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Étude asymptotique et charge critique pour les
grands réseaux fermés à forme produit via le

Théorème de la Limite Centrale

Résumé : On analyse le comportement asymptotique d’un réseau BCMP fermé com-
portant � files et � � clients, lorsque � et � � tendent vers l’infini simultanément.
Notre méthode s’apparente aux approximations de type Berry-Esseen, liées au Théo-
rème de la Limite Centrale. On construit des séquences critiques � �� qui séparent de
façon nécessaire et suffisante les régimes de saturation et de non saturation du réseau.
Plusieurs applications sont présentées, incluant des cas d’engorgement local.

Ce travail reprend et étend les résultats présentés dans [2].
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1 Introduction

In many applications (telecommunications, transportation, etc.), it is desirable to
understand the behaviour and performance of stochastic networks as their size in-
creases. From an engineering point of view, the problem can be roughly formulated
as follows:

Consider a closed network with � nodes and exactly � � customers cir-
culating inside. Find a function

�
, such that ���

��� ��� yields an inter-
esting performance of the system as � increases.

In this study, we start from the so-called product-form networks, which play an
important role in quantitative analysis of systems. Although the equilibrium state
probabilities have then a simple expression (see for example Kelly [4]), non-trivial
problems remain, due to an intrinsic combinatorial explosion in the formulas, es-
pecially in those involving the famous normalizing constant. To circumvent these
drawbacks, the idea is to compute asymptotic expansions of the characteristic val-
ues of the network, when � and � both tend to infinity.

This approach has been considered by Knessl and Tier [5], Kogan and Birman [6,
7, 1] and Malyshev and Yakovlev [10]. However, it relies on purely analytical tools,
which are difficult to use in a more general setting and, in our opinion, do not really
give a structural explanation of the phenomena involved.

The method proposed hereafter has direct connections with the Central Limit
Theorem: instead of representing the values of interest as complex integrals, we ex-
press them in terms of distributions of scaled sums of independent random variables.
Besides giving a clear interpretation of the computations, this allows to handle di-
rectly the general case of single-chain closed networks. We show by construction the
existence of critical sequences � �� in the following sense: the network saturates if,
and only if, � ��� � �� . These results can also be interpreted as insensitivity prop-
erties: as the number of stations � and the number of customers � � go to infinity,
the network is shown to be equivalent to an open network of � independent queues
(having a total mean number of customers ��� ), in the sense that both systems have
asymptotically the same finite-dimensional distributions.
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4 Guy FAYOLLE, Jean-Marc LASGOUTTES

The paper is organized as follows. The model is introduced in Section 2, together
with a presentation of the method. In Section 3, asymptotics of the marginal distri-
bution of the queue lengths are given under normal conditions and also when some
queues become overloaded. Section 4 unifies the results and contains the main the-
orems about scaling. Section 5 and 6 are devoted to concrete applications of these
results, in particular to service vehicle networks (like the Praxitèle project, now de-
veloped at INRIA). Section 7 contains some conclusive remarks. Most of the tech-
nical proofs are postponed in Appendix.

2 Mathematical model and view of the main results

Consider a closed BCMP network � � with � queues and � � clients. The number of
clients at queue � at steady state is a random variable ����� � . The service rate at queue
� when there are ��� customers is 	
��� � � ��� � . The routing probability from queue � to
queue � is 
���� ��� � and � � denotes the transition matrix supposed to be ergodic, with
invariant measure � � � � ����� ����������� � � � � � , defined by:

� � � � � � � and ����� ����������� � � � � � �!� (2.1)

Then it is known that, for any �"� ��������� � �$#�% such that �&� �'������� � � � ��� ,
P �
� �(��� � � �)� �������*� � � � � � � � � �,+.- �/10 � �

�2
�43
�

��576��� �
	8��� � � � �8����� 	8��� � � ��� �

� (2.2)

with the normalizing condition

+ / � � � 9
5�:<;8=>=>= ;
5 0 3 /

�2
�438�

��576��� �
	���� � � � �
����� 	���� � � ��� �

� (2.3)

It is worth noting that our analysis applies to any network which has a prod-
uct form equilibrium distribution like (2.2). It includes for example, as soon
as the matrix � � is reversible, all systems having transition rates of the form

���� �?� �"@ ��� � � ��� ��A �?� � � ��� � , in which case finite capacity situations can be covered (e.g.A �?� � � ��� � � 11B 5DCFE ¯5DCHG ). See Serfozo [11] for further examples.

INRIA



Asymptotics and scalings for large closed product-form networks via the CLT 5

To avoid hiding global results with tedious technicalities, we suppose throughout
the study that, for all � , � � contains at least one queue which, taken in isolation, can
be saturated with a finite input flow (e.g. a ������������� queue).

The overall presentation requires definitions and an intermediate lemma, given in
Section 2.1. The informal presentation of the central results appears in Section 2.2.

2.1 Preliminaries

Define, for each � , �
	 � 	 � , the generating function

� ��� � ��� � def� 
9
5 3��

� 5
	8��� � � � �8����� 	���� � � � �

�

Note that for each � ,
� ��� � has a singularity at finite distance for at least one ��	

� 	 � .
To the original closed network � � , we let correspond a new system � � ��� � which

is open and consists of � parallel queues, with service rates 	)��� � ��� � and arrival in-
tensity

� ����� � at queue � , where the choice of
�

will be made more precise later. The
queue length �1��� � ��� � of the � -th queue of � � ��� � has a distribution given by

� � ����� � ��� � � � � � �
� ��� � ��� �"��� � �

��� �"��� � ���
	���� � � � �8����� 	���� � ��� �

�

and � ��� � ��� �7�������4� � � � � ��� � are independent variables. We assume that � ��� � ��� � has
some finite moments of order � #�� and introduce the following notation:

� ��� � ��� � def� IE ����� � ��� �7� � � ��� � def� � � �438� ����� � ��� �7�A����! ��� � ��� � def� IE " ����� � ��� �$# � ��� � ��� � " % � A �&�! � ��� � def� � � �438� A��&�! ��� � ��� �7�')( ��� � ��� � def� A ��*+ ��� � ��� �7� ')(� ��� � def� A ��*+ � ��� �7�
¯A ��,+ ��� � ��� � def� IE - ����� � ��� �.# � ��� � ��� ��/10 � ¯A ��,+ � ��� � def� � � �438� ¯A �&,+ ��� � ��� �D�

Let 2 ��� � �43657� � be the characteristic function of � ��� � ��� ��# � ��� � ��� � . Then, for
any real

3
,

2 ��� � �43657� � def� IE 8 i 9&: 6<; 0 9&=?> - / 6<; 0 9&=?>@>BA �
� ��� � � ����� � � 8 i A �
� ��� � � �"��� � � � 8 - i / 6C; 0 9�=D>EA � (2.4)
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6 Guy FAYOLLE, Jean-Marc LASGOUTTES

and
2 � �43657� � def� IE 8 i 9�� 0 9&=D> - IE � 0 9�=D> >EA � 2 ��� � �43657� �8����� 2 � � � �43 5 � � (2.5)

The reason why � � ��� � has been introduced is that the main performance char-
acteristics of the network � � can be expressed simply in terms of the distribution of
� ��� � ��� �7�������4� � � � � ��� � :
Lemma 2.1 (i) For any choice of � � , there exists a unique

� � such that

IE � � ��� � � � IE - � ��� � ��� � � � ����� � � � � � ��� � ��/ � ����� (2.6)

From now on, unless otherwise stated, all quantities will pertain to the net-
work � � ��� � � and

� � will be omitted.

(ii) Equations (2.2) and (2.3) can be rewritten as

P
� �(��� � � �)� �������*� � � � � � � � � �

�
P
� � � � ��� �

�2
�438� P

� ����� � � ��� �D� (2.7)

(iii) For any ��� % and �&� ��������� ��� # % , the joint distribution of the number of
customers in the queues � �������*� � of � � is

P
� �(��� � � �)� �������*� � ��� � � ��� � (2.8)

� P
� � � # � ��43
� ����� � � ��� # � ��43
� ��� �

P
� � � � ��� �

�2
�43
� P

� ����� � � ��� �
� P

� � ��� � � �)� ��������� �1�?� � � ���7" � � � ��� �D�
and, consequently, IE � �?� � � IE - ����� � " � � � ����/ .

(iv) For any �
	 � 	 � ,

IE ���?� � � � �?� � P
� � ��# ��� ������ � � � �

P
� � � � ��� � � (2.9)

where ����?� � is an integer-valued r.v., independent from everything else and hav-
ing distribution

P
� ������ � � � � � �

P
� �1�?� � � � �
� ��� �

�

INRIA
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Note that
� � can be obtained as the unique solution of the equation

��� �
�

9
�438�
�"��� � � � ������ � � �"��� � � � �� ��� � � ����� � � � �

� (2.10)

While this equation is in general impossible to solve explicitly,
� � can be com-

puted numerically using classical methods.

Proof A straightforward computation yields, for all �
	 � 	 � ,
� � ��� � ��� �� � �

')( ��� � ��� �� � %8� (2.11)

The mean number of clients in � � ��� � is thus a strictly increasing function of
�

,
which equals zero when

� � % and goes to infinity with
�

. This proves the first
assertion of the lemma.

Define �
� def�

+ / 0 � � � /10�� � �438� � ��� � � �"��� � � � �
�

Then (2.2) reads

P�
� � ��� � � �)� ��������� � � � � � � � � �

��
�

�2
�438� P

� ����� � � ��� �D�

which yields (2.7), since
�
� � 9
5 : ;
=>=>= ; 5 0 3 / 0

�2
�43
� P

� ����� � � ��� � � P
� � ��� � � ����� � � � � � � ��� � �

Equation (2.9) and the first part of (2.8) are derived similarly. For the second part
of (2.8), we simply note that

P
� � � # � ��43
� ����� � � ��� # � ��43
� ��� �

�2
�43
� P

� ����� � � ��� �

� P
� � � � � � " � � � � � �)� �������*� ����� � � ��� �

�2
�438� P

� ����� � � ��� �
� P

� � ��� � � �)� ��������� ����� � � ��� " � � � ��� � P � � � � ��� �D�
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8 Guy FAYOLLE, Jean-Marc LASGOUTTES

2.2 Informal description of the method

Most of the derivations obtained in the paper are based on the various representa-
tions given in Lemma 2.1. Whereas the studies [6, 7, 1, 10] use mainly saddle-point
methods, our approach relies on direct limit theorems for the distribution of � � .

For example, assume that � � # ��� satisfies a local limit theorem such as:

Under “suitable” conditions, there exists a distribution with density
�

and a sequence � � such that, for any integer
�

,

lim���


� � P

� � � # ��� � � � # ��� �� ��� � %8� (2.12)

Then Lemma 2.1 will yield

P
� �(��� � � �)� ��������� � � � � � � � ��� � �

� � % �
�2
�438� P

� ����� � � ��� �7�

and, for any finite � ,

P
� �(��� � � �)� �������*� � ��� � � ��� ��� �2

�43
� P
� ����� � � ��� �D�

This amounts to say that the joint distribution of any finite number of queues in
the BCMP network � � is, at steady state, asymptotically equivalent to the product
distribution of the corresponding queues in the system � � .

It is at this moment important to emphasize that we do not require any “smooth”
limiting behaviour for � � , which is somehow an instrumental network, computa-
tionally easier to evaluate.

To prove local limit theorems like (2.12), it is necessary to investigate carefully
the behaviour of the variables � ��� � . In particular, since IE � � � ���
	 � , all queues
in � � are ergodic, which reads, for any �
	 � 	 � ,

� � �"��� ��	 	���� � 	 � �

INRIA
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or, equivalently, �
�� def� � � max� E � E �

�"��� �
	���� �

	 � � (2.13)

where typically

	8��� � � lim
5 � 


�� 	8��� � � � �8����� 	8��� � � � � �
Three main situations have been analyzed:

(i)

�
�� is bounded away from � : then � � � ' � satisfies a local Central Limit Theo-

rem and tends in distribution to a normal law (see Theorem 4.2);

(ii)

�
���� � and the supremum in (2.13) is attained for a finite number of queues:

then the network subdivides into two subsets, the “saturated” queues and the
rest of the network. As shown in Theorem 4.3, under mild regularity assump-
tions, there exists a sequence @ � such that � � � @ � tends to a gamma law;

(iii)

�
���� � and the supremum in (2.13) is attained for an unbounded number of

queues: � � � ' � again tends in distribution to a normal law (see Theorem 4.4).

In fact, Theorems 4.2, 4.3 and 4.4 quoted above are general, in the sense that
they provide a construction of efficient scalings in terms of � � , the number of cus-
tomers: the existence of critical sequences ���� for the network � � is shown by ex-
plicit construction. Under reasonable assumptions, these sequences are necessary
and sufficient to discriminate between saturated and non saturated regimes. This is
similar to phase transition phenomena observed in [10], where it was assumed that
� � � � � �

� % (see Section 6.1). Clearly, for a non-saturated regime to exist as
� � � , it is necessary to have � � ��� � ��� ; this condition is not sufficient (see
Section 6.2).

Condition (2.13) can be used to determine an upper bound for
� � and to exhibit

queues which act as bottlenecks in the network � � (see Section 4).

Remark Rather than simple limit theorems, the results in Sections 3 and 4 are given
in terms of asymptotic expansions, using the operators � and � defined as follows:

� �
	 � ��� �
� �
	 � �7� iff ��� � %
��� 	 � " � �
	 � " 	 � " � �
	 � " �
� ��	 � � � �
� �
	 � �7� iff � �
	 � ��� ��� �
	 � � and

� �
	 � ��� � � �
	 � �7�

RR n ˚ 2754



10 Guy FAYOLLE, Jean-Marc LASGOUTTES

where
	

is some unspecified argument. Unless otherwise stated, all these bounds are
uniform with respect to � and all queue indexes.

3 Local limit theorems and asymptotic expansions

In this section, we compute estimates of several performance measures of � � by
means of local limit theorems on sums of independent random variables. The two
series of results presented here are of somewhat different nature: whereas the condi-
tions of Proposition 3.1 depend on moments, Proposition 3.3 relies on analytic prop-
erties of the generating function of some queues.

3.1 Normal traffic case

When the queues are not saturated (in a sense made more precise in Proposition 3.1),
it is possible to prove local Central Limit Theorems, relying more exactly on Berry-
Esseen type expansions (see for instance Feller [3]).

Define � ( ��� � from ����� � as in Lemma A.1 of the appendix, and let

� (� def� � ( ��� � ��������� � (� � � 	 ' (� �

Proposition 3.1 (i) Let, for any % 	 � 	 � such that A �&*�� �! � exists,

� %� def�
�
�

' (�
A ��*�� �! �

�

Let � � � � � � as � � � . Then, for any integer
�

, the following approxi-
mation holds uniformly in

�
:

' � P
� � ��# ��� � � � # �� � � 8

-�� **	� *0 (3.1)

� ��
 A ��*�� �! �

' ( ; %� � � ��
 ' �
� (� � � exp

� # � (� � (�
 � � �

INRIA
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(ii) Let, for any % 	 � 	 � such that A �&,�� �! � exists,

� � def�
�
�

' (�
A �&,+ � �

Let � � � � � � as � � � . Then, for any integer
�

, the following approxi-
mation holds uniformly in

�
:

' � P
� � ��# ��� � � � # �� � � 8

-�� **	� *0�� � � ¯A ��,+ �� ' 0� � � 0' 0� #�� �
' � ��� (3.2)

� ��
 A ��,�� �! �

' 0 ; %� � � ��
 ' �
� (� � � exp

� # � (� � (�
 � � �
Proof See Appendix A.2

The main assumption of the previous proposition is classical, since it is nothing
else but Lyapounov’s condition, popular in the Central Limit Problem:

for some � � %
� lim���



A ��*�� �! �

' ( ; %�
� %8� (3.3)

This condition yields in particular (see e.g. Loève [9])

lim���



max� E � E �
' ��� �' � � %
� (3.4)

which in turn implies the uniform asymptotic negligibility of the � ��� � ’s. Note that it
would be possible by truncation methods to prove similar results without requiring
the existence of moments.

We are now in a position to present some basic estimates when the size of the
network increases.

Theorem 3.2 Let � be a real number such that % 	 � 	 � . Assume that ' � �
� � � � � , that A ��*�� �! � exists and A �&*�� �! � � ' ( ; %� � % as � � � . Then the following
asymptotic expansions hold.

RR n ˚ 2754



12 Guy FAYOLLE, Jean-Marc LASGOUTTES

(i)

P
� � � � � � �)� ��������� � � � � � � � � (3.5)

� � � � ' �
�2
�438� P

� ����� � � ��� � � � � � 
 A ��*�� �! �

' ( ; %� � � �
(ii) For any finite � , if - � �� 38� � � � � # � � / � ' � � % ,

P
� �(��� � � �)� ��������� � ��� � � ��� � �

�2
�438� P

� ����� � � ��� ��� � � � ��� ��� � ��� � (3.6)

� ��� � �
A ��*�� �! �

' ( ; %�
� � �� 38� ')( � � � � � � �� 3
� � � � � # � � � (' (�

� 11 B %�� � G
� � �� 38� � � � � # � � � ¯A ��,+ �'	�� �

(iii) For any 
 ,
IE � � � � � IE � � � ��� � � � ��� ( � � �
� � (3.7)

� ( � � �
A �&*�� �! �

' ( ; %�
� ')( � � �' (� �

A ��*�� �! � � �
� � � � ' � ; %�

� 11 B %�� � G
¯A �&,7 �
' �� ' � � � � � � ' � � �

� � � � � �
Proof Equation (3.5) is a simple application of Proposition 3.1 to (2.7).

To prove (3.6) from (2.8) when � 	 � , we simply write

P
� � � # � ��438� ����� � � ��� # � ��438� ��� �

P
� � � � ��� �

� � � #�� C��� :�� *� ; 0� *0 � - :* � � � ��
 A ��*�� �! �

' ( ; %�
� 8 -

��� C��� :�� � ; 0�� � � � ** � *0 #'� � � �
and use the relation " 8 -�� *�� ( # � " 	 � ( . When � 	 � 	 � , it suffices to take into
account the inequality � � 0 # ��� � 8 -!� * � ( ��� � � �D�

Relation (3.7) is also derived from (2.8).
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3.2 Heavy traffic case

We proceed now to analyze the behavior of the network � � when some queues sat-
urate, as � � � . This, in particular, implies that the Lyapounov condition (3.3)
is no more valid. In fact, after a suitable normalization, � � # ��� will be shown to
converge in distribution to a random variable having a gamma distribution, under the
broad assumption that the first singularities of the relevant generating functions are
algebraic.

Let, for some

�
���� - %
��� - (to be specified in Section 4),

� � �43 � def�
� # �

��

� # �
�� 8 i A �

and assume

Assumption A1 There exists a set � �� of “saturable” queues, for which

2 ��� � �43 � � 8 - i / 6C; 0 A ��� 6<; 0� �43 ��� ��� � �43 �D�
with � ���� � �43 � � � � � � , uniformly in � and � . Moreover, there exist a constant � max

such that ��	 �!��� �
	 � max
	 � �

Clearly, the term � � 6<; 0� �43 � coming in the definition of 2 ��� � � 3 � emphasizes the
fact that the generating function

� ��� � ��� � pertaining to queue � � � �� has its first sin-
gularity which is algebraic of order � ��� � . If, in addition,

�
�� � � as � � � , the

working conditions of the system ensure all queues in � �� saturate so that, in partic-
ular, IE ����� �
	 �!��� �&@ � , where

@ � def�

�
��

� # �
��
�

While this assumption covers a wide range of known queues, it is clear that other
types of singularities could be handled via the same method.

Let
� � def� 9

����
 �0 �!���
�&�
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14 Guy FAYOLLE, Jean-Marc LASGOUTTES

and define the total characteristic function of the queues in � ��� � �� by

�2 � �43 � def� 2
�����
 �0 2 ���

� � 3 �D�

Let � be a real number, % 	 � 	 � . Hereafter, ˆ' � , ˆA �&*�� �! � , ˆ� � and ˆ� � will denote
quantities having the same meaning as in Proposition 3.1, but related to

�2 � �43 � .
The counterpart of Theorem 3.2 now reads, in the case of heavy operating con-

ditions:

Proposition 3.3 Let

�
�� � � . If � � is bounded, ˆ' � � @ � � % and ˆ� � ˆ� � � � as

� � � , then the following estimate holds:

@ � P
� � � # ��� � � �$#

� � � � �� 0 � � 0 - � 8 - � 0 ; �� 0
� � � � � (3.8)

� � 
 � ˆ' �@ � � ( � �@ � � ˆA �&*�� �! �

ˆ' ( ; %�
� ˆ' �@ � � ( ; % � ˆA ��*�� �! �

ˆ' ( ; %�
� ˆ' �@ � � � 0 - � �

� � 
 8 - ˆ� *0 ˆ	 *0

ˆ� (� ˆ� � 0 ; �� @ � 0 - �� � �

Proof See Appendix A.2

The estimates of Proposition 3.3 allow to establish the main result of this section.

Theorem 3.4 Let ˆ' � � @ � � % , ˆA ��*�� �! � � ˆ')( ; %� � % and ˆ' � � � � ˆ� � � as � � � .
Then the following expansions hold when � � is uniformly bounded:

(i) for any �&� �������*� � � #�% ,
P
� �(��� � � �)� ��������� � � � � � � � � (3.9)

�
@ � � � � � �
8 - � 0 � � 0 - ��

�2
�43
� P

� ����� � � ��� � � � � � ��� � � � �

with � � � � ˆ' �@ � � ( � �@ � � ˆA ��*�� �! �

ˆ' ( ; %�
� ˆ' �@ ��� ( ; % � ˆA �&*�� �! �

ˆ' ( ; %�
� ˆ' �@ � � � 0 - � 5
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(ii) for any finite � , such that � ���� - � � � / ��� ,
P
� �(��� � � �)� ��������� ���?� � � ��� � (3.10)

�
�2
�438� P

� ����� � � ��� � � � � � ��� � �
� � 
 � ��438� � ��� � # ���@ � � � �
(iii) for any 
��� � �� ,

IE � � � � � IE � � � � � � � � ��� � � � � 
 ')( � � � � � ( � � �
� � � �"@ � � � � (3.11)

(iv) for any 
 � � �� ,
IE � � � � � IE � � � � � � � � ��� � � � � (3.12)

Proof The proof of (i) -(iii) follows essentially along the same lines as for Theo-
rem 3.2, while (iv) depends on Equation (2.9) of Lemma 2.1.

4 Scaling

As said in the introduction, this section provides guidelines for using the above tech-
nical results in two ways.

� Quantitative estimates for the error terms (w.r.t. some limiting distribution),
explicitly obtained from the original data (e.g. the total number of customers
��� ).

� Qualitative understanding of the “critical” values for � � which, in some
sense, induce phase transitions of interest.

The queues are partitioned as follows:

� � def� �)% 	 � 	 �	� lim
5 � 


�� 	8��� � � � �8����� 	8��� � � � � 	 ��
 �
� � def� �)% 	 � 	 �	� lim

5 � 

�� 	8��� � � � �8����� 	8��� � � � � � ��
 �
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16 Guy FAYOLLE, Jean-Marc LASGOUTTES

From the general discussion at the beginning of Section 2, � � is never empty.
Let also

	���� � def� � lim
5 � 


�� 	���� � � � �
����� 	���� � � � �7� if � � � � ,
	���� � � � �7� if � � � � ,

�
��� � def�

� � �"��� �
	���� �

� � �� def� min����
 0
	8��� �
�"��� �
� �

�� def� max����
 0
�
��� � �

� �
� �� �

We shall also need the following subset of � � :

� �� def��� � � � � � � ��� � � �
���� �

Note that the definitions of 	 ��� � and

�
�� are consistent with the discussion which

lead to (2.13). Moreover, in most practical cases, 	)��� � � � � � 	���� � as � � � , pro-
vided that this limit exists and is finite.

To avoid uninteresting technicalities, it will be convenient to introduce Assump-
tions A2 and A3, but it should be pointed out that the results of Section 3 are valid
in a more general setting. Simple conditions ensuring A1 and A3 are discussed in
Section 5.

Assumption A2 The following limit holds:

lim� �



max� E � E � � 6C; 0� 6C; 0� : ; 0� : ; 0 � ������� � 0 ; 0� 0 ; 0 � %8�
Assumption A2 is somehow unavoidable to obtain a meaningful asymptotic be-

haviour of the network. It says that it is possible to let � � � � as � � � , with-
out saturating the network and, under the forthcoming Assumption A3, it amounts
to Lyapounov’s condition (3.3). Note that, when 	)��� � � � � � � uniformly in � and
� , A2 is simply equivalent to

lim� �



max� E � E � �"���
� �'%8�
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Assumption A3 (i) For any real � 	 � and any integer � 	�� , and for any
� � � � such that

�
��� � 	 � ,

� ��� � � � �
�
��� � �7� A ���! ��� � � � �

�
��� � �D� � ( ��� � � � � � ��� � � (4.1)

uniformly in � and � .

(ii) (4.1) also holds for all � � � � .
The derivation of the most general results of the section is done in Lemma 4.1

and Theorem 4.2. Further insight, under some additional assumptions, is presented
in Theorems 4.3 and 4.4.

Definition A sequence � �� is said to be weakly critical for � � if, for any % 	�� 	 � ,
� � � � def� lim� �




� � � � � �� �
� �� (4.2)

exists and lim� � � - � � � � be either � or � .

If, in addition, the relation

lim� � � - lim���



��� � � � �� �
� ��

� lim� � � - lim� �



� � � � � �� �
� ��

�

holds, then the sequence is said to be strongly critical for � � .
Before seeing how such critical sequences can be used, the next lemma proves

their existence.

Lemma 4.1 Under assumption A3, a convenient weakly critical sequence for � � is,
for some fixed % 	 � 	 � ,

� �� � � � def��� � ��� � � � �� �7� (4.3)

where � � is correctly chosen.
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Proof Choose
� � � � � � / %
��� -�� /�%
��� - . From A3,

��� � � � �� � � � � ��� � � � �� � � � � 
 �9
�438�
� � �� �"��� �
	8��� � � �

and the application ���� � � � � � �� � � ��� � � � �� � is increasing and locally bounded.
Therefore,

ˆ� � � � � def� lim� �



� � � � � �� �
��� � � � �� �

exists and is increasing. To conclude the proof, take

� � �
�

lim� � � - ˆ� � � � �D� if the limit is finite,� � otherwise.

It is interesting to note that, if the above limit is finite for some � , it is finite for
all � � / %
��� - . The proof of the lemma is concluded.

In fact, as shown in Theorem 4.2, any critical sequence � �� acts as a threshold pa-
rameter for � � . Under A2 and A3, which are satisfied by a wide variety of networks,
we provide a nearly complete classification in terms of necessary and sufficient scal-
ing. It is worth to emphasize that any ���� chosen from (4.3) has a pseudo-explicit
form, given in terms of the data of the original network.

The second step is to enumerate in a consistent way the desirable properties of
the distribution of � � � �"��������� � � � � : for some finite 
 and some unspecified

� � , such
that
� � � % as � � � , we have

IE � � � � � IE � � � � � � � � ��� � � � � (4.4)

P
� �(��� � � �)� �������*� � � � � � � � � �

�2
�438� P

� ����� � � ��� ��� � � � ��� � �
� � (4.5)

and also, when Theorem 3.2 [resp. Theorem 3.4] holds, the following equation (4.6)
[resp. (4.7)]:
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P
� �(��� � � �)� �������*� � � � � � � � �

� � � � ' �
�2
�438� P

� ����� � � ��� � � � � � ��� � � � � (4.6)

P
� �(��� � � �)� �������*� � � � � � � � �

�
@ � � � � � �
� � 0 - �� 8 - � 0

�2
�438� P

� ����� � � ��� � � � � � ��� � � � � (4.7)

Theorem 4.2 Let A2 and A3 hold and ���� be a weakly critical sequence for � � ,
with the associated function �

� � � .
Assume first that lim � � � - � � � � � � . Then the following classification holds:

(i) If

lim���



���

� ��
	 � �

then (4.4), (4.5) and (4.6) hold with
� � � � � ��� . In particular, for all � �� � �������4� � � , IE � ��� � is uniformly bounded in � .

(ii) If

lim���



���

� �� �
� �

then, for any sequence of queues � � in � �� , we have lim� �



IE � � 0 � � � � .

(iii) If � �� is a strongly critical sequence and

lim���



���

� �� �
� �

then, for any sequence of queues � � in � �� , we have lim� �



IE � � 0 � � � � .

In the situation lim � � � - � � � � � � , the same results hold, just replacing “ 	 � ”
(resp. “ � � ”) in the r.h.s. of the inequalities by “ 	 � ” (resp. “ � � ”).
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Proof To prove (i) , note that � � � ��� ��� � � � ��� �
�
�� � �� � . Since � �

� � � �� �
is increasing in � , this implies that, when lim � � 


�
�� � � , we have also

lim� � 
 ��� � � �� # � . Therefore, in case (i) , there exists � 	 � such that

�
�� 	 �

for any � � IN. Using A3, we can estimate all error terms coming in Theorem 3.2
and the result is proved.

Similarly in case (ii) [resp. (iii) ], we have necessarily lim � � 

�
�� � � [resp.

lim� � 

�
�� � � ], and the result follows from the monotonicity of the function � ��

� � 0 � � � � � �� � .
The case lim � � � - � � � � � � is handled with the same method.

Direct applications of Theorem 4.2 are proposed farther on in sections 6.1
and 6.2.

In order to get finer results, the next assumption ensures that the queues not be-
longing to � �� stay uniformly away from saturation conditions.

Assumption A4 There exists a constant � 	 � such that,

� �� �"��� �	8��� �
	 � � for all � � � � � � �� � (4.8)

In order to properly reformulate the results of Section 3, let us define

ˆ���
��� � def� 9

�����
 �0
� ��� � ��� �7� (4.9)

ˆ� �� def� ˆ���
��� �� � � (4.10)

Using (2.11), it is not difficult to see that ˆ� �� defined (4.10) is a strongly critical
sequence for � � under A1, A2, A3 and A4. Therefore, all results of Theorem 4.2
hold, as well as the following:

Theorem 4.3 Let A1, A2, A3 and A4 hold. If � � is uniformly bounded, then the
following results hold:

(i) If there exists
3 � � % , such that, for all � � IN,

� �

ˆ� ��
	 � # 3 ���
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and lim��� 

3 (� ��� � � , then (4.4), (4.5) and (4.6) hold with

� � def�
�
���
� �
� (� 3 �� �

except when a queue in � �� is concerned, in which case (4.4) and (4.5) hold
with � � � �

3 (� ��� �

(ii) If there exists
3 � � % , such that, for all � � IN,

� �

ˆ� ��
# � � 3 ���

and lim��� 

3 � ˆ� �� � lim� � 


3 (� ˆ� �� � � , then (4.4) and (4.7) hold with

� � def�
�

3 (� ˆ� ��
� �

3 � ˆ� ��
� ��

ˆ� ��
� �

ˆ� ��
3 (� �

� 0 � :* �

Moreover, if in Equation (4.5), - � � 
 / � � �� � � , then the latter also holds, with� � having the above value.

Proof To prove (i) , note that when ��� 	 � � # 3 � � ˆ� �� ,

ˆ� �
��� � � 	 ��� ��� � � 	 � � # 3 � � ˆ���

��� �� �D�
Moreover, using A3, A4 and (2.11), Taylor’s formula yields, for some

� �
/ � �"� � �� - ,

ˆ� �� # ˆ���
��� � � � ˆ� �

��� �� � # ˆ���
��� � �

� ��� �� # � � � ˆ')(� ��� ��
� ��� �� # � � � � 
 9

����
 0�� 
 �0
����� �
	8��� � � �
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which implies
� # ˆ� �

��� � �
ˆ� ��

� � � � #
�
�� �1# 3 �"�

Hence, �
� # �

��
����
 �3 � �

and, using ˆ���
��� � � � � � ˆA ���! � � � � � ˆ' (� � , a direct but tedious computation shows

that Theorem 3.2 applies with appropriate error terms.
Let us now prove assertion (ii) . It follows from

� � # ˆ���
��� � � � � � � �

�
��

� # �
�� � # 3 � ˆ� ���� � �

that

�
�� � � and

ˆ')(�@ (� � � � ˆ���
��� � � � � # �

�� � ( �

� � � ˆ���
��� � �

� ��� # ˆ���
��� � � � ( � � � � ˆ���

��� � �
3 (� - ˆ� �� / ( � � � � �

3 (� ˆ� �� � �
Thus, Theorem 3.4 applies and (ii) is proved.

It remains to state what happens when � � � � as � � � . As shown below,
this behaviour does not depend on the saturation of the queues in � �� .

Theorem 4.4 Let � � � � as � � � . Let also A1, A2, A3 and A4 hold. Then,
under the uniformity assumption

A ���  ��� � ��� �
�!��� �

�
��

� � # �
�� � ��� � for all � � � �� � (4.11)

the results (4.4), (4.5) and (4.6) are again valid, with

� � def�
�

� � # �
�� � � �

�
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Proof The statement relies on Theorem 3.2, taking � � � . First, from classical
weak compactness and moment convergence theorems (see e.g. [9]), it follows that,
for � � � �� and all % 	���	 �

A ���  ��� � � � �
�!��� �

�
��

� � # �
�� ��� � �

Thus, the term coming in Lyapounov’s condition (3.3) is equal to

A � �  �
' �� � �

��� ˆ� ��� 	 �0 � 09 � - 	 �0 > �� ˆ� ��� 	 �0 � 09 � - 	 �0 > * � (

��


� �
� � � # �

�� � � ˆ� ���
�
�� � �

- � � #
�
�� � ( ˆ� ���

�
�� � ��/ ( �

� � � �
� � # �

�� � ˆ� ���
�
�� � � �

� � � �
� � # �

�� � � � � �
which tends to % as � � � . The other error terms given in Theorem 3.2 are esti-
mated in the same way.

The only thing left to check is that ' (� � � � � (� � . In fact, since � (� � � � ˆ� � � ,
this relation will only hold when

�
�� is uniformly bounded away from � . However,

for any � � � �� and for any
3 � - # � � � / ,

"&2 ��� � �43 � " � " � ��� � �43 � " � 6C; 0���� � � � �43 � ���
	 �� �

� � � *0 A *�
�� � 6<; 0* ��� � � � �43 � ���

	 �� �
� � � *0 A *�

�� � 6<; 0� �
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provided that � 	 �
�� 	 � , where � is some fixed constant. This bound can be used

to replace Equation (A.2) in the proof of Proposition 3.1 by�����
���
0 E�� A � E �

8 - i A � 2 � �43 ��� 3 ����� 	 �
� A � �

�
0 �� �
� � � *0 A *�

�� � 0� � 3
� � 
 �� �"@ (� � �

�
� � � @ (� � (� � � 0� - � � �

which is exponentially small in � � , since
� �&@ � � � � � � .

5 Towards more tangible assumptions

The assumptions used in the results of the previous section may seem difficult to
check in practice. However, as shown hereafter, they can be replaced (at the expense
of a loss in generality) by simpler properties directly related to the service mecha-
nisms of the queues.

The next lemma provides a realistic context in which A3 is satisfied.

Lemma 5.1 Assume that

(i) there exist sequences � � � � and 	 � � � such that

lim
5 � 


�� � � � �8����� � � � � � � �
lim
5 � 
 	 � � � � � �

and, for any � � % ,
	���� � � � � # � � � � 	8��� �"� for � � � �&�
	���� � � � � # 	 � � � 	8��� �
� for � � � � 5

(ii) there exists a constant 
 	 � such that

� �� �"��� �	8��� �
	 
 � for all � � � �"�
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Then A3 holds.

Remark This lemma can be applied in particular to any mixing of ����� ��� and
multiple-server queues with at most � servers, with

� � � � � min � � � � � � � 	 � � � � � �
Proof For each queue � � � � such that

�
��� � 	 � , and for all � � IN, we have


9
5 3��
� %

��� � �"��� � � 5
	���� � � � �
����� 	���� � � � �

	 
9
5 3��

� % � 5� � � �8����� � � � � 	 � �

In particular,
� ��� � ��� � ����� � � � � � � � and

� ��� � �
� � �"��� �

	���� � � � � � ��� � ��� � �"��� � �

9
5 38�
�

��� � �"��� � � 5 - �
	8��� � � � �8����� 	8��� � � � �

� � 
 � � �"��� �
	8��� � � � � � �

Similarly, for any � � IN,

A ���! ��� � � � 
 � � �"��� �
	���� � � � � � �

The same computations can be applied to � � � � , thus proving A3-(ii) .

The results of Section 4 can be easily generalized to a situation where some
��������� queues of

� � become saturated, in which case A3-(ii) is no longer satis-
fied. Indeed, the characteristic function of the number of clients � in an ���������
queue with parameter

�
can be written as

IE 8 i A+: � exp
� � � 8 i A #'� � � � � exp

� �� ��� � 8 i A #�� � ��� � 	�� �
which means that a saturated infinite server queue can be replaced by several non-
saturated infinite-server queues without changing the distribution of � � . Therefore,
the results of Section 4 still hold, except for marginal distributions containing one of
the saturated queues.

Theorems 4.3 and 4.4 also required assumption A1 on the service mechanisms
of the so-called “saturable” queues. It is often enough to restrict ourselves to the
following two categories of queues, which encompass the standard � ������� queue.
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Lemma 5.2 Assume that, for any � � � �� , either

(i) there is a constant ��� , independent of � and � , such that

	8��� � � � �
	8��� �

�
� � � � �7� if � 	 ��� ,� � otherwise.

(5.1)

or

(ii) for some finite constants � min and � max,

log
	���� � � � �
	���� �

� # �!��� � #��
�

��� ��� � � � �D� (5.2)

with
� ��� � � � � ��� � �

� ( � � � 	 � min
	 �!��� � 	 � max

�
uniformly in � and � . (See also Section 7).

Then A1 holds.

Proof In view of Equation (2.4), for any fixed � and � , the quantity to estimate is
related to

� ��� � ��� � �"��� � 8 i A � � 
9
5 3��

��� � �"��� � 8 i A � 5
	���� � � � �8����� 	���� � � � �

� 
9
5 3��
52
� 38�

	���� �
	���� � � 
 �

�
�
��� � 8 i A � 5 �

For the sake of brevity, let us omit the � and � subscripts and define, for any� � C, " � " 	 � ,
� ��� � def� 
9

5 3��
52
� 38�

	
	 � 
 �

� 5 �

Thus, we have to estimate �
�
�
8 i A � � � �

�
� , for

3 � - # � � � / and

� 	 � . This proof
proceeds in steps:
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a) Assume first that (5.1) holds. Then, for

� ��� � � �
� # � �� � � # � � 5��9

5 3��
52
� 38�

	
	 � 
 �

� 5 � � 5���; � 5��2
� 38�

	
	 � 
 �

��
�

and Assumptions A1 holds with � � � .
b) Under (5.2), one obtains, for � # � ,

52
� 38�

	
	 � 
 �

� exp �� � � #�� � 59
� 38�
�



# 59
� 38�

� � 
 �
��

� exp - � � # � ��� # � /&� � � - � - � ��� �
5
/ �

where � is the Euler constant, � def� � 
� 3
� � � 
 � , and � 5 is uniformly bounded.
In the remainder of the proof, let

� def� exp - � � # � ��� # � / �

c) Let, for " � " 	 � and � � C,

� ��� � � � def� 
9
5 3
�

� 5
� � �

Then, for Re
� � � � % ,

� ��� � � � � �
� � � � � 
� � � - � � �8 � # � �

In fact, this integral representation can be used to get an analytic continuation
with respect to � , by introducing the (classical) Hankel’s contour. This yields,
for all " � " 	 � and Re

� � � � % ,
� ��� � � � � i

� � � # � �
� �

�
�

� # � � � - � � �
8 � # � �
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Distorting � to include the zeros of 8 � # �
, the following expression holds, for

Re
� � � 	 % and all values of

�
such that " arg

� # log
� � � i� � � " 	 � :

� ��� � � � � � � � # � � 9
� ��� � � # log

� � � i� � � � - � �
d) Using this expression, simple computations yield, when � � � and " � " 	 �

� ��� � � � � � �� � ��� ��� # � � � 59
5 38�
� � - ( � 5 � 5

��
� �

log � �
�
log � �
� � � � 9

� �3��
�

log
�

log
� # � i� � � �

� log � � 59
5 38�
� � - ( � 5 � 5�� �

and, finally,
� �
�
8 i A �
� �
�
�
�

� � # �
� # �

8 i A � � � �1� � � � 8 i A #'� � � �

This concludes the proof of the lemma.

6 Applications

6.1 A Jackson network with convergence properties

Consider the basic Jackson network (consisting of ������� � queues with constant
service rates) analyzed in [10].

In this case,

��� � � � �� � �
�

9
�43
�

� ����� �� # � ����� �
� with ����� � �

� �� �"��� �
	���� �

�

Under the assumption made in [10] that the counting measure� � � � � def�
�
� Card

� � � ����� � � � �7�
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Figure 1: a compound network of tandem queues

defined for all Borel sets � , converges weakly to a probability measure
�
, we have

lim� �



� � � � � �� �
�

�
� �
�
� �� # � �

� � � � �7�
and

lim� � � -
� �
�
� �� # � �

� � � � � def� �
� %

	 � �
Thus, the results of [10] are contained in the theorems of Section 4, taking � �� �

� �
� % , which is then a strongly critical sequence for � � .

6.2 A network with tight bottlenecks

As pointed out in the introduction, there are cases of interest with � � �	� � � � . This
will be illustrated in the next example.

Consider a closed network consisting of � � subnetworks of ������� � queues hav-
ing each a unique entry point, in which a fixed number � of tasks circulate. The
queues are subject to failures, taking place with some probability

� 	 � . When a
failure occurs, the task returns to the entry point of its current subnetwork. Tasks
visit the various subnetworks according to some probability matrix.

This model exhibits tight bottlenecks, when the number and the size of the sub-
networks grow. This fact, for the sake of simplicity, will be illustrated on a very sim-
ple topology, presented in Figure 1: all subnetworks are associated in tandem, and
each of them consists itself of � � queues in tandem, with unit processing rates.

Here, the invariant measure of the routing matrix has the form

� ����� ����������� ��� 0 � � 5 ��� � �&������� 5 ������� ��� 0 � � �D�
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where ����� � is the invariant probability associated to the � -th queue of an arbitrary
subnetwork. A straightforward computation, using symmetry properties, yields, for
any � � /�%
��� - ,

����� � �
�� � ��� � # � � � - �� # � � # � � � 0 � � � # � � � - � ��� � ���

� � � � � �� � � � � � 09
�43
�

� � � # � � � - �
� # � � � # � � � - � �

Choosing some fixed � � / %
��� - and assuming that � � � � as � � � , we have

lim���



��� � � � �� �
��� � � � �� � �

�
�
� � �

�
�
� � � �

where
�
� is defined on /�%
��� - as

�
�
� � � def� 
9

�43
�
� � � # � � � - �
� # � � � # � � � - �

and lim� � � - �
�
� � � � � .

Therefore, � �
� � � �� � is a strongly critical sequence for the network and the size

of the queues remain uniformly bounded if, and only if,

��� ��� � ��� � � � �� � � ��� � � � � � � � ���D�

6.3 A service vehicle network

Consider a fleet of vehicles serving an area consisting of � stations forming a fully
connected graph. These vehicles are used to transport goods or passengers. Vehicles
wait at stations until they receive a request, in which case they go to an other station.
The routing among stations is done according to some routing matrix � � . When a
request arrives to an empty station, it is immediately lost. The request arrivals form
a Poisson stream at each queue.

We model this system as follows: for all % 	 � 	 � , station � is represented
as a single-server queue with service rate 	 ��� � which is equal to the arrival rate at
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station � , since arrivals are lost when the station is empty. When a vehicle leaves
station � , it chooses its destination according to the Markovian routing matrix � � �� 
�� �?� � � . The duration of the journey between two stations � and � is represented by an
infinite server queue placed on the edge between them. The service rate of this queue
when there are � vehicles traveling between � and � is ��	 � ��� � . Note that, contrary
to the convention used throughout this paper, the total number of queues is � ( � � .
Let
� ����� �"��������� � � � � � be the invariant measure of � � , defined as in (2.1). Then, with

obvious notation, for all � � � � - � � � / , for all
3 � - # � � � / ,�

��� � def�
� � �"��� �� 	8��� �

� �
� �?� � def�

� � �"��� � 
�� ��� �� 	8� �?� �
�

� ��� � def�

�
��� �� # �
��� �
� � � �?� � def�

�
� �?� ���

2 ��� � �43 � def�
� � # �

��� � � 8 - i / 6C; 0 A� # �
��� � 8 i A � 2 � ��� � �43 � def� 8 	 6 C1; 0 9�� i � - � - i A?> �

Define � �� as in Section 4 and assume that its cardinal is some fixed integer � # � .
Lemmas 5.1 and 5.2 apply, taking � � � � � � , 	 � � � � � and � ��� � � � for � # � and
� � � �� . Thus, when A4 holds, Theorem 4.3 can be used and estimates of many
performance measures can be derived, with corresponding error terms.

Some questions of interest arise:� which maximal efficiency can be expected from this system?

� how many vehicles should be provided?

To answer these questions, it is convenient to define the loss probability as

�
loss
� ��� def�

� � �438� 	���� � P
� � ��� � �'% �� � �43
� 	8��� �

�
�

loss
� ��� is the proportion of customers that are lost because they arrive at an

empty station. This is a good indicator of the quality of service provided by the net-
work. Under appropriate conditions as � � � :

�
loss
� ��� 	 � � �43
� 	8��� � P

� ����� � � % �� � �43
� 	���� �
	 � # � �

� � � �438� 	8��� �
� (6.1)
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The last expression is a decreasing function of
� � , which is itself bounded by

� �� .
Therefore, the minimum loss probability is attained when

� � � � �� ; this happens
with

��� � � � # 3 � � ˆ� �� � lim� �


3 � �'%
�

where
3 � is chosen to satisfy the assumptions of Theorem 4.3-(i) . With this choice

of ��� , (6.1) holds with � � � � �� � � � � �43 � � �7�
which is asymptotically optimal. Consequently, a “good” value for � � is ��� � ˆ� �� ,
and having a number of vehicle proportional to the number of stations can be a poor
choice, especially when some stations are more loaded than others. These stations
act as bottlenecks of the system, which should be removed by altering the routing
probabilities.

7 General remarks

First, a chief difficulty of the analysis is due to the need of dealing with rate of
convergence and limits of densities: this is the field of Berry-Esseen theorems and
large deviations.

Secondly, the results have been obtained under several technical assumptions (es-
pecially uniformity), which in some sense are unavoidable. This means precisely that
the choice of conditions slightly different from A1, A3 and A4 would have led to dif-
ferent families of limit laws having infinitely divisible distributions.

In particular, from a physical point of view, it is worth commenting on equation
(5.2). The inequality � ��� � # � implies that the maximum service rate of the queues in
� �� is reached from below; this is not the case if % 	 � ��� ��	 � , and the analysis was
omitted, since the technicalities involved would have made the text unnecessarily
obscure. At last, the case � ��� � 	 % dealing with other types of singularities (for
instance logarithmic), was not carried out, and would yield other limit laws.

The future class of problems of interest concerns some non-product form net-
works.
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A Appendix

A.1 A bound on periodic characteristic functions

One of the problems arising in the computation of convergence rates in the Central
Limit Theorem is to find upper bounds on the modulus of a characteristic function
2 � 3 � for

3
away from % . One typical property used can be stated as follows:

there exist
3 � � % and � 	 � such that, for all " 3 " � 3 � , "�2 � 3 � " 	 � .

It is pointed out in Feller [3] that this condition is usually easy to fulfill in practice,
as long as � does not have a lattice distribution. Unfortunately, we are in the lattice
case and thus must cope with the periodicity of 2 .

Next lemma shows how a bound on "�2 �43 � " can be derived for " 3 " 	 � .

Lemma A.1 Let � be an integer-valued random variable with distribution � � � �
� � � 
�� , � � IN. Define

� ( def� 
9
�43��


 ( � 
 ( � ; �
 ( � � 
 ( � ; �
	 min

�
Var � �

�
� � �

where the summands are taken to be zero when 
 ( � � 
 ( � ; � � % . Then, for any3 � - # � � � / , the characteristic function 2 of � satisfies:

"&2 �43 � " 	 exp
� # � (
 3 ( � � (A.1)

Proof We have

"�2 � 3 � " � ��� 
9 �43�� 
�� 8 i � A ��� 	 
9
�43��

��� 
 ( � � 
 ( � ; � 8 i A ��� �
Moreover,��� 
 ( � � 
 ( � ; � 8 i A ��� � � � 
 ( � � 
 ( � ; � cos

3 � ( � 
 (( � ; � sin ( 3
� � � 
 ( � � 
 ( � ; � � ( # � 
 ( � 
 ( � ; �

� � # cos
3 �

	 
 ( � � 
 ( � ; � #

 ( �4
 ( � ; �
 ( � � 
 ( � ; �

� � # cos
3 � �
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Hence, for
3 � - %
� � / ,

"&2 �43 � " 	 � # � � # cos
3 � 
9
�43��


 ( ��
 ( � ; �
 ( � � 
 ( � ; �
	 � # �

� (
3 ( � (

	 exp
� # � � (
� (

3 ( �D�
which yields (A.1). That � ( 	 Var � can be seen by a Taylor expansion of 2 in
the neighborhood of

3 � % , while the relation � ( 	 � � � follows from the trivial
inequality 
 ( ��
 ( � ; �
 ( � � 
 ( � ; �

	 
 ( � � 
 ( � ; �� �

� has the desirable property to be zero when � is an integer variable with a span
strictly greater than � , in which case the period of 2 is less than � � . Another desirable
property would be that � � � when the moments of � are unbounded; since � 	
� � � , this is obviously not possible here. That this “feature” is somehow unavoidable
can be seen on the following example:

2 �43 � def�
� � 8 i A
� � �� 
9

�43 (
8 i � A
� � � #'� �

�
� � 8 i A

� � � � # 8 i A � ln � � # 8 i A �D�
The random variable having 2 as characteristic function admits no finite moment

of order greater or equal to � , but no bound on "�2�" is substantially better than (A.1).

A.2 Proof of Propositions 3.1 and 3.3

Proof of Proposition 3.1 Using a Fourier inversion formula, the left hand side of
(3.1) can be rewritten as

' �
� �

� �- �
8 - i A � 2 � �43 ��� 3 # �� �

�


- 


8 - i �� 0 � 8 -�� ** �	� �
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Thus, our goal is to evaluate the quantity� � def�
� �- � 8
- i A � 2 � �43 � � 3 # �



- 


8 - i A � 8 - � *0 � ** � 3
�

� � 0
-
�
0 8 - i A � � 2 � � 3 �.# 8 - � *0 � ** � � 3

# �
� A � �

�
0 8 - i A � 8 - � *0 � ** � 3 � �

� A � � �

�
0 � � � 8 - i A � 2 � �43 ��� 3 �

It is known that �
� A � �

�
0 8 -

� *0 � ** � 3 � �
' (� � � 8 - � *0 	 *0* �

applying Lemma A.1 to 2 � , we get�����
� �
0 E�� A � E �

8 - i A � 2 � �43 ��� 3 ����� 	
�
� A � �

�
0 8 -

� *0 � *
 � 3 ����
 �� (� � � 8 - � *0
	 *0
 � � (A.2)

Finally, we obtain a bound on " � � " which is uniform in
�

:

" � � " 	 � � 0
-
�
0
��� 2 � �43 � # 8 - � *0 � ** ��� � 3

� � 
 �' (� � � 8 - � *0 	 *0* � � � 
 �� (� � � 8 - � *0
	 *0
 � � (A.3)

We proceed now to estimate the above integral, so that implicitly " 3 " 	 � � . The
derivation relies on the following simple inequality, valid for all complex numbers� � ��������� � � and � � ��������� � � :

" � � ����� � � # � � ����� � � " 	
�

9
�43
� "

� � ����� � � - � "�" � � # � � "�" � � ; � ����� � � " � (A.4)

which will be used with
� � � 2 ��� � � 3 � and � � � exp

� # ')( ��� � 3 ( � � � .
The characteristic function 2 ��� � of the random variable �1��� � satisfies (see for

example Loève [9]) ��� 2 ��� � �43 � #'� � ' ( ��� �
3 (
� ��� 	 A��&*�� �! ��� � " 3 " ( ; %� � (A.5)
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Hence, using the inequality " 8 - � # � � � " 	 � � � � , valid for all
� # % and � 	��	�� ,��� 2 ��� � �43 � # 8 - � * 6C; 0 � ** ��� 	 ��� 2 ��� � �43 �.#'� � ' ( ��� �

3 (
� ��� � ��� 8 - � * 6C; 0 � ** #�� � ' ( ��� �

3 (
� ���

	 A ��*�� �! ��� � " 3 " ( ; %� � ' ( ; %��� � "
3 " ( ; %� 	 A �&*�� �! ��� � " 3 " ( ; % � (A.6)

To find an upper bound for "&2 ��� � " , assume first ' ��� � � � 	 � , so that

"�2 ��� � � 3 � " 	 � # ' ( ��� �
3 (
� � A �&*�� �! ��� � " 3 " ( ; %�

	 exp
� # ' ( ��� � � A �&*�� �! ��� � � %� � 3 (� � (A.7)

In fact, (A.7) also holds when ' ��� � � �$# � , since in this case

# ' ( ��� � � A���*�� �! ��� � � %� # # ' ( ��� � � ' ( ; %��� � � %� #�%8�
From (3.4), we can choose � such that ' ��� � 	 ' � � � and, using (A.4), (A.6) and

(A.7), we find��� 2 � �43 � # 8 - � *0 � ** ��� 	
�

9
�438�
A �&*�� �! ��� � " 3 " ( ; % exp

� # ' (� � ' ( ��� � � A �&*�� �! � � %� � 3 (�
	 A �&*�� �! � " 3 " ( ; % exp

� # ' (�
3 (

� � � (A.8)

Equation (3.1) follows, since the integral in (A.3) is bounded by� � 0
-
�
0
��� 2 � �43 �.# 8 - � *0 � ** ��� � 3 	 A ��*�� �! �

�


- 


" 3 " ( ; % exp
� # ' (�

3 (
� � � 3

� � 
 �' � A ��*�� �! �

' ( ; %� � �
The proof of (3.2) of the proposition is similar, although the computations be

more involved. Redefine
� � as� � def�

� �- �
8 - i A � 2 � �43 � � 3 # �



- 


8 - i A � � � # i ¯A ��,+ �
3 0� � 8 - � *0 � ** � 3 �
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To find a bound for " � � " , we have to estimate���� 2 � �43 �.# � � # i ¯A ��,+ �
3 0� � 8 - � *0 � ** ���� (A.9)

	 ���� 2 � �43 �.# 8 - � *0 � ** - i
¯� ��,+ 0 � ,
�

���� � ���� 8 - i
¯� �&,+ 0 � ,
� #'� � i ¯A ��,+ �

3 0� ���� 8 - � *0 � ** �
The first part of the r.h.s. of (A.9) is evaluated as above with (A.4) and (A.7)

replaced by

2 ��� � �43 � 	 exp
� # ' ( ��� � � A �&,+ ��� � � � � 3 (� �

For the second part, we use the following inequality, valid for � # % (see e.g.
Loève [9]) � A ��,+ �' 0� � � ; �, 	 A �&,�� �! �

' 0 ; %�
�

which yields���� 8 - i
¯� �&,7 0 � ,
� # �1� i ¯A ��,+ �

3 0� ���� 	 ��� A ��,+ � 3 0� ��� � ; �, 	 A �&,�� �! �

' 0 ; %�
' 0 ; %� " 3 " 0 ; %� �

and (3.2) follows.

Proof of Proposition 3.3 The proof of this proposition is similar to the proof of
Proposition 3.1 and is only sketched here. Define

� � � � def�
�
� # i�

�

� � def�
� � ��
 �0 � � � � � �

@ � �

and � � def� @ � � �- �
8 - i A � 0�� 0 ��� 0� � 3 � 2

����
 �0
� ��� � �43 � �2 � �43 ��� 3

# �


- 


8 - i � � 0 ��� 0 � � � 8 - ˆ� *0� *0 � ** �	�
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�
� � �*0- � �*0

8 - i � � 0 � � 0� � � � @ � � � 2����
 �0
� ��� � � � � @ � �$#�� � �2 � � � � @ � ���	�

� � � �*0- � � 0
8 - i � � 0 ��� 0� � � � @ � � � �2 � � � � @ � � # 8 - ˆ� *0� *0 � ** � �	�

� � � � 0- � � 0
8 - i � � 0 � � � 0� � � � @ � �.# � � 0 � � � � 8 - ˆ� *0� *0 � ** �	�

# �
� � � � � � 0

8 - i � � 0 ��� 0 � � � 8 - ˆ� *0� *0 � ** �	� � (A.10)

The evaluation of these integrals depends on the following straightforward esti-
mations, valid for " � " 	 � @ � ,

" � � 0� � � � @ � � " � ��
 �
� �1� � ( � � 0 � ( � �

" ��� 0� � � � @ � � # ��� 0 � � � " � ��
 �@ � � (
� � � � ( � � 0 � ���� 2����
 �0 � ��� � � � � @ � � # � ��� � � 
 �1� " � "@ � � �

and on (A.8), which yields for " � " 	 @ � ˆ� � ,��� �2 � � � � @ � � # 8 - ˆ� *0� *0 � ** ��� ����
 ˆA ��*�� �! �

@ ( ; %� � � ( ; % exp
� # ˆ')(�@ (�

� (
� � �

��� �2 � � � � @ � � ��� 	 exp
� # ˆ')(�@ (�

� (
� � �

Moreover, we use the following approximation, valid for � � � � % and for suffi-
ciently small

�
:

� � � � � � � � def�
�


- 


" � " �
� � � � ( ��� 8 -�� * � * �	� ��� � � �
� � ��� ( � - � - � � �

These relations, together with (A.10), yield:� � � � 
 �@ � � � � � � � �� � ˆ' �� @ � � � � 
 ˆA �&*�� �! �

@ ( ; %� � � � � � � � �
�

� � ˆ' �� � @ � �
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� � 
 �@ � � � � �)� � �"� ˆ' �� �
@ � �
� � 
 � ˆ' �@ � � � 0 - � � �

� � � ˆ� 0
� - � 0 8 -�� ** ���

� � 
 � ˆ� �@ � � � 0 - � � �
� �

�
0 ˆ� 0

��- � 0 8 -�� ** ���
� � 
 �@ � � ˆA ��*�� �! �

ˆ' ( ; %�
� ˆ' �@ � � ( ; % � ˆA �&*�� �! �

ˆ' ( ; %�
� ˆ' �@ ��� � 0 - � �

� � 
 8 - ˆ�<*0 ˆ	 *0

ˆ� (� ˆ� � 0 ; �� @ � 0 - �� � �

To conclude the proof of (3.8), the second term coming in the definition of
� � is

evaluated using Parseval’s identity and classical tools of complex analysis (see e.g.
Lavrentiev and Chabat [8]). This yields�



- 


8 - i� 0 � ��� 0 � � � 8 - ˆ� *0� *0 � ** �	� � � � 0 - �� 8 - � 0
� � � � �

� � � � 
 ˆ' (�@ (� � � �
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Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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