Optimization of Positive Generalized Polynomials under $l^p$ Constraints

Abstract : The problem of maximizing a non-negative generalized polynomial of degree at most $p$ on the $l_p$-sphere is shown to be equivalent to a concave one. Arguments where the {\it maximum} is attained are characterized in connection with the irreducible decomposition of the polynomial, and an application to the labelling problem is presented where these results are used to select the initial guess of a continuation method.
Type de document :
Rapport
RR-2750, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00073942
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:08:11
Dernière modification le : samedi 27 janvier 2018 - 01:31:29
Document(s) archivé(s) le : lundi 5 avril 2010 - 00:02:16

Fichiers

Identifiants

  • HAL Id : inria-00073942, version 1

Collections

Citation

Laurent Baratchart, Marc Berthod, Loïc Pottier. Optimization of Positive Generalized Polynomials under $l^p$ Constraints. RR-2750, INRIA. 1995. 〈inria-00073942〉

Partager

Métriques

Consultations de la notice

156

Téléchargements de fichiers

156