
and only if, m,, > mS. These results can also be interpreted as insensitivity prop-
erties: as the number of stationsn and the number of customers m,, go to infinity,
the network is shown to be equivalent to an open network of n independent queues
(having atotal mean number of customers m,,), in the sense that both systems have
asymptotically the same finite-dimensional distributions.

RR n° 2754



4 Guy FAYOLLE, Jean-Marc LASGOUTTES

The paper isorganized asfollows. Themodel isintroduced in Section 2, together
with a presentation of the method. In Section 3, asymptotics of the marginal distri-
bution of the queue lengths are given under normal conditions and also when some
gueues become overloaded. Section 4 unifies the results and contains the main the-
orems about scaling. Section 5 and 6 are devoted to concrete applications of these
results, in particular to service vehicle networks (like the Praxitéle project, now de-
veloped at INRIA). Section 7 contains some conclusive remarks. Most of the tech-
nical proofs are postponed in Appendix.

2 Mathematical model and view of the main results

Consider aclosed BCMP network €., withn queuesand m,, clients. The number of
clientsat queue k at steady stateisarandom variable Qy . Theservicerate at queue
k when there are g, customersis py  (qx). Therouting probability from queuek to
queue £ is py ¢ and P, denotes the transition matrix supposed to be ergodic, with
invariant measure 7, = (M, . . ., T n ), defined by:

MoPhn=mandm,+ - +myn=1. (2.1

Thenitisknown that, for any q1,...,q. > O suchthat q; + - - - + gn = My,

n i
Pn(Q],n: qb---)Qn,n: qn) :Z:n]nn ﬂk,n y (22)
' k=1 p’k,n(]) e Hk,n(qk)

with the normalizing condition

n ,qu
Zon = kn ) 2.3
= 2 maa 23

q1+-+gqn=m k=1

It is worth noting that our analysis applies to any network which has a prod-
uct form equilibrium distribution like (2.2). It includes for example, as soon
as the matrix P,, is reversible, all systems having transition rates of the form
Prenin(dx)Ben(de), inwhich case finite capacity situations can be covered (e.g.
Ben(de) = g, <q,})- See Serfozo [11] for further examples.

INRIA
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To avoid hiding global resultswith tedioustechnicalities, we suppose throughout
the study that, for all n, €, contains at least one queue which, taken inisolation, can
be saturated with afinite input flow (e.g. aM/M/c /oo queue).

Theoverall presentation requires definitionsand an intermediatelemma, givenin
Section 2.1. The informal presentation of the central results appears in Section 2.2.

2.1 Prdiminaries

Define, for each k, 1 < k < n, the generating function

o0

Zq
fin(z) £ -
h é uk,n(])"'uk,n(q)

Note that for each n, f, , has asingularity at finite distance for at least one 1 <
k <n.

Totheoriginal closed network €., welet correspond anew system O, (A) which
is open and consists of n parallel queues, with service rates . ,(x) and arrival in-
tensity Ay ,, at queue k, where the choice of A will be made more precise later. The
queue length X, (A) of the k-th queue of O,,(A) has adistribution given by

] (}\ﬂk,n)x
fk,n(}\ﬂk,n) uk,n(]) e le,n(X) ’

and Xq(A), ..., Xy n(A) are independent variables. We assume that X (A) has
some finite moments of order r > 2 and introduce the following notation:

P(Xin(A) =x) =

Min(A) £ EXkn(N), Sn(A) £ YR Xia(A),
Bin(A) = |E|an(x)—mk,n(x)|n BY(N) = X h Bin(A),
A Z Ben(N), o) E B,
;) = |E[xk,n(7\)—mk,n(7~n3, BY(A) £ Y BA(A

Let @i (0;A) be the characteristic function of Xy ,(A) — my(A). Then, for

: - fin(menAe®)
NG H Eel XiknA)—min(A))e — “kntlion e Imk,n(A)0 24
G (051 e @

RR n°® 2754



6 Guy FAYOLLE, Jean-Marc LASGOUTTES

and
©n(0;A) E ECrMTERME — 1 (85A) - @nn(0;A) (2.5)

The reason why O, (A) has been introduced is that the main performance char-
acteristics of the network €,, can be expressed simply in terms of the distribution of
X],n(}\)» vy XTL,TL(}\):

Lemma21l (i) For any choice of m,, there exists a unique A,, such that

IESTLO\TL) = lE[Xl ,nU\n) +---+ Xn,n(}\n)] = Mn. (26)

From now on, unless otherwise stated, all quantities will pertain to the net-
work O, (A,) and A,, will be omitted.

(if) Equations (2.2) and (2.3) can be rewritten as

-] n

P(Qin=d1...,Qun=1dn) = [[PXin=a). (27)

P(Sn - m) k=1
(i) Forany{ > 0 and q1,...,q¢ > 0, thejoint distribution of the number of
customersinthequeues,...,fof G, is
P(Q1,n:q1)---aQ€,n:q€) (28)
P(Sn - Z}i*] an =mMn — Z]if1 qk) ‘
f — 2 — P =
P(Sn — mn) H (Xk,n qk)

kel
= PXin=a1,...,Xpn = qelSn = my),

and, consequently, IEQ ., = IE[X¢|Sn = ma].
(iv) Forany1 <{ <m,

P(Sn— X¢ 4+ X¢ =my)
P(Sn = mn)

IEQi,n = Myn y (29)
where )~(2’n isaninteger-valuedr.v., independent fromeverything elseand hav-
ing distribution

X P(Xf,n = X)

P(>~<€,n = X) = ™

INRIA
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Note that A,, can be obtained as the unique solution of the equation

y19% n}\ fk 7'Ck n}\ )
i . 2.10
Mo = Z fkn Ttk n7\ ) ( )

While this equation isin general impossible to solve explicitly, A,, can be com-
puted numerically using classical methods.

Proof A straightforward computationyields, forall 1 < k < mn,

amk,n(}\) _ o-i,n(}\)
oA A
The mean number of clientsin O,,(A) isthus astrictly increasing function of A,
which equals zero when A = 0 and goes to infinity with A. This proves the first
assertion of the lemma.
Define

> 0. (2.11)

m
L, n AT

HE:] fk,n(ﬂk,n)\n) .

def
Yn =

Then (2.2) reads

1
Pﬂ.(Q],n = q1,...,Qn)n = qn) = —

n

=

P(Xxn = dx),

-~
Il

1
whichyields (2.7), since
Yo=Y HPan—qk P(Xin 4+ Xnn = my).
q1++gdn=mn k=1

Equation (2.9) and thefirst part of (2.8) arederived similarly. For the second part
of (2.8), we simply note that

[4
P(Sn— X4y Xin =Mn — X4y ai) [ [ PXiem =
k=1

¢
= PSpn=mXin=01,...,Xen = q¢) H P(Xkn = dx)

= P(X1,n =d1,.- -»Xf,n = q€|sn = mn) P(Sn = mn)

RR n°® 2754



8 Guy FAYOLLE, Jean-Marc LASGOUTTES

2.2 Informal description of the method

Most of the derivations obtained in the paper are based on the various representa-

tionsgivenin Lemma2.1. Whereas the studies|[6, 7, 1, 10] use mainly saddle-point

methods, our approach relies on direct limit theorems for the distribution of S.,.
For example, assumethat S,, — m,, satisfiesalocal limit theorem such as:

Under “ suitable” conditions, there exists a distribution with density f
and a sequence a,, such that, for any integer x,

lim a, P(S,, — My = x) —f(ai) —0. (2.12)

n—oo
n

Then Lemma2.1 will yield

an =
P(Q],n:qla---)Qn,n: ~ f( HPan—qk
k=1

and, for any finite ¢,

[4
PQin=d1,..,Qun=a0) ~ [ [PXin = aw).
k=1

This amountsto say that the joint distribution of any finite number of queuesin
the BCMP network €., is, at steady state, asymptotically equivaent to the product
distribution of the corresponding queuesin the system O,,.

It isat thismoment important to emphasi ze that we do not require any “ smooth”
limiting behaviour for O,,, which is somehow an instrumental network, computa-
tionally easier to evaluate.

To prove local limit theoremslike (2.12), it is necessary to investigate carefully
the behaviour of the variables Xy ,,. In particular, since [ES,, = m,, < oo, @l queues
in O, areergodic, whichreads, forany 1 < k <mn,

Anﬂk,n < uk,n S o0,

INRIA



Asymptotics and scalings for large closed product-form networksviathe CLT 9

or, equivalently,

0 def Tkn
Pr = An ]rSn@(n —uk,n <1, (2.13)

where typically

Hkn = Il_m C/uk,n(])"'uk,n(q)-

q—oo

Three main situations have been analyzed:

(i) p% isbounded away from1: then S,, /o, satisfiesalocal Central Limit Theo-
rem and tends in distribution to a normal law (see Theorem 4.2);

(i) p% — 1 and the supremumin (2.13) is attained for a finite number of queues:
then the network subdividesinto two subsets, the “ saturated” queues and the
rest of the network. As shown in Theorem 4.3, under mild regularity assump-
tions, there exists a sequence «,, such that S,,/«,, tendsto agamma law;

(i) p%, — 1 and the supremumin (2.13) is attained for an unbounded number of
queues: S, /o, againtendsin distribution to anormal law (see Theorem 4.4).

In fact, Theorems 4.2, 4.3 and 4.4 quoted above are general, in the sense that
they provide a construction of efficient scalingsin terms of m.,, the number of cus-
tomers: the existence of critical sequences m?, for the network C,, is shown by ex-
plicit construction. Under reasonable assumptions, these sequences are necessary
and sufficient to discriminate between saturated and non saturated regimes. Thisis
similar to phase transition phenomena observed in [10], where it was assumed that
m.,/n — A > 0 (see Section 6.1). Clearly, for a non-saturated regime to exist as
n — oo, itisnecessary to have m, = O(n); this condition is not sufficient (see
Section 6.2).

Condition (2.13) can be used to determine an upper bound for A,, and to exhibit
gueues which act as bottlenecks in the network €., (see Section 4).

Remark Rather than simplelimit theorems, the resultsin Sections 3 and 4 are given
in terms of asymptotic expansions, using the operators O and Q defined as follows:

a(m) =0(b(m)), iff IK>0, ¥n, la(n)| < Klb(n)],
Q(bm)), iff a(n)=0(b(n))andb(n) =0(a(n)),

2
2
I

RR n°® 2754
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wheren is some unspecified argument. Unless otherwise stated, all these boundsare
uniformwith respect ton and all queue indexes.

3 Local limit theoremsand asymptotic expansions

In this section, we compute estimates of several performance measures of C,, by
means of local limit theorems on sums of independent random variables. The two
series of results presented here are of somewhat different nature: whereas the condi-
tions of Proposition 3.1 depend on moments, Proposition 3.3 relies on analytic prop-
erties of the generating function of some queues.

3.1 Normal traffic case

When the queues are not saturated (in a sense made more precisein Proposition 3.1),
itispossibleto prove local Central Limit Theorems, relying more exactly on Berry-
Esseen type expansions (see for instance Feller [3]).

Defineyﬁyn from Xy , asin LemmaA.1 of the appendix, and let

2 def

’Yn:y%,n+"'+y‘%1,né 0-31

Proposition 3.1 (i) Let, for any 0 < r < 1 such that 3.2+ exists,

w1 o

n

61‘1 — EW.

Letv,.6,, — oo asn — oo. Then, for any integer x, the following approxi-
mation holds uniformly in x:

0 P(Sy — My =Xx) — ——e 29 (3.1)

. B On 'ngéi
B O( o2 tr ) i O<y$16n exp(— 5 )>

INRIA
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(ii) Let,for any 0 < r < 1 suchthat 33 exists,

1 o2
def
on = o

23

Let v,6, — oo asn — oo. Then, for any integer x, the following approxi-
mation holds uniformly in x:

1 2 6(3) x3 X
n P n = — ——e 2o |:1 (= —3— :| 2
O P(Sn —mn =X) — e + 6031(0?1 3%) (32)
B On 'ngéi
O( o3tr ) i O<y$16n exp(— 5 ))
Proof See Appendix A.2 ]

The main assumption of the previous propositionisclassical, sinceit is nothing
else but Lyapounov’s condition, popular in the Central Limit Problem:

B(2+r)
for somer >0, lim —=— =0. (3.3)

n—oo 0-721+T

This condition yieldsin particular (see e.g. Loeve[9])

lim max 2kt — o, (3.4)
n—0o 1<k<n Oy
which in turn implies the uniform asymptotic negligibility of the X, ,,’s. Note that it
would be possible by truncation methods to prove similar results without requiring
the existence of moments.
We are now in a position to present some basic estimates when the size of the
network increases.

Theorem 3.2 Let r be areal number suchthat 0 < r < 2. Assumethat o,, =
O(vn), that 127 exists and B12*"/c2"™ — 0 asm — oo. Then the following
asymptotic expansions hold.

RR n° 2754



12 Guy FAYOLLE, Jean-Marc LASGOUTTES

P(Q],n:qh-- )an:qn) (35)
= O-nHPan—qk)[] +O<BO_ZZI:)> .

k=1

(ii) For any finite £, if [Zfz] mjn — q;l/on — 0,

¢
P(Qin=41,...,Qen = a) = [ [PXin = @) [1 + Ole1)],  (36)

k=1

¢ [4
B, Th oh (T My — @)

81,T1, = O-%:*_T 0_%-
(X min — 4)BY)
+ 1{T>1} k ] O-_L:;_ ] .
(iii) For anyj,
|EQj n=IEX; [T+ O(e2)], (3.7)
6(2+T) n (2+T) B (3)
=Bt Ty B 1 B 14 B,

Proof Equation (3.5) isasimple application of Proposition 3.1 to (2.7).
To prove (3.6) from (2.8) when r < 1, we simply write

P(Sn - Z]ﬂ:] Xk,n =Mn — Z]c;:] qk)

P(Sn = mn)

2

¢ g2 -1 B+ _(Z]‘c:1mi,n*qi)
= (1-Ende)ifiro(Bnse = )]

2+‘r

and use the rlation [e=+*/2 — 1| < u2. When 1 < r < 2, it suffices to take into

account the inequality
(u® — Su)efuz/2 =0(u).

Relation (3.7) is also derived from (2.8). [ |

INRIA
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3.2 Heavy traffic case

We proceed now to analyze the behavior of the network €,, when some queues sat-
urate, asn — oo. This, in particular, implies that the Lyapounov condition (3.3)
isno more valid. Infact, after asuitable normalization, S,, — m,, will be shown to
convergein distribution to arandom variable having agammadistribution, under the
broad assumption that the first singularities of the relevant generating functions are
algebraic.

Let, for some p? € [0, 1] (to be specified in Section 4),

w 11— pp
wn(0) = T_poed’

and assume
Assumption A1l Thereexistsa set I, of “ saturable” queues, for which

Orn(8) = e ™MenOErn (9) Yy 1 (0),

with gy (0) = O(1), uniformly in k and n. Moreover, there exist a constant & max
such that
1 < E,k,n < ‘imax < Q.

Clearly, the term w&x~(8) coming in the definition of ¢y ,,(8) emphasizes the
fact that the generating function fy . (z) pertaining to queue k € J2 hasitsfirst sin-
gularity which is algebraic of order & . If, in addition, p? — 1 asn — oo, the
working conditions of the system ensure all queuesin 3¢ saturate so that, in partic-

ular, IEXy n ~ &k non, Where
w“ Pn

1y
Whilethis assumption covers awide range of known queues, it isclear that other
types of singularities could be handled via the same method.

Let
E‘n g Z E;k,n-

keF?

RR n°® 2754



14 Guy FAYOLLE, Jean-Marc LASGOUTTES

and define the total characteristic function of the queuesin I, \ F? by

?n(0) Z [ @un(0).

kgFs

Let r beareal number, 0 < r < 1. Heredfter, 6,,, (3@5*”, Y- and Sn will denote
quantities having the same meaning asin Proposition 3.1, but related to ¢, (0).

The counterpart of Theorem 3.2 now reads, in the case of heavy operating con-
ditions:

Proposition 3.3 Let p? — 1. If &, isbounded, 6,,/x, — 0 and Snf/n — 00 as
n — oo, then the following estimate holds:

(En+ 2)5n e onten
O P(Sn — My = %) — o

r(ﬂ?) A (3.8)
O T B fony24r  BIHY /Ony\En—
- O((;)z+a+ 62+ (;)H + 52+ (%)E 1)
1583

e
+0 (%S%nﬂ xEn 1 ) '
Proof See Appendix A.2 ]

The estimates of Proposition 3.3 alow to establish the main result of thissection.

Theorem 3.4 Let G, /o, — 0, B2 /627" — 0 and 6, = O(Jn) asn — oo.
Then the following expansions hold when &, is uniformly bounded:

(I) foranth---»qnzoa

P(Q],n =1y .y Qn,n = qn)

ol (En)

(3.9)
e EnEbnT g P(Xikn = dx) [1 + O(€n)],

with )

A
A

e, = (O'n)z n l n [?)if“") (O'n)2+'r n BT(IZ+T) (E)infl'

Xn o 02T N\, 02t Nty

)

INRIA
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(ii) for any finite ¢, such that 5 1 [1, €] = 0,
P(Q],TL: q]w--»Qf,n: Cle) (310)

- f[ P(Xkn = d) [1 +O(en) + O(Zi_1 n;:n - qk)]‘

k=1

(iii) foranyj & F?,

2 2
EQ,, = |Ex],n[1 +0(en) + O (w)] (3.11)

Ty nn

(iv) foranyj € F¢,
EQjn = EX;n [T + Olen)], (3.12)
Proof The proof of (i)-(iii) follows essentially aong the same lines as for Theo-
rem 3.2, while (iv) depends on Equation (2.9) of Lemma 2.1. |
4 Scaling

Assaid intheintroduction, this section provides guidelinesfor using the above tech-
nical resultsin two ways.

e Quantitative estimates for the error terms (w.r.t. some limiting distribution),
explicitly obtained from the original data (e.g. the total number of customers

my).

e Qualitative understanding of the “critical” vaues for m,, which, in some
sense, induce phase transitions of interest.

The queues are partitioned as follows:

EFn = {OSkSn ll_m C/uk,n(])"'uk,n(q)<oo}a

q—oo

I, £ {OSkSn: lim {‘/uk,n(l)---uk,n(q)=oo}-

q—oo

RR n°® 2754



16 Guy FAYOLLE, Jean-Marc LASGOUTTES

From the general discussion at the beginning of Section 2, &, is never empty.
Let adso

» {li_m (1) enla), ifke T,

Hkn = q—00 _
uk,n(])) |fk€jna
AnTT A
df Tk n def . Hkn def n
= ‘ AS = min —= ° = max = —.
Plon Hikn ) " keFn 7Tk,n, Pn k€Tn Ol }\%

We shall also need the following subset of F.:
9:% g{ke Fn Pkn = p%}

Note that the definitions of py , and p?, are consistent with the discussion which
lead to (2.13). Moreover, in most practical cases, pxn(q) — Hkn 8 q — 0o, pro-
vided that thislimit exists and isfinite.

To avoid uninteresting technicalities, it will be convenient to introduce Assump-
tions A2 and A3, but it should be pointed out that the results of Section 3 are valid
in a more genera setting. Simple conditions ensuring A1 and A3 are discussed in
Section 5.

Assumption A2 The following limit holds:

Tk.n

lim max — Bon = 0.
n%oo]gk§nu_1.£+...+_n\1

1,n Hn,n

Assumption A2 is somehow unavoidable to obtain a meaningful asymptotic be-
haviour of the network. It saysthat it is possibleto let m,, — oo asn — oo, with-
out saturating the network and, under the forthcoming Assumption A3, it amounts
to Lyapounov’s condition (3.3). Note that, when py, = Q(1) uniformly in k and
n, A2 issimply equivalent to

lim max m, =0.

n—00 1<k<n

INRIA
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Assumption A3 (i) For anyreal A < 1 and any integer v < 4, and for any
k € ¥, suchthat py, <A,

Mkn = Q(pk,n)> I(J,L = Q(pk,n)» ’Yi,n = Q(pk,n) (41)

uniformlyink and n.

(i) (4.1) also holdsfor all k € 7.

The derivation of the most general results of the section is donein Lemma4.1
and Theorem 4.2. Further insight, under some additional assumptions, is presented
in Theorems 4.3 and 4.4.

Definition A sequence m? issaidto beweskly critical for C,, if, forany0 < t < 1,

alt) 2 lim T 2 (42)

existsand tIir1n g(t) beeither 1 or oo.
e
If, in addition, the relation

. . tA°
lim lim M —
t—=1-n—o0 1’]’1.101 t—1-—n—00 TTL?L

holds, then the sequence is said to be strongly critical for C.,.

Before seeing how such critical sequences can be used, the next lemma proves
their existence.

Lemma4.1 Under assumption A3, a convenient weakly critical sequencefor C,, is,
for somefixed 0 < u < 1,

mS (u) £ hyma (UA?), (4.3)

where h, is correctly chosen.
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Proof Choose (t,u) €]0, 1[x]0, 1[. From A3,

n 0
Ma(tA®) = Q(ma (uA?)) = Q(Z M)
k=1 Hin
and the application t — my(tAy)/mx(uAy) is increasing and locally bounded.

Therefore, 0]
A —— mu(tA°
L) E Tim
gu(t) = lim i (VA

existsand isincreasing. To conclude the proof, take
= {tl_',m gu(t), if thelimitisfinite,
1, otherwise.

It isinteresting to note that, if the above limit isfinite for some v, it isfinite for
al u €]0, 1[. The proof of the lemmais concluded. [ |

Infact, asshownin Theorem 4.2, any critical sequencem?, actsasathresnold pa-
rameter for m,,. Under A2 and A3, which are satisfied by awide variety of networks,
we provide anearly complete classification in terms of necessary and sufficient scal-
ing. It isworth to emphasize that any m? chosen from (4.3) has a pseudo-explicit
form, given in terms of the data of the original network.

The second step is to enumerate in a consistent way the desirable properties of
the distribution of Q1 ., ..., Qnn: for somefinitej and some unspecified ¢, such
that e,, — 0 asn — oo, we have

EQjn = EXjn[l+O0(en)], (4.4)
j
PQin=a1n....Qn=0) = [[PXcn=ax) [1 + O(ﬁn)]> (4.5)

k=1

and also, when Theorem 3.2 [resp. Theorem 3.4] holds, thefollowing equation (4.6)
[resp. (4.7)]:
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P(Ql,n =1y, Qn,n = qn)
= V2ro, [ [ P(Xin = i) [1 + Olen)], (4.6)
k=1
P(Ql,n =dq1,..., an == qn)
ol (&)

Eajsg[Ipmn_qu+o@u] (4.7)

Theorem 4.2 Let A2 and A3 hold and m? be a weakly critical sequence for C,,,
with the associated function g(t).

Assumefirst that lim;_,; g(t) = 1. Then the following classification holds

() If

fim ™ 1,
n—oo m°

then (4.4), (4.5) and (4.6) hold with ¢, = 1/m,,. In particular, for all k €
{1,...,n}, IEQk isuniformly bounded inn

(i) If

fim 2 1,

n—oo m°
then, for any sequence of queuesk,, in ¢, we have lim IEQy, , = oo

(iii) If m? isastrongly critical sequence and

lim

_E>1
n—oo TTLO

then, for any sequence of queues k., in F2, we have lim IEQy, » = o©

In the situation lim_,;_ g(t) =

= 00, the same results hold, just replacing “< 1”
(resp. “> 17) inther.h.s. of the inequalitiesby “ < co” (resp. “= oo
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Proof To prove (i), note that m,, = m,(A,) = mu(pHA%). Since my (tA?)
is increasing in t, this implies that, when lim,,_,,, p% = 1, we have aso
lim, 0 m,/m% > 1. Therefore, in case (i), there exists T < 1 such that p° < t
for any n € IN. Using A3, we can estimate all error terms coming in Theorem 3.2
and the result is proved.

Similarly in case (ii) [resp. (iii)], we have necessarily lim,,_,, p = 1 [resp.
lim,_, p% = 1], and the result follows from the monotonicity of the function t —
mkn,n(tNT’L).

The caselim_,;_ g(t) = oo is handled with the same method. ]

Direct applications of Theorem 4.2 are proposed farther on in sections 6.1
and 6.2.

In order to get finer results, the next assumption ensures that the queues not be-
longing to F?, stay uniformly away from saturation conditions.

Assumption A4 Thereexistsa constant A < 1 such that,

Ag% <A, foralke F,\ 5, (4.8)
kn

In order to properly reformulate the results of Section 3, let us define

fa(A) £ ) mea(d), (4.9)
kgFs
me € R (A). (4.10)

Using (2.11), it is not difficult to see that m?, defined (4.10) isastrongly critical
sequence for G, under Al, A2, A3 and A4. Therefore, al results of Theorem 4.2
hold, as well as the following:

Theorem 4.3 Let A1, A2, A3 and A4 hold. If &, is uniformly bounded, then the
following results hold:

(i) If thereexists©,, > 0, such that, for all n € IN,

m,
my

<1-0,,
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and lim,_,e, 82, = oo, then (4.4), (4.5) and (4.6) hold with

w1 1
“ T m, T mel

except when a queue in J? is concerned, in which case (4.4) and (4.5) hold
with

1

= m.

En

(i) Ifthereexists0,, > 0, such that, for all n € IN,

my
my

> 1+06n,

and im0 8,8 = liMy o0 B2/ = o0, then (4.4) and (4.7) hold with
En—1

1 1 1 )
S arme T T /A%[“geﬁ]

Moreover, if in Equation (4.5), [1,j] N F = (), then thelatter also holds, with
€n, having the above value.

Proof To prove (i), notethat when m,, < (1 —6,)m?,

n(An) < Ma(A) < (1= 6,)Ma(A7).

Moreover, using A3, A4 and (2.11), Taylor’'s formula yields, for some A €
A, AL

m, — ﬁln(}\n) = T’h-n()\%) - Tﬁn(}\n)

62 (A)
= (Afl_}\n) n}\
= (o-an( Y T,
ey Hon
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which implies

L =Q(1—p%) > 0,.
0 ( n) -
Hence,

1
1T—p° _O(€>

and, using m,(A,) = Q(Bg)) = Q(62), adirect but tedious computation shows
that Theorem 3.2 applies with appropriate error terms.

Let us now prove assertion (ii) . It followsfrom

Mo — T () = O (2P

W) Z enﬁ'l% — 00,
that p? — 1T and
6'2
é = O(ma.(A)(1—p5)?)
= (= minar) = Olagiage) = Olazg)

Thus, Theorem 3.4 appliesand (ii) is proved.

|
It remains to state what happens when &,, — oo asn — oo. As shown below,
this behaviour does not depend on the saturation of the queuesin 7.

Theorem 4.4 Let &, — coasn — oo. Letalso Al, A2, A3 and A4 hold. Then,
under the uniformity assumption

s ExnPn
@ =0 <“k_w> , forall k e 52,

n

(4.11)
the results (4.4), (4.5) and (4.6) are again valid, with

def 1
&n =

(1—p%)my,
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Proof The statement relies on Theorem 3.2, taking r = 2. First, from classical
weak compactness and moment convergence theorems (seee.g. [9]), it followsthat,
forke F andal 0 <s <4

E,k npo )
<1:Q<_;4L.
K (1—po)s

Thus, the term coming in Lyapounov’s condition (3.3) isequal to

pnan

B _ o Mty
- 2
mn_l_ Pnin]

(1 pn)
My + %8, >
T—p9) Zmn + po&,]?

<

= Q

|
o

I
o

(i
(1—%ﬂM+m%>
(1—% )

which tendsto 0 asn — oo. The other error terms given in Theorem 3.2 are esti-
mated in the same way.

The only thing left to check isthat 02 = O(y2). Infact, sincey2 = Q(m.,),
this relation will only hold when p? is uniformly bounded away from 1. However,
forany k € F2 and for any 0 € [—m, 7],

@n(0)] = |win(8)f~[T+0(0)

- 5 Ekm
2

IN

= 1+0(0)

- - Ekm

-I 4

IN
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provided that a < p% < T, where a is some fixed constant. This bound can be used
to replace Equation (A.2) in the proof of Proposition 3.1 by

J eie"@n(e)de‘ < J
on<|0I<m [8]>6n

B O( 1 1 )
g (14 a282) 1)

En
1
S +] a8

which isexponentially small in &,,, since §,,a, = Q(1). [ ]

5 Towardsmore tangible assumptions

The assumptions used in the results of the previous section may seem difficult to
check in practice. However, as shown hereafter, they can be replaced (at the expense
of alossin generality) by simpler properties directly related to the service mecha
nisms of the queues.

The next lemma provides arealistic context in which A3 is satisfied.

Lemmab.1 Assume that

(i) thereexist sequences R(q) and T(q) such that

lim {/R(1)---R(q) =1,

4—ro0
lim T(q) = co,
and, for any q > 0,
Henl(d) > R(q)uin, fork e Jy,
Hin(d) = T(q)pn, fork e Jy;

(i) thereexistsa constant B < oo such that

0 Tck,T‘L
n

Hin

A < B, forall k € 7,..
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Then A3 holds.

Remark Thislemma can be applied in particular to any mixing of M/M /oo and
multiple-server queues with at most ¢ servers, with

R(q) = min [1%] CT(q)=q.

Proof For each queuek € 3, suchthat py,, < A, andfor al r € IN, we have

o0

T (}\n'nk,n)q — qTAq
Z q < Z W < 0.

q=0 uk,n(” Tt uk,n(q) q=0

In particular, fy »(Anmen) = Q(1) and

00

m _ nﬂk n Z nﬂk n
kn —

p’k,n(] )fkn nﬂkn

ARTT
(r) :Q< n k,TL>.
kon Hk,n(])

The same computations can be applied to k € J,, thus proving A3-(ii) . [ |

Similarly, for any r € IN,

The results of Section 4 can be easily generalized to a situation where some
M/M /oo queues of J,, become saturated, in which case A3-(ii) is no longer satis-
fied. Indeed, the characteristic function of the number of clients X inan M/M/oo
queue with parameter p can be written as

Eei®X — exp(p(eie _ ])) _ [eXp(ﬁ(eie B 1))] LPJ’

which means that a saturated infinite server queue can be replaced by severa non-
saturated infinite-server queues without changing the distribution of S,,. Therefore,
theresults of Section 4 still hold, except for marginal distributions containing one of
the saturated queues.

Theorems 4.3 and 4.4 aso required assumption A1 on the service mechanisms
of the so-called “saturable” queues. It is often enough to restrict ourselves to the
following two categories of queues, which encompass the standard M /M /c queue.
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Lemma5.2 Assumethat, for any k € F7, either

(i) thereisaconstant q., independent of k and n, such that

Wen(d) _ {0(1), ifa<qc, (5.1)
Hin 1, otherwise.

or
(i) for somefinite constants &min and &max,

n n _1
jog Ml @) _ B =1 Ay, (52)
u'k,n q

1
Ak,n(q) =0 (?) > 1 < &min < Ek,n < &max»

uniformly in k and n. (See also Section 7).

Then Al holds.

Proof Inview of Equation (2.4), for any fixed k and n, the quantity to estimateis
related to

fk,n(}\nﬂk,neie) = Z nﬂkne )

© 4
= XL e,

For the sake of brevity, let us omit the k and n subscripts and define, for any

zeC, |z <1,
_efoo Tow q
_ZHMP)Z

q=0 p=1

o

Thus, we have to estimate g(pe'®)/g(p), for 8 € [—m, 7] and p < 1. This proof
proceeds in steps:
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a) Assumefirst that (5.1) holds. Then, for

(1-z Zﬁu—lq-i- qC“H
| zl

q=0 p=1

g(z) =

and Assumptions Al holdswith & = 1.

b) Under (5.2), oneobtains, for g > 1,

q

q q
Il = expl(a—nzl—ZA(p)

oo u(p) — =

= expl(£—1)C— Al q® [T+ %,

where C isthe Euler constant, A = > o1 Alp), and a4 isuniformly bounded.
In the remainder of the proof, let

K £ exp[(&—1)C — Al

c) Let, for|z| < Tands € C,

q
blz,s) 2y =
=1
Then, for Re(s) > 0,
z [t Tdt

In fact, thisintegral representation can be used to get an analytic continuation
with respect to s, by introducing the (classical) Hankel’s contour. Thisyields,
foral |z| < 1 and Re(s) > 0,

blzs) = |

(—t)s'dt
21 '

et—z
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Distorting £ to include the zeros of e* — z, the following expression holds, for
Re(s) < 0 and al values of z such that | arg(— logz + 2inm)| < 7

d(z,8) =T(1—5) ) (—logz+ 2inm)*~".

nez

d) Using thisexpression, simple computationsyield, when & > 1 and |z| < 1

i q
g(z) = 1T4+K|d(z1 —E)+an_2aqzq]

a=1

K [logtz logz &
= 1 L
logtz| K * +nz#o (Iogz—lmn

q
+log® ZZ qa_zaqzq] ,

q=1
and, finally,
glpe®) [ 1-p 7" o0
glp) ~ [1—pe® |1+ Ep(e® 1]
This concludes the proof of the lemma. [ |

6 Applications

6.1 A Jackson network with convergence properties

Consider the basic Jackson network (consisting of M/M /1 queues with constant
service rates) analyzed in [10].
In this case,

tren A2 Tt m

n
ma(tA2) = , withry,, =
" ; 11— tTk,n " Hin

Under the assumption made in [10] that the counting measure

I.(A) 2 %Card(k (Ten € A),
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——————————————————————————————————————————————————————

______________________________________________________

Figure 1: acompound network of tandem queues

defined for all Borel sets A, converges weakly to a probability measure I, we have

0 1
lim M) :=J Y1),
o 1 —tr

n—o0o n

and

1
. t
ImJ T_a1(r) €A, < co.
t=1— fo T—tr

Thus, theresultsof [10] are contained in the theorems of Section 4, takingm? =
nA., Which isthen astrongly critical sequence for C,,.

6.2 A network with tight bottlenecks

As pointed out in the introduction, there are cases of interest withm, = o(n). This
will beillustrated in the next example.

Consider aclosed network consisting of s, subnetworksof M,/M /1 queues hav-
ing each a unique entry point, in which a fixed number m of tasks circulate. The
queues are subject to failures, taking place with some probability f < 1. When a
failure occurs, the task returns to the entry point of its current subnetwork. Tasks
visit the various subnetworks according to some probability matrix.

Thismodel exhibits tight bottlenecks, when the number and the size of the sub-
networksgrow. Thisfact, for the sake of simplicity, will beillustrated on avery ssim-
ple topology, presented in Figure 1: all subnetworks are associated in tandem, and
each of them consistsitself of £,, queuesin tandem, with unit processing rates.

Here, the invariant measure of the routing matrix has the form

(T[],TL) e )nfn,n;TC],n) Ceayees )TCEn,TL)>
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where 7y ,, is the invariant probability associated to the k-th queue of an arbitrary
subnetwork. A straightforward computation, using symmetry properties, yields, for
any t €]0, 1],

11—

n = — = (1 — k-1 n
Tk, Sn.l — (] _f)fn ( f) T mn,

Choosing some fixed u €]0, 1[ and assuming that ¢,, — oo asn — oo, we have

- oma(tAy)  Let)
A )~ L)

where L isdefined on 10, 1] as

2 (1= 1)k

Le(t) =
rlt] T —t(1— )&

and “th], Lf(t) = 0.
Therefore, m,, (uA? ) isastrongly critical sequence for the network and the size
of the queues remain uniformly bounded if, and only if,

mn = O (mn(uAy)) = O(sn) = o(n).

6.3 A servicevehicle network

Consider afleet of vehicles serving an area consisting of n stations forming a fully
connected graph. Thesevehiclesare used to transport goods or passengers. Vehicles
wait at stations until they receive arequest, in which case they go to an other station.
The routing among stations is done according to some routing matrix P,,. When a
reguest arrivesto an empty station, it isimmediately lost. The request arrivals form
aPoisson stream at each queue.

We modd this system as follows: for al 0 < k < n, station k is represented
as a single-server queue with service rate p , which is equal to the arrival rate at
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station k, since arrivals are lost when the station is empty. When a vehicle leaves
station k, it chooses its destination according to the Markovian routing matrix P, =
(Pxen). Theduration of thejourney between two stationsk and € isrepresented by an
infinite server queue placed on the edge between them. The servicerate of thisqueue
when there are q vehicles traveling between k and £ is quy,. Note that, contrary
to the convention used throughout this paper, the total number of queuesisn? + n.
Let (71, ..., n) betheinvariant measure of P,,, defined asin (2.1). Then, with
obvious notation, for al k, £ € [1,n], foral 6 € [—m, 7],

@  AnTln «  AnTlknPen
Pxn = ZH » Pren = ZH
k,n k,n
def Pxn def
Mkn = 1 0 y Mken = Pken,
— MPkn .
def (] - pk,n)eilmk’ne def Pre.n(e®—1—i0)
Pxn(0) = T—pene® Pren(0) = e :
— Mkn

Define F? asin Section 4 and assumethat itscardinal issomefixedinteger K > 1.
Lemmas 5.1 and 5.2 apply, takingR(q) =1, T(q) =qand &g, =1 forq > 1 and
k € F°. Thus, when A4 holds, Theorem 4.3 can be used and estimates of many
performance measures can be derived, with corresponding error terms.

Some questions of interest arise:

e which maximal efficiency can be expected from this system?

e how many vehicles should be provided?

To answer these questions, it is convenient to define the loss probability as

n_ n P n — 0
(P|O$(T1) g Zk_] p’k, (Qk, )'

Z]T::1 Hin
Pioss(n) is the proportion of customers that are lost because they arrive a an
empty station. Thisisagood indicator of the quality of service provided by the net-
work. Under appropriate conditionsasn — oo:

- ZE:] Hi,n P(Xk,n = O)
2 ot Hien
An

2 ZT1<1=1 Hk,n'

‘-Ploss(n)

1 (6.1)
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Thelast expression isadecreasing function of A,,, whichisitself bounded by A?.
Therefore, the minimum loss probability is attained when A,, — A%; this happens
with

m, = (11— en)ﬁ) JI_)rQo On =0,
where 0., is chosen to satisfy the assumptions of Theorem 4.3-(i) . With this choice
of m,, (6.1) holds with
A =A% (1+0(8,)),

whichisasymptotically optimal. Consequently, a*“good” valuefor m,, ism,, = m?,
and having a number of vehicle proportional to the number of stations can be a poor
choice, especially when some stations are more |loaded than others. These stations
act as bottlenecks of the system, which should be removed by altering the routing
probabilities.

7 General remarks

First, achief difficulty of the analysisis due to the need of dealing with rate of
convergence and limits of densities: thisis the field of Berry-Esseen theorems and
large deviations.

Secondly, theresults have been obtained under several technical assumptions(es-
pecially uniformity), whichin some senseare unavoidable. Thismeans precisely that
the choice of conditionsslightly different from A1, A3 and A4 would have led to dif-
ferent families of limit laws having infinitely divisible distributions.

In particular, from aphysical point of view, it isworth commenting on equation
(5.2). Theinequality &y, > Timpliesthat themaximum servicerate of the queuesin
F? isreached from below; thisisnot the case if 0 < &x , < 1, and the analysis was
omitted, since the technicalities involved would have made the text unnecessarily
obscure. At last, the case &k, < 0 dedling with other types of singularities (for
instance logarithmic), was not carried out, and would yield other limit laws.

The future class of problems of interest concerns some non-product form net-
works.
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A Appendix

A.1 A bound on periodic characteristic functions

One of the problems arising in the computation of convergence rates in the Central
Limit Theorem isto find upper bounds on the modulus of a characteristic function
©(0) for © away from 0. Onetypical property used can be stated as follows:

thereexist 8 > 0 and a < 1 such that, for all |8] > 0y, |@(0)] < a.

Itispointed out in Feller [3] that thisconditionisusually easy tofulfill in practice,
aslong as X does not have alattice distribution. Unfortunately, we are in the lattice
case and thus must cope with the periodicity of o.

Next lemma shows how a bound on |@(0)| can be derived for [0] < 7.

LemmaA.l Let X be an integer-valued random variable with distribution P(X =
k) = px, k € IN. Define

2 def —  DP2kDP2k+1 . l
B Z P2k + P2kt = mln(VarX, 4)’

where the summands are taken to be zero when pyx = pay1 = 0. Then, for any
0 € [—m, 7], the characteristic function ¢ of X satisfies:
Yz 2
0 (8)] < exp(—5-67). (A1)

Proof We have

0) = ‘i Pkeike‘ < i‘ka +P2k+1€ie‘-

k=0 k=0

Moreover,

\/ (P2k + Paxs1€0S0)2 + p3,,, SIN* O

= \/(PZk + Par+1)? — 2p2xpaxs1 (1 — coso)

< Pkt P2ks1 — M(l — €0s0).

P2k + P2r+1

‘ka + P2k+1 eie‘
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Hence, for 0 € [0, 7],

9(8)] < 1—(1—cosg)y —P2PAAT
= P2x T P2+

2 55
< 1- ;9 Y
2v?
S exp(_ 7_[2 ez)?

which yields (A.1). That y? < Var X can be seen by a Taylor expansion of ¢ in
the neighborhood of 8 = 0, while the relation y? < 1/4 follows from the trivial
inequality

P2k P2k+1 < Pok + Pok+1

Pox + Part1 4
n

v hasthe desirable property to be zero when X isan integer variable with a span
strictly greater than 1, inwhich casetheperiod of ¢ islessthan 27t. Another desirable
property would be that y — oo when the moments of X are unbounded; sincey <
1/2, thisisobviously not possible here. That this“feature” is somehow unavoidable
can be seen on the following example:

24e® 1 & e
) £ -
©(0) +4ék(k_])

iko

4
i0 ) .
_ ] +2e +(1—€®)In(1 — e®).

Therandom variablehaving ¢ as characteristic function admits no finite moment
of order greater or equal to 1, but no bound on || is substantially better than (A.1).

A.2 Proof of Propositions 3.1 and 3.3

Proof of Proposition 3.1 Using a Fourier inversion formula, the left hand side of
(3.1) can be rewritten as

on [T iex L .

ZWJ e ", (0)do ZnJ ooe ez du.

—T7T
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Thus, our goal isto evaluate the quantity

R © iox B
I, = e X pn(0)do — e e 2 do

—T7T —00

— on —iox . _one?
= Jéne' ((pn(e) e 2 )de

. ()'121 2 .
— J e 1% 49 + J e %, (0)do.
181>6n IBl€[6n, 7]

It is known that

0>5n 0700
applying LemmaA.1to ¢, we get

92

< J T de:o( ‘ e) (A.2)
[8]>6n

e 9., (0)do
J Sn<lBl<m Y26,

Finally, we obtain abound on |I,,| which isuniformin x:

5“ 0%92
L) < J on(0) —e "5 |d
—6n
1 ol 1 i3
+O(026 e 7 >+O(’Y25 e 5 ) (A.3)
nvyn nvYn

We proceed now to estimate the above integral, so that implicitly (6] < §,. The
derivation relies on the following simple inequality, valid for all complex numbers
X1y, Xpand vy, ..., Yn:

n
X1 Xn = Y1+ ynf < Z X1 - Xl = Yl -yl (A4)
k=1

which will be used with x; = @1 (8) and yx = exp(—o7} ,,8%/2).
The characteristic function ¢y ,, of the random variable Xy ,, satisfies (see for
example Loeve [9])
|e|2+T
2

62 24T
@xn(8) =T+ 0% 5| < By (A5)
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Hence, using the inequality [e ™ — T 4+ x| < x®/s, validforal x > 0and 1 <
s <2,

< ‘(Pk,n(e)_]_'_ knz‘—'—‘ _]+ k’n%z‘
|9|2+r |e|2+T

@ (6) —e 3

< (2+471)

kn 2 kn 2

To find an upper bound for @y .|, assumefirst oy 16, < 1, so that

< BELTIOFT (A.6)

loxn(0)] < 1T—02 62+(3“”|6|2+T
(pk,n = knz 2
92

< exp(—ol, + BN S (A7)

Infact, (A.7) also holdswhen oy 6, > 1, sincein this case

0.12“1_}_ [3(2+T)6T (72 0.2+T6‘r > 0.

kn%¥n

From (3.4), we can choose n such that oy, < 0,,/2 and, using (A.4), (A.6) and
(A.7), wefind

\(Pn(e) —e | < Z B0 exp(—0oh + of , + B8} ) ez2
< BB eXp(—“ﬁ%z)- (A.8)

Equation (3.1) follows, since the integral in (A.3) isbounded by

on cr%ez
J Pn(0) —e 72

—n

a0 < p [ joprem(-o2 ) as

‘l B‘(rer'r)
- O(O'_n o2t )
The proof of (3.2) of the proposition is similar, athough the computations be
more involved. Redefine I, as

7t ) 0 ) _ 3 o2 02
L. gJ e 1% (0)do —J e 0x(1— iﬁ“)%)e_—“ze— de,

—TT —00
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To find abound for |1,,|, we have to estimate

.—(3)63 o2e?
on(0) — (1B )e T (A.9)
o202 . g3)g3 (3) 03 3 o202
< |on(0)—e n i fng? + e ]-I—I[?)S)e —5

The first part of the r.h.s. of (A.9) is evaluated as above with (A.4) and (A.7)
replaced by
92
7

For the second part, we use the following inequality, valid for r > 0 (see e.g.
Loeve[9])

Prn(0) < exp(—oy 4 Bicndn) =

[3(3) B(3+r)
[ o3 S g3
whichyields
B(3)63 93 141 pB3+m 0-3+r|e|3+r
—i (3) 3 n n
e 1 S < pp L < B O
and (3.2) follows. [ |

Proof of Proposition 3.3 The proof of this proposition is similar to the proof of
Proposition 3.1 and is only sketched here. Define

1

def Zje&"ﬂ Myjn +X%
YUn = )
Xn

and

Lo o e nawl(@) [T denl@ldao)ce

keF?
~2

© _Spu?
_J e*|uynw£n(u)e oz 2 du
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_ J e "9 @8 (/o) [ T | Wi (w/otn) = 1] @n (/) dus

—TtXn kest‘(r)l
TN . 7iﬁ
] el (u/on) [@n(u/om) —e = 7 |du
J—TTn
[Tt _shu?
+ e wn [wf{‘(u/ocn) — wbn (u)]e «n 2 du
J—TTXn
62 42
— e Wrwin(y)e = 2 du. (A.10)
Ju[>men

The evaluation of these integral s depends on the following straightforward esti-
mations, valid for [u| < o,

1
Wi (w/on)| = O<W>’
T entw/an) —1 = o),

keFs

and on (A.8), which yields for it < oo,

@nlu/on) — efj‘jﬁuTZ = O(égm)u2+r exp(_ﬁu_z)’

ozt o2 8
|@n(w/on)| < eXp(—?—éuZz).

Moreover, we use the following approximation, valid for a, b > 0 and for suffi-
ciently small z:

o0

I(a)b,Z) gJ |u| e_ZzuZdu: O(]) + O(ZZb_a_])-

oo (1 +u?)?
These relations, together with (A.10), yield:

A

= o) ) o )
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A A
A

— O<L+ 5}5”) (E)HT_'_ Blz+m (&)&m)

24T
(O Xn

To conclude the proof of (3.8), the second term coming in the definition of 1, is
evaluated using Parseval’s identity and classical tools of complex analysis (see e.g.
Lavrentiev and Chabat [8]). Thisyields

o0 ) _6'2 u_2 En—1 —Yn &2
e Unt i (y)e b 2 dqu = In_© [1 + O(_n)]
Jw (1) F(E.) o
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