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Abstract: We investigate the use of cooperation between solvers in the scheme of constraint
logic programming languages over the domain of non-linear polynomial constraints. Instead
of using a general and often inefficient decision procedure we propose a new approach for
handling these constraints by cooperating specialised solvers. Our approach requires the
design of a client/server architecture to enable communication between the various compo-
nents. The main modules are a linear solver, a non-linear solver, a constraint manager, a
communication protocol component and an answer processor module.

This work is motivated by the need for a declarative system for robot motion planning
and geometric problem solving. We have implemented a prototype called CoSAc (Constraint
System Architecture) to validate our approach using cooperating solvers for non-linear con-
straints over the real numbers. Our language is illustrated by an example that also shows
the advantages of cooperation.
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Résolution de contraintes non linéaires par coopération
de solveurs

Résumé : Nous étudions la coopération de solveurs dans le cadre de la programmation lo-
gique a contraintes polynomiales. Plutét que d’utiliser une procédure globale de décision qui
s’avére souvent inefficace, nous proposons une nouvelle approche permettant de manipuler
ces contraintes a 1’aide de solveurs spécialisés coopérant entre eux.

Notre fagon d’aborder le probléme nécessite la conception d’une architecture client/serveur
pour établir les communications entre les différents composants intégrés dans le systéme (un
solveur linéaire, un solveur non linéaire, un logiciel de calcul formel, un administrateur des
communications, un administrateur des contraintes, un protocole de communication et un
module de traitement des solutions).

Les besoins d’un systéme déclaratif pour la planification de trajectoires et la résolution
de problémes géométriques ont motivé ces travaux. Afin de valider notre approche utilisant
des solveurs coopérant pour résoudre les contraintes non linéaires sur les réels, nous avons
implanté un prototype nommé COSAc. Le langage est illustré d’exemples montrant les
avantages de la coopération.

Mots-clé : résolution de contraintes, contrainte non linéaire, coopération, intégration



Implementing non-linear constraints with cooperative solvers 3

1 Introduction

Many applications such as computational geometry [27], robot motion planning [17, 18],
geometry theorem proving [5] involve non linear geometrical objects. These problems are
specified using non-linear polynomial constraints describing the space, the objects, their
trajectories and the relations between them.

Consider for instance the problem of moving a rectangle through an angled corridor. A
rectangle R has to move from an initial position I to a position F' at the other end of the
corridor C' subject to the following constraints: no point of R collides with the walls of C
during the motion. Several interesting questions may be asked about this problem: is a
trajectory valid w.r.t. the given constraints? Does there exist a valid trajectory? How to
compute a valid trajectory? Is it possible to modify a wrong trajectory in order to derive a
correct one?

By providing declarativeness and expressiveness, a constraint logic programming lan-
guage (CLP) (see [9] for a survey) for the domain of non-linear constraints provides a natu-
ral way to reason about geometric objects. CLP languages combine the advantages of logic
programming with the power of constraint solving. So the CLP paradigm provides us with
a natural way for integrating algebraic tools inside a declarative language. Thus the user
can state and solve problems without any knowledge of the underlying algebraic methods.

All the previously mentioned applications require a CLP system that handles equalities,
disequalities and inequalities composed of linear and non-linear polynomials with rational
coefficients (even if these problems contain transcendental functions they can generally be
converted to polynomial relations by standard techniques). Several CLP languages already
manipulate non-linear constraints: CLP(R) [14], CAL [1], RISC-CLP(Real) [13], Newton
[2], the cooperative architecture of [19] and the CLP from [22]. Indeed they do not fit our
motivation due to one or several of these properties: they delay non-linear constraints till
they eventually simplify to linear ones; they do not handle inequations; they apply general
decision procedures that are often inefficient; they use interval methods that require to de-
fine “good” initial intervals for the variables and that are usually unable to detect whether
a system of constraints is inconsistent or not.

A general decision procedure, as Collins one [6], is far too inefficient for practical pro-
blems. Most of the time a large part of these problems can be handled by “uncomplete” but
efficient solvers. For instance when a linear subproblem is isolated, it can be solved by an
efficient implementation of the simplex algorithm (though it is not a solver for non-linear
CLP, it can solve important subproblems). Cooperation of solvers [3, 28, 15] has emerged
as an alternative approach which competes with quantifier elimination. Marti and Rueher
[19] propose such a cooperative architecture which allows using concurrently heterogeneous
solvers when handling constraints over the reals. Their architecture is based upon agents
that communicate via asynchronous message passing.

In this paper we describe how we use cooperation techniques to design CoSAc (Constraint
System Architecture), a CLP system handling non-linear polynomial constraints (equali-
ties, disequalities and inequalities). Cooperating components allow one to tackle non-linear
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4 Eric Monfroy , Michael Rusinowitch , René Schott

constraints without the burden of a general decision procedure. This approach presents
also other advantages such as the possibility to reuse existing tools, extensibility and easier
maintenance [24].

To illustrate this paper, we show several queries and traces of execution for the following
program:

zmul(R1, I1, R2, I2, R3, I3):
R3 - R1*R2 + I1xI2 =:
I3 - R1*I2 - R2*I1 =:

0,
0.

It describes a circuit made of two parallel resistors [14]. Although this example is simple, it
shows most of the advantages of cooperating solvers.

The rest of the paper is organized as follows. Section 2 discusses the need for cooperation
in a CLP system and its advantages over a general solver. Then we present the components
required to implement COoSAc: the platform, the solvers, the communication manager, the
data exchange protocol module, the constraint manager, the answer processor module. To
link these modules, COSAC relies on a a client/server architecture (see section 4). Moreover
exchanging information is one of the most important issue of cooperation. So we define the
synchronized communication between processes (section 4.3) and the data exchange proto-
col (section 4.4) used in the implementation of COSAc. Section 5 presents the progress of
cooperation in CoSAc. First an example illustrates the effects and advantages of coopera-
tion. Then we detail the routing of information through the different components. Some
more examples are given in section 6 in order to illustrate the different aspects of CoSAc.
Section 7 concludes with final remarks and present future works.

2 Motivation for a cooperative architecture

We define cooperation as follows: several solvers are applied to a unique computation do-
main (with possibly different languages) as opposed to combination [23, 16] where several
domains are mixed. Each solver works on a part of the problems (generally these parts are
not disjoint) and transmits its results to the other solvers. So they incorporate new infor-
mation in order to complete their partial knowledge of the initial system. The computation
terminates when no solver can deduce new information and when there is no more data
exchange. A general decision procedure for the practical problems we have in mind would
be far too inefficient and can be replaced advantageously by cooperating solvers.

2.1 Cooperation between solvers versus a general solver

Hence a linear solver (for equalities, disequalities and inequations) and a non-linear solver
(for equalities) working together is a convenient method for increasing declarativity without
jeopardizing efficiency:

INRIA



Implementing non-linear constraints with cooperative solvers 5

e Declarativity nearly reaches the same level with cooperating solvers than with quanti-
fier elimination method. Only non-linear inequations and disequations are not tackled.
However in most applications, inequations and disequations are linear, for instance
constraints on time or space parameters. Moreover it is always possible to transform
them into equalities by adding slack variables.

e Inequations are used more dynamically during computation, not only at the final phase
of a computation for checking the solutions (as with Grébner bases [22]).

e The solvers working together are faster than quantifier elimination alone. Thus if
no non-linear constraint is encountered during the resolution, there is no need of the
non-linear solver: the linear solver is sufficient and is less expensive both in time and
memory.

e New solvers can then be added to the first two solvers to increase declarativity and
efficiency (solver specialised for certain classes of equations i.e. quadratics [26] for
example). In order to integrate a new solver, two modules of COSAc have to be exten-
ded: the functionalities of the new solver have to be declared in the communication
manager (see section 3.2), and the constraint manager (see section 3.3) must know
which constraints the new solver handles.

2.2 Cooperation with other tools

Symbolic computation facilities are required during several steps of the computation. In
order to provide more declarativity, it is possible to define constraints with non expanded
polynomials, or with derivatives of polynomials. Hence these constraints have to be modified
in order to be processed by the solvers. Furthermore after Grébner bases computation, some
symbolic computation techniques are required for extracting solutions from the base.

That is the reason why a cooperation with a symbolic computation software is impor-
tant. First it helps the user not to bother about transformation of polynomials when setting
constraints. Furthermore it enables to use symbolic computation functionalities inside a
program. Finally it offers a library of efficient algorithms (e.g. for polynomial roots compu-
tation) inside the language itself.

3 The components of CoSAc

CoSAc is a CLP system for non linear constraints based on cooperating solvers. So that the
solvers can exchange data, COSAC is required to manage the constraints and the solutions,
and to synchronize the communications. We now describe the tools we have integrated in
the modular architecture of CoSAc.
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3.1 The platform: ECLiPSe

For integrating the cooperating tools, a development system is required. It has to be exten-
sible, efficient and robust. The platform should support the development of new constraints
solvers. That is why we have chosen ECLiPSe [20] which is the ECRC Common Logic Pro-
gramming System. ECLiPSe presents all the required properties: it is a generic development
system for CLP which already provides several libraries of constraint solvers.

3.2 The communication manager

This module controls the components of the system and synchronizes the communications. It
is the only module knowing about the functionalities and the state of the several components.
So when a component A sends a request (i.e. asks for a function to be applied to an input)
the communication component finds the component B able to perform the function. But
this is not the only task for the communication manager: it also launches the "requested"
components (if not already running), it kills them when they are not needed anymore and
it manages the list of running components (how to communicate with them).

3.3 The constraint manager

CHRs [8] define determinate conditional rewriting systems that specify how conjunctions of
constraints propagate and simplify. CHRs have been integrated in ECLiPSe as an extension
for writing user-defined constraints. Since the CHRs provide a framework for writing user-
defined constraints, they are used in COSAC to introduce the constraints and to plan their
treatment (i.e. selection and distribution of the constraints to the solvers).

3.4 The data exchange protocol module

Since each tool admits its own representation (structure) for an object, this module performs
all the conversion tasks when exchanging data (this component is detailed in section 4.4).

3.5 The solvers

The role of a solver is to solve/simplify the constraints it has received. Each solver works on
a special domain, with specific constraints. We are using three solvers in CoSAc: the first
one for linear constraints over the rationals, the second one for non-linear constraints and
the third one for simplification of polynomials and the computation of roots of univariate
polynomials.

Linear solver: the linear solver that is integrated into COSAC is an equation solver over

rational numbers (or real numbers) that has been implemented by T. Frithwirth with the
CHRs. This solver is flexible and open for extension by more advanced tools.

INRIA



Implementing non-linear constraints with cooperative solvers 7

Non linear solver: the non linear solver of CoSAc, is based on Grobner bases compu-
tation. Though this technique provides us with a decision procedure over the complex
numbers, it can also solve real constraints in many practical applications. Till now Grébner
bases computation was a slow procedure. But with the recent implementation of GB [7],
it has become reasonable in time and space. GB is the fastest known system for Grébner
bases. It is divided into client/servers and each server is specialized for a particular compu-
tation. GB makes use of several algorithms such as the Sugar Cube Strategy [12]. Thus GB
is the appropriate solver for non-linear constraints since it allows fast computation of large
systems of polynomials.

Roots of univariate polynomials: the symbolic computation software Maple [11] is used
to compute the roots of univariate polynomials. But Maple also simplifies and transforms
polynomials before they are processed by GB or the equation solver embedded in the CHRs.

3.6 The answer processor module

During resolution, the solvers act in a cooperative way: they attempt to solve the constraints
and exchange data. But at the end of a computation, their results have to be combined in
order to build a complete solution and to provide the user with a “readable” answer. When
working with non-linear constraints over the reals three different answers are possible: either
the constraint store has no solution, or infinitely many solutions, or finitely many solutions.
The computation proceeds according to these three cases:

e empty set of solution: then the Prolog engine backtracks as with standard resolution.

e finitely many solutions: the computed solutions are used to instantiate the variables.
All the solutions are displayed using backtracking.

e infinitely many solutions: a canonical form of the solution is displayed. If the infinity
is due to non-linear constraints, then it is not possible to assert that there exists some
real solutions (as all the solutions may be complex numbers).

The next sections describe in details how the solutions are computed in each case.

3.6.1 Empty set of solutions

This case can either be detected by the linear solver or by the non-linear one. For instance
this situation occurs when the GB module generates a Grobner base that contains 1.

3.6.2 Infinitely many solutions

Both solvers can meet this situation. If this answer comes from the linear solver, then the
non-linear solver is triggered (the addition of non linear constraints can lead to a system
of constraints having finitely many solutions or no solution at all). If it is the non-linear
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solver, then it is not possible to assert that there exists real solutions (Grobner bases act as a
decision procedure only on complex numbers). But even in this case Grobner bases are worth
computing as they produce a simplified and canonical form for the system of constraints.
Furthermore relations between variables may be extracted from the bases. By setting a
flag, the user can choose between two different (but equivalent) answers to a problem with
infinitely many solutions: the result of the CHRs or the result of GB (a Grobner base).

3.6.3 Finitely many solutions

This last case is the most complex one; although it can be detected from the syntactic
structure of the Grébner base.

Let G By, be the lexicographic Grébner base of a set F' of polynomials of R[z1, ..., z,].
Then F' has finitely many solutions if for each variable z;, there exists ¢; € R and k; € N
such that ¢; * mf’ is the head monomial of a polynomial of G Bj., [4].

This means that we obtain a triangular form of the system from which it is possible to
produce the solutions i.e. GBi.y has the following form (with 2z, > 2,1 > ... > z1):

GBieo ={p1,-- .01, 1Dk, Pmy -, Pp}
with

p1 € ]{[1‘1],

P2, -, 01 € K[z, z4],

Pit1, - - Pk € Koy, 22, 23],

.y

Pk4+m,---3Pp € I([rlam%"':rn]

Hence it is possible to eliminate the variables one after the others. At this state of the
computation, it is no more possible to apply further the solvers. Finding the roots of the
successive univariate polynomials is obtained by numerical computation. Two different me-
thods can lead to the extraction of the finitely many solutions. Moreover the user can select
one of them when running a program by setting the flag sol_extract to 1 or 2.

Labelling with cooperation

Labelling is a usual technique of CLP languages (see [29] for more details), generally used
in association with solvers over finite and discrete domains. It is a controlled way of making
choice, usually called at the end of the computation for choosing values for the constrained
variables.

Although we have an infinite and continuous domain, we can use labelling to process
the solutions. Since at this state of the computation the only values a variable can take are
roots of an univariate polynomials, we need only consider a discrete and finite domain.

As opposed to the next method, the constraint store is not modified with the Grobner
base. So the answer processor is working on the Grobner base while CHRs are working on
the constraint store. When a variable is eliminated we apply some labelling on the roots
of the polynomial used for the elimination. As A is 1 can be seen as the new constraint

INRIA



Implementing non-linear constraints with cooperative solvers 9

A =:= 1, the instantiation is not only propagated in the Grébner base (by ECLiPSe) but
also to the related constraints (by the CHRs). Thus the CHRs can eliminate other variables
since some constraints (from the constraint store) may become linear. The CHRs can even
stop the computation if an inconsistency is detected by the linear equation solver. So when
processing a polynomial of the Grébner base, the variable may be already instantiated by
the CHRs and we just need to check that this polynomial is equal to zero (see execution
trace in section 3.6.3). This mechanism is iterated till no more variable remains.

Labelling without cooperation

This procedure is nearly the same as the previous one. But the constraint store is emptied
so that the value of an eliminated variable is propagated to the Grobner base only. Further-
more CHRs does not work, since there is no constraint to process in the store. Thus the
answer processor module must eliminate the variables and perform the labelling itself (see
execution trace in 3.6.3).

Comparison of the two methods

We can now compare the two methods with respect to our goal and the spirit of CoSAc.
Since the first method uses cooperation between the linear and the non-linear solver, less
variables have to be eliminated and more polynomials have to be checked. As checking
a polynomial is faster than computing roots, this procedure is more efficient. In the first
method, the inequations participate more actively as they are verified sooner (by the CHRs
and ECLiPSe). So non valid instantiation of a variable are removed sooner. Furthermore
the first method exploits the functionalities (labelling, propagation, ...) of ECLiPSe, of
the CHRs and of the CLP scheme and really fits the spirit of COSAc (cooperation, use of
functionality of existing tools). In the second method, the solvers do not cooperate during
answer processing and so, they do not exchange data. Hence less information is propagated
(only substitution) because ECLiPSe runs, but not the CHRs.

The two methods can be retained for our purpose. But the first one is faster as some
variable eliminations are performed by the linear solver and not by Maple. Instead of elimi-
nation we check that the polynomial is equal to zero (see the execution trace below). Root
computation in Maple is triggered only when no other mechanism is possible.
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labelling with cooperation labelling without cooperation
eclipse 27: zmul(X,Y,X,Y,-3,4). eclipse 29: zmul(X,Y,X,Y,-3,4).
—————— Non Linear Solver Running------ ------Fon Linear Solver Running------
Call Gb----——-—------————- Back from Gb Call Gb-----------—--—--—- Back from Gb
Finitely many solutions to the system Finitely many solutions to the system
eliminate eliminate

labelling X is -1
labelling X is -1 eliminate
check labelling _g408 is 1
check eliminate
check labelling Y is -2
check eliminate
check labelling _g624 is 4

eliminate
X=-1 labelling _g1198 is 2
Y = -2_1 More? (;) eliminate

labelling _g1390 is 2
labelling X is 1

check X=-1
check Y = -2 More? (;)
check labelling X is 1
check eliminate
check labelling _g408 is 1
eliminate
X=1 labelling Y is 2
Y = 2_1 More? (;) eliminate
labelling _g624 is 4
no (more) solution. eliminate
labelling _g1198 is 2
eliminate

labelling _g1390 is 2

X=1
Y = 2 Hore? (;)

no (more) solution.

4 Integration

This section describes the implementation of COSAc, and the integration of its main compo-
nents. We first expose the global client/servers architecture of the system before explaining
the communication process and its protocol.

4.1 Architecture of the system

CoSAc is based on a distributed architecture (see Figure 1): each component is speciali-
zed for solving some subproblems of the input problem. ECLiPSe knows which parts of
the problem can be manipulated by which server and plays the role of the client. In the

INRIA



Implementing non-linear constraints with cooperative solvers 11

client/servers architecture, Maple and GB are servers that furnish new features to ECLiPSe
which is a client. But Maple is also a server for GB: i.e. GB asks Maple to transform
polynomials (expand, ...) before computing Grobner bases.

Then ECLiPSe controls (via the constraint manager and the communication manager)
all the data flows and calls to other components. This control is synchronous since ECLiPSe
always waits for the answer after a request.

server
Central GB

Maple

S

Answer Processor

Constraint Manager

Linear Equation Solver

Communication Manager
Data Exchange Protocol

CHRs : ECLiPSe

Figure 1: Architecture of CoSAc

4.2 Control of the calls to the solver

The main predicate of this part is request(£f,In,0ut) which asks for a function £ to be
applied on input In to obtain result Out. When such a predicate is encountered during a
resolution, the communication manager searches for a server able to process £. Then the
input In is converted (using the data exchange protocol) before transmitting the request to
the appropriate server. The result from the solver is then converted into In.

The communication manager launches on demand the servers: if the server which is able
to compute £ is not running, then the communication manager launches it. For example,
when there are only linear equations in the constraint store, the CHRs proceed by themselves,
and the system is not overloaded with Maple and GB: they are loaded (if not yet) when some
non-linear constraints remain in the store after their selection in the constraint manager.

Furthermore the user can call explicitely for the non-linear constraint solver. There is a
special predicate solver which, when encountered during a resolution, triggers the following
procedure via the constraint manager:

RR n2747



12 Eric Monfroy , Michael Rusinowitch , René Schott

1. collects and converts the constraints
2. if there are some non linear constraints, calls for the servers Maple and GB

3. sends back their results converted in appropriate format

4.3 Communication between processes

ECLiPSe is the only client that synchronizes the communication. It has a central role and
the servers are children processes linked by pipes to the platform. At this level the only
datatype they can exchange is the string datatype. Since this is a low level communication
CoSAc needs a data exchange protocol in order to transmit complex structures and to
federate the Application Programming Interfaces (API’s) of the components.

4.4 Data exchange protocol

Each tool admits its own representation (structure) for an object. So when exchanging data,
we need to convert a structure of the sending tool into the corresponding structure of the re-
ceiving tool [25]. The communication module of COSAC performs all these conversion tasks.
This module implemented in ECLiPSe knows the data structure used by each component.

The most interesting point is the variable conversion. If several variables are transfered
together through the pipe (for instance when handling a multivariate polynomial), the va-
riables are not recognized when received back. This is due to the term transformation of
Prolog which creates new variables. Thus two cases occur:

e user variables (or query variables): the created variable has the same name as the user
variable, but not the same internal name. So they are not substituted, but it is easy
to force it using their user name.

e internal variables (created during resolution by ECLiPSe or the CHRs): they only
have an internal name, and no user name. So the problem is to create a name that
can be identified when the variable is back.

This mechanism has been implemented using the same technique for both cases. The
variables to be sent are encoded using their name (or a given name for non query variables)
and their internal name. The specificity of this coding is that the received variables give the
same result that the sent variables after the encoding. So they can be recognized and the
information they bring back is associated to the right variable. We illustrate this process
with a multivariate polynomial:

-P(z1,...,zy) is a polynomial of ECLiPSe.

-The data exchange protocol converts P(z1,...,z,)
into P(z},...,z!) using the coding C

-The communication manager sends P(zf,...,z}) to a
server S.

INRIA
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-P(z', ..., z}) is transformed by S into P'(2},...,z},)
-S sends back P'(z},...,z})
-After term transformation, ECLiPSe receives
Pz, ...zl
-The data exchange protocol uses C to convert
P'(zY,...;2!) into P'(z1,...,2p).

n

Moreover the structure conversion preserves the variable ordering;:

if 2, >zp_1>...>21 then z,, >/, >...>2].

5 Cooperation in CoSAc

This section deals with the cooperation between the different components of CoSAc and
demonstrates that COSAC respects the specifications described in section 2.

5.1 Route of information related to a constraint

Cooperation between components can be summarized to “process and exchange data”. This
section exposes the data exchange. Figure 2 illustrates how the information hold in a
constraint circulates in COSAc€ and is used in the different solvers and modules.

] 6
==
|

Answer Processor
4

Copstraint Manager

Linear Equation Solver

Communication. Manager
Data/Exchange Protocal

CHRs 1~ : ECLiPSe

Figure 2: Route of the information

During the first phase (1), the constraint is manipulated by the constraint manager,
and the linear equation solver. The transformation rules of the CHRs are applied, and the
information related to the constraint is propagated to the other constraints. When the linear
solver cannot progress further, the constraint manager sorts the constraints using Maple (2)
to determine which constraints are non linear polynomial equations, and to simplify them
(to expand them for example). Then the polynomial constraints are sent to GB (3). GB
requires a special format for the polynomials. It requests Maple (4) to transform them. After
Grobner bases computation, GB transmits the result to the constraint manager. Then the
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14 Eric Monfroy , Michael Rusinowitch , René Schott

constraint store is given (5) to the answer processor module. This last one requests Maple
(6) for the computation of roots of univariate polynomial. Then phase (1) propagates the
roots and tries to solve the system of constraints (when using labelling without cooperation
(section 3.6.3) the phase (1) is skipped). If the linear equation solver cannot do it by itself,
the answer processor eliminates a new variable (5 and 6), and so on till all variables are
instantiated.

Remark : communications with the servers are handled by the communication manager
and the data exchange protocol module.

5.2 Advantages of Cooperation

We illustrate this section with the example of Section 1. It shows that cooperation between
solvers permits to tackle some problems:

e that cannot be solved using only a linear solver.
e that cannot be solved using only a non-linear solver.

e that do not need a general solver to be solved, because occasionally only the linear
part is mandatory.

Each query shows a particular point of CoSAc.

e Query 1: the following query instantiates some variables of the problem. Hence GB
is not ran and the CHRs solve the program by themselves:

zmul(1,2,3,4,R3,13).

The answer to the query is:

R3 = -5_1
I3 = 10_1
yes.

e Query 2: with this query, some non-linear equations remain in the constraint store
after the CHRs first processed. So GB transforms the polynomials into their Grébner
base, and the answer module extracts the solutions using propagation and the CHRs:
the solvers cooperate in order to solve the problem.

zmul (X,Y,X,Y,-3,4).

Upon this query COSAC answers:

INRIA
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Finitely many solutions to the system

X = -1
Y= -2.1 More? (;)
X =1

Y =21 More? (;)

no (more) solution.
e Query 3: this query is the same as the previous one but more constrained with an
inequation. Hence, during the labelling in the answer module, the non valid values are
removed by the propagation rules and the CHRs.

zmul(X,Y,X,Y,-3,4), X>0.

Upon this query CoSAc produces the following answer:

Finitely many solutions to the system

X=1
Y =

|
N

_1 More? (;)
no (more) solution.

The following trace of execution shows the differences when using labelling with /without
cooperation (see section 3.6.3) to solve problems containing inequations.

We can see that with cooperation, the inequation X>0 is checked as soon as the variable
is instantiated. Moreover the CHRs eliminate the variables themselves, so the answer
processor just checks the polynomials of the Grobner base.

Without cooperation, the answer processor eliminates the variables by itself. The
inequation is checked only when all the variables are instantiated. Then the next
value for X is tried and the process is iterated.
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Labelling without cooperation

eclipse 25: zmul(X,Y,X,Y,-3,4), X>0.

Labelling with cooperation

eclipse 26: zmul(X,Y,X,Y,-3,4),X>0.

Finitely many solutions to the system Finitely many solutions to the system

eliminate eliminate
labelling X is -1 labelling X is -1
eliminate <- X>0 is already
labelling _g420 is 1 <- checked
eliminate labelling X is 1 <- try next value
labelling Y is -2 for X
eliminate check
labelling _g636 is 4 check
eliminate check
labelling _g1210 is 2 check
eliminate check
labelling _g1402 is 2 check
eliminate
labelling _g2116 is -1 Y=2_1
<- X > 0 is checked X =1 More? (;)
<- so backtrack
labelling X is 1 <- try next value for X no (more) solution.
eliminate
labelling _g420 is 1
eliminate
labelling Y is 2
eliminate
labelling _g636 is 4
eliminate
labelling _g1210 is 2
eliminate
labelling _g1402 is 2
eliminate

labelling _g2116 is 1

Y=2
X = 1 MHore? (;)

no (more) solution.

6 Examples

In this section we present several examples which illustrate the applications that can be
treated with CoSAc (see section 1).

6.1 A ballistic problem
This problem from [19] consists in finding the falling point of an object.

INRIA
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Xf

Figure 3: Ballistic problem

The object is launched with an initial speed (V;, V}) and an incidence o with the ground
(see Figure 3). Thus the parametric trajectory of the object (submitted to the gravitation
and having an initial speed equal to 0) is:

z = Vgt and y = 1/29.81¢% + Vjt.

Two more constraints are added to state the relation between the initial speed and the
incidence of the object: V, = Vptan(a) and V2 + V> = V0?

We denote Xy, Y; and 7} the falling point and the falling time. As noticed in section 1
we “abstract” tan(a«) with a new variable Tan. We obtain the following predicate:

ballistic(Vy, Vx, Tan, VO, Xf, Tf, Yf):-

Vy>0,

Vx>0,

Xf>0,

V0>0,

Vy =:= Vxx*Tan,

Vx~2 + Vy~2 =:= VO,

Xf =:= Vx*Tf,

YE =:= - 981/200*%Tf"~2 + Vy*Tf.

To determine the falling point on the earth (i.e. X; = 0) of an object knowing its initial
speed (V0 = 500) and the initial incidence (tan(a) = 1), we ask the following query:

ballistic(Vy, Vx, 1, 500, Xf, Tf, 0).

and the answer is

Vy 6240166921_394662809
Vx 6240166921_394662809
Xf = 50000_981

Tt 3606307121_1118746570
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The whole computation requires about 1 second. The comparison with [19] is not easy.
By only giving an interval for the initial speed and the incidence they compute a spot
covering the possible falling points: the computation takes about 5 seconds.

6.2 Rectangle in a right angled corridor

This problem is a restriction of the well known “piano mover’s problem” [18]. The
problem [21] is to move a rectangle R of length L and width LL through a right angled
corridor (Cor_Hor is the width of the horizontal corridor, Cor_Ver is the width of the vertical
corridor). R can rotates around each of its points and translates in the direction of its length.
R has to move from an initial position I in the vertical corridor to a position F' in the vertical
corridor.

We have chosen the following movement (Figure 4: corridor): R slices in the angle with
one point of contact with the x-axis (B) and a second point of contact with the y-axis (A).
This path is always a solution, assuming that the problem can be solved.

In this way we obtain the trajectory of the rectangle R, and we have to determine under
which conditions this path is valid. For this purpose, we use the upper envelop F of the
moving rectangle. E is a parametric equation:

z(t) =13+ L1 —¢2
y(t) = Lt +1(1 — ¢2)3/2)
1 <t <ty

with

ty = (1/2 — (912 — 4L)/2J(61)) /2
ty = (1/2 4 (917 — 4L /2 /(61))'/?

Figure 4: Corridor
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We want to determine the minimal width Cor_Hor of the horizontal corridor when kno-
wing the dimensions L and LL of the rectangle R and the width Cor_Ver of the vertical
corridor.

The corresponding program is equivalent to the computation of the intersection of two
moving points: one moving on E, the other one moving vertically on S. The two parametric
curves (E and S) are defined with the same variables X and Cor_Hor. So these two variables
represent the coordinates of the intersection of the two curves. W is added to represent the
square root of 1 — 2.

corridor(L,LL,Cor_Vert,Cor_Hor):-
square_root (W, (1-T~2)),
param(L*T~3,LL*W,LL*T ,L*W~3,X,Cor_Hor),
param(0, Cor_Vert, R*T, 0, X, Cor_Hor),
T>(1/2-(9*L"~2-4*LL"2)"~(1/2)/6*L)~(1/2),
T<(1/2+(9*L"~2-4*LL"~2)"(1/2)/6*L)~(1/2).

Remark 1: the parametric curves are defined using the predicate param of our geometric
library. This predicate is a meta constraint which sets two constraints (i.e. the projection
of the motion on the x-axis and the y-axis knowing the speed and the initial point of the
object). We could also use param to treat the previous example. The definition of param is:

param(Fx,Dx,Fy,Dy,X,Y):-
Y - Fy - Dy =:= 0,
X - Fx - Dx =:= 0.

Remark 2: square_root is also a predicate of the geometric library and is define as follows:

square_root(X,Y):-
X"2 - ¥ =:= 0,
X > 0.

Minimal width: the minimal width (see Figure 4) of the horizontal corridor knowing
that the width of the vertical corridor is 3/2, the length of the rectangle is 2 and its width
is 1 can be computed with the query:

corridor(2,1,3_2, Min_Cor).
and the solution is
Min_Cor = 3180632219_2385445214

The flexibility of the system allows processing the same treatment with different para-
meters, or determining several relations between these parameters. Furthermore some other
problems (as determining if the object can go through when knowing all the parameters)
can be solved easily by the addition of new predicates using the same primitives (defined in
the geometric library).
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Remark 3: we are developing a library for constraint transformation. So square roots
and trigonometric relations can be transformed automatically into polynomial constraints.
Hence the user will not have to add extra variables.

7 Conclusion and future works

In this paper we have presented our work on introducing cooperation between solvers in a
CLP system over non-linear constraints. This work was motivated by applications and the
need for cooperation to increase the efficiency of such a system. We have shown the great
benefit of cooperation: it does not only increase the capabilities of COSAC, it also enables
to re-use powerful tools as ECLiPSe, CHRs, GB and Maple.

Moreover the client/server architecture allows one just as well to extend CoSAc with
new features and new solvers or to replace them by some more powerful future ones. Thus
we plan to add some specialized solvers and some new components for the following reasons.
First, solving systems of polynomial constraints is a hard work. So specialized solvers (e.g.
for quadratic equations [26]) can cooperate with the other solvers and lighten their tasks.
Furthermore we want to extend the expressiveness of COSAc with more general constraints
(e.g. transcendental functions [10]). Finally, to make life easier for the user, we will introduce
a library of polynomial transformations. The aim of this component is to automatically
convert into polynomial equations constraints that are not presented in this form.

Sequential synchronous communication works well as long as there are only one “fast”
solver (e.g. Simplex) and one “slow” solver (e.g. GB). However, asynchronous communica-
tion protocols can offer more flexibility if we want to integrate another “slow” solver (e.g.
another polynomial solver). Hence we will extend CoSAc with an asynchronous communi-
cation protocol. So it would be possible for several “slow” solvers to work at the same time,
and possibly on the same set of constraints, but with different algorithms.
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