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Augmenter ’ordre de convergence des composantes algébriques
pour des méthodes de Radau ITA appliquées a des EDA d’incice
deux

Résumé : Cet article présente une nouvelle technique simple pour améliorer la convergence des com-
posantes algebriques lorsqu’une méthode de Radau de type IIA est appliquée a un systeme différentiel
algébrique d’indice deux. Pour la méthode de Radau IIA d’ordre 5, sa mise en ceuvre recquiert de
simples modifications du code Radau5 développé par E. Hairer et G. Wanner. Nous les explicitons et
présentons les améliorations obtenues sur différents problemes.

Mots-clé : systemes algébro-différentiels d’indice 2, méthodes de Runge-Kutta, méthodes de Radau
IIA, arbres, conditions simplificatrices, composition.
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1 Introduction

In recent years, differential algebraic equations (DAEs) have been studied by various authors (see
[HW91], [HLR89], [BCP91]), and their importance acknowledged by the development of specific solvers
such as DASSL from [Pet86] or RADAUS5 from [HW91]. An especially important class of DAEs arising
in practice are semi-explicit systems of the form

(S) { y'(t) = f(y(t)SZ(t))7 t € [ty L],

where g, f, is assumed to be of bounded inverse in a neighbourhood of the solution of (S). Here, we
are interested in obtaining a numerical approximation to (S) accurate for both the differential and the
algebraic components. Although some of the ideas presented in this paper also apply to more general
Runge-Kutta methods, we will focus on Radau ITA methods, given that they were used to build the
code RADAUS. Their construction as well as some of their properties are briefly recalled in Section 1.1.

When applying a s-stage Radau IIA method to (.5), the orders of convergence are respectively 2s — 1
for the y-component and s for the z-component (see [HLR89]). In some situations, where getting an
accurate value of z may be important (in mechanics for instance), one is led to use a different approach.
Generally speaking, the order reduction phenomenon may be overcome by the following techniques:

(i) a first possibility consists in applying the Radau IIA method to the index one formulation (.5) of

) (4,2)
ra y/ = f y,z 9
(%) { 0 = g,(y)f(y,2)

Since Radau ITA methods applied to index one DAEs exhibit full order of convergence for y and
z (see Theorem 3-1 [HLR89]), the order of convergence is now 2s —1 also for z. However, solving
(S) can be considerably more costly: as a matter of fact, this requires to evaluate the Jacobian
of the function F(y,2) = (f(y,2),9,(y)f(y,z)) at each step (or whenever the convergence rate of
the Newton iteration gets too small), instead of the function F(y,z) = (f(y,2),9(y)) . Another
drawback is that the numerical solution is not forced any longer to lie on the constraint manifold

9(y) = 0.

(ii) asecond idea consists in computing the z-component by solving the additional equation ¢,(y)f(y, z),
i.e. in projecting the numerical solution on the so-called “hidden constraint”. The corresponding
numerical scheme now reads

0 = 9(yni), i=1.---
(Sn) Yn,i Yn + ho, Ejzl aijf(yn,ja Zn,j)a ’

Yn+t1 = Yn t hn Zf:l bif(yn,ia Zn,i)a

0 = 9y(Un+1) S (Un+t1, 2nt1)-

The order of convergence for the y-component is still 2s — 1 and can be shown to be now 2s — 1
also for the z-component by using the Implicit Function Theorem. However, this technique is
once again computationally more demanding than the original one: solving the new implicit
part of (.5,,) requires an accurate evaluation of g,(y) at each step, and not only, as previously
mentioned, whenever the convergence rate of the Newton iteration becomes too small. It can be
nevertheless noted that in a parallel environment, this additional cost would be shadowed by the
use of a second processor.

In this paper, we present a third approach which does not require an analytical form of g, and whose
computational cost is basically equal to what it is for the standard formulation. It is based on the
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4 A. Aubry , . Chartier

observation that the errors in the z-component are essentially of a local nature, at least up to the
order of convergence of the y-component. As a consequence, making z more accurate is a matter of
recovering the significant terms that appear in the so-called “B-series of the error”. This is made
possible by considering the composition of the basic method with itself over several steps. It can be
noted that similar ideas were used by R.P.K. Chan to deal with the order reduction of Gauss methods
when applied to certain stiff problems (see [BC93]).

The new order conditions will be determined in Section 2. While they can be derived in a straightfor-
ward manner from the work of E. Hairer, C. Lubich and M. Roche ([HLR89]), they are still relatively
unknown since they are not satisfied by most classical Runge-Kutta methods (see also [BC93] or
[CCY5]). It will then be shown that some of those conditions are actually redundant and may be
omitted. This is a crucial aspect of the method, since it allows the construction of formulas with a
manageable level of complexity.

In Section 3, the implied modifications to the code RADAUS5 are listed. Finally, numerical results are
presented that illustrate the advantages of this new technique.

1.1 Basic properties of Radau ITA methods

Radau ITA methods can be defined by the s + 1 quadrature formulas

o $(1)dt = > i1 aijp(e;), i=1,---,s,
ooyt~ i bid(c).

A particular method R will be characterized by the triple (A, b, ¢) where (a;;); j=1,...s Is a $ X s matrix,
b= (b, -,bs)" a s-dimensional vector and ¢ = (c,---,¢;)T a s-dimensional vector. In the sequel,
we will furthermore use the notations e = (1,---,1)T € IR® and ¢ = (cf,---, )T

24

for all integers k.

1.1.1 Construction of Radau ITA methods

Their coeflicients are uniquely determined by the following conditions:
1. ¢, -+, ¢ are the ordered zeros of the Radau right polynomial

M(z) = dd;% (@ 1)),

2. by,---,bs satisfy B(s):

1
Ve {0,--,s—1}, bl cF = ———.
{ } G+ 1)
3. The coefficients a;; of the matrix A satisfy C(s):
1
Vk € {0+, s — 1}, AcF = ——— &1,

As the ¢; are all distinct, A is non-singular.

1.1.2 Some useful properties

We will refer here to the additional simplifying assumptions D(¢) introduced, as B(p) and C(n) of
previous subsection, by J.C. Butcher (see [HW91] page 75).

INRIA
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1. Due to the conditions C(s), B(s) and ¢; = 1, Radau ITA methods are stiffly accurate (i.e.
b = as,1 = 1,---,s). (The vectors b and (asl,---,ass)T are solution of the same Cramer
system).

2. They are collocation methods (Theorem 7-8 [HNW91], page 212).
3. B(2s — 1) is satisfied (Lemma 5-15 [HW91], page 93).

4. D(s — 1) is satisfied (Lemma 5-4 [HW91], page 78).

Optimal convergence results have been obtained for those methods by J.C. Butcher on the one hand
(Theorem 5-3 of [HW91]) and E. Hairer, C. Lubich and M. Roche on the other hand (Theorems 3-1,
4-4 and 4-6 of [HLR89]). They are collected in Table 1.

index 0 (ODE) | index 1 | index 2
h?s—l h?s—l h?s—l

y
~ _ h25—1 hs

Table 1: Optimal global error estimates for the s-stage method Radau ITA

1.2 Increasing the order of convergence of the z-component

When applying a s-stage Radau ITA method R = (A4, b, ¢) to the system (.5), we obtain

0 = g(yn,i)v (1)

Yn,i = yn‘I'hn Ej‘zl aijf(@/n,j72n,j)7 1= 17"'757 (2)

Yn+1 = Yn + hn Ef:l bif(yn,iy Zn,i)7 (3)

Zagl = 207 j=1 biwijanj, (4)
where w;; are the coefficients of the matrix A™!. In (4), z, vanishes because R(oc) = 0. Let us
now replace the vector (b7 A=1)T by an adjustable vector w = (wy,---,w,)T in (4). By doing so,

we define a new method R,. It is easily seen that the order of convergence of the y-component
remains unchanged. As for the z-component, the lack of accumulation makes the errors purely local.
The convergence behaviour of the z-component is thus entirely determined by the following order
conditions from Theorem 8-6 and 8-8 of [HW91].

Proposition 1 Let 6, and ¢, be the local errors respectively for the y and z components of a Runge-
Kutta method. Then we have,

by = O(RP*Y)  iff Vi€ DAT2,,p(1) < p,y(1)bT®(1) = 1,

§2=0(h"*Y)  iff Yu€ DAT2,,p(u) < q¢,7(w)wl®(u) =1,

where DAT2,, DAT2, are sets of lrees, ® a vectorial function and v, p scalar ones associated with

the trees 1.

Nevertheless, w has not enough components to allow for an order of convergence greater than s
(w = (b'A~1)T is the optimal vector). Hence, to get sufficient freedom, we need to consider the
composition R, of R over o steps. As variable steps h;, ¢ = 1,---, 0 are considered, we also have to
introduce the ratios r; = h;/>.7_ hi, t = 1,---,0. R, is characterized by the triple (A, B,C) where

e A is the blockmatrix (A;;); j=1,... With s X s blocks of the form

!See [HWI1] for a definition of these notions.

RR n°"2744
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Aii = 14,
Aij = TjebT, if 7 > 7,
Aij = 0, if j >z

e B is the blockvector (B;);=1,.., with blocks of the form B; = r;b.

e C is the blockvector (C;);=1,..., with blocks of the form C; = r;c+ ( 2;11 rk) e.

T
Replacing (BTA_l) by an adjustable vector w offers o X s degrees of freedom, i.e hopefully enough
for ¢ > 1 to increase the order of convergence of the z-component. It is our aim now to show how to

construct w and how to implement the new method R, ,,.
2 Construction of the vector w

In this section, the effective construction of w is described. It should be emphasized that its components
depend on rq,---, 75, thus forcing one evaluation per step. However, these additional computations
become negligible as soon as the dimension of the system (S) is large enough.

2.1 Order conditions
The conditions for order k are enumerated below together with the associated trees.
o k=3s,5>1:(Cs) is required with
wle = 1, (0)

(Cs) { k
Vke {1, ---,s—1} wick = 1, [[7, 7). (k)

e k=s+1,s>2:(Cs) and (Cs41) are required with

wlcs = 1, [[T7 ) T] ]27 (S)
(CS-I-l) s+1 Y
wl A7ICtY = s41, [F, 7). (s+1)

Let Us be AC?® — H_%CS‘H. If () is satisfied, then (Csyq) is equivalent to
wl A7'U, = 0.

e k=s5+2,5>3:(Cy), (Csy1) and (Cyy3) are required with

wrestt = 1, [[g_a_?j'—%]y]m (s+2)
wl AZlest? = 542, [’r_er] (s+3)
(Cor2) | wTace = o1 [[[ﬁy]y]m (s+4)
wlc. AZles*t = 541, [[r,[ﬁz]y]z, (s+5)
wl ATHCACT) = 7, [T,[?T’??y]z- (s+6)

Let Usyy be ACTH! — —5CF21f (s + 2) is satisfied, then (Csy9) is equivalent to

2The dot stands for the componentwise product.

INRIA
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wl AWy = 0 (s+3), 'U; = 0 (s+4),
wlC AU, = 0 (s+5), wlAY(CU) = 0 (s+6)
¢ k=5s5+43,5>4:(Cs), (Cs41), (Cs42) and (Cs43) are required with
s+2
wTCS+2 = 1, [[Tv B T]y]zv (S + 7)
s+3
wl A=1Cs+3 = 543,  [F7k, (5+38)
s+1
wl AC*H = 3 ({17 Tlylyle (s+9)
s+2
wlc. A71Cst? = s+2, [[T7 [7—7 T T]Z]y]27 (8 + 10)
s+1
wl A7H(C.ACTY) = zig’, (7.7, . Tlylzs (s+11)
- s s ——
wl A l(C‘A2C ) = m7 [7—7 [[7_7 T 71—]1/]1/]27 (8 + 12)
s+
(Coral \ T a1 (c A(C. ATy = Lt e A (A e (s +13)
wT.A_l(CQ.ACS) = zif, (7,7, [T, Tlylas (s+14)
s e e
wt A = e [F AL (s +15)
wT‘A(C“A_ICS—H) = ziév [[[7—7 [7—7 Tt T]Z]y]y]zv (8 + 16)
’LUTC-ACS = 5_}%17 [[T7 [7—7 Tty T]y]y]Za (8 + 17)
wTC"A_l(C‘ACS) = 2137 [[T7 [7—7 [7—7 Tt T]y]Z]y]Z7 (8 + 18)
s+1
wlct A-test! = s+1, 7,7 [T, -, 7))yl (s+19)
Let Usyg be ACST? — S}_—SC5+3. If (s 4+ 7) is satisfied, then (Cyy3) is equivalent to
wl AU, 0 (s+8), wlUgyy 0 (s+9),
wIC AWy = 0 (s+10), wlAYC.Usp) = 0 (s+11),
wl A7YC.AU;) = 0 (s+12), wl AN C.AC.ATIU)) = 0 (s+13),
wl A7Y(C2U) = 0 (s+14), wl AU = 0 (s+15),
wl A(C.ATIU,) = 0 (s+16), wlC.U, = 0 (s417),
wIC.ATYCU;) = 0 (s+18), wlc2 AU, 0 (s+19).

These conditions are obtained by Proposition 1 and by using simplifying assumptions (it is important
to note that the composite method R, satisfies B(2s — 1), C(s) and D(s — 1)).

2.2 Preliminary calculus

In order to later simplify the equations for w, we now state some basic results.
Lemma 1 Let F be ATV EA™! with E = eb”, then F(I — EA™') = 0.

Proof: By definition, we have F' = A~'eb’ A~1. As the method R = (A,b,c) is stiffly accurate,
F = vel where v = A7'e and e, = (0,---,0,1)7. Hence, F(I — EA™Y) = vel(I — ebT A7) =

S

T _ 17,17 _ .1 ., T _
ve, — vesee; = vey; —ve; = 0.0

Lemma 2 Let (W, ;) j=1,.0 be the s x s blocks of the matriz A™1, then
RR n°2744
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Wi, = LA™l
Wii1 = —F,
Wi ; = 0, ifj#iand j#£1— 1.
Proof: By definition, AA™! = Z, i.e.
i—1
Vi,j € {1, e -,0}, TZ'AWZ'J‘ + Z 'T’kEWkJ‘ = (52']‘1.
k=1
Lemma 2 is then easily proved by induction on ¢. O
T T T ; ; 1 1
Lemma 3 Lei U, = (U1 s Ugﬁn) be the o X s dimensional vector AC™ — mC“"’ and u, be the
s dimensional vector Ac™ — #c”"’l with n € IN. Then, for all integer n < 2s — 2, U, is given by

Vie{l,---,0},U;p = Z ( Z ) Tf"’ls?_kuk

k=s
Proof: Let n be less than or equal to 2s — 2. For all < € {1,---,0}, we have U; ,, = T} ,, + S; ., where

Tin = 1 N ) (rre+ ske) ,

Sim = riA(ric+sie)" — =g (ric+ s )"t

S;n can be expanded as follows
n k1 gn—k 1 1 71 kgntl—k k
Si,n Zk 0 ( k ) T AC T 1 k=0 k T8
_ n k+1 n—k 1 ntl
= Ek 0 ( ) TPUUS) Uk — S €.

Owing to C(s), we have u; = 0 for all integer £ < s, hence

n
_ oY k41 _n—k, 1 +1,
Sm—z(;ﬂ)ri ST

k=s

Similarly, 7} ,, can be expanded as

i—1 n
Tin = ZrkE (Z ( ) rksz ! Z)
k=1 {

Now, B(2s — 1) implies that

Vie{0,---,2s— 2}, Ec = eb?c =

€,

I+1
and as n < 2s — 2, we obtain
1 1 n+ 1\ 41 ni
Ti,n = m( 2: ?=0<l—|-1 )7’]?52 )6

1 1 +1 1
= nl( 21(Tk‘|‘5k)n - n+)€

_|_
_ 1 i—1 _n+l _ ntl
= nF1 k=15k+1 ~ Sk
_ 1 n+1
= as e

INRIA
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Lemma 4 For all n less than 2s — 2, Fu, = 0.

Proof: This follows at once from B(2s —1). O

T
Lemma 5 Let (X’l """ -,XUTm) be the vector A~1U,,, then for all integer n < 2s—2, A~1U,, is given
by

VZE{1770}7X27TL:E<Z) knkA U

k=s

Proof: By definition, X;, = E;’ 1 W, ;U; . From Lemma 2, X; , = _%FUi—l,n + %A‘lUm. Using
Lemma 3, we obtain

:__Z( )Zk-}-ll;zlkFuk_l_Z( )knkA k.,

h
and we use Lemma 4 to complete the proof. O

Lemma 6 For all n less than 2s — 3, F(c.u,) = 0.

n+2 n
Proof: This follows straightforwardly from the order conditions for the trees [[7,- - -, T|,], and [[7, [T,
a
Lemma 7

T
1. Let (Yl et -,YGTJL) be the vector C.A™1U,;

ko3
ifn<2s—2thenY;, = Z ( Z ) (rf"’ls? ke A=y + rk ”‘H kA_luk) .
k=s

T
2. Let (Zle, . -,Zgn) be the vector A1(C.U,,);

. " n k n—k 4— n k 41—
if n < 2s— 3 then Z;,, = kz_: ( L ) (ri‘"lsi A 1(c.uk)—l— TS ti=k g luk).

Proof: By definition, Y;, = (r;c + s;e) X;, and the first part of the result is obtained by applying

T
Lemma 5. Now, let (TlTn, . '7Toj':n) denote the vector C.U,. From Lemma 3, we can write 7T} ,, as

n
n
T = Z ( k: ) (Tf"’QS? ke g —|—7’k+1 ”‘H k k).
k=s
We have furthermore 7; , = E;-T:l W, ;T 5, so that Lemma 2 leads to
Lin = —%i i—1m T %A_lTi,n
n Tk+2 _ T}H'l _
= =37 ( L ) (—‘T‘il s; kF(cuk) + —:,1 s?‘H kFuk>

+ D h=s ( Z ) (rf“s?_kA_l(c.uk) + Tfs?“‘kA—luk) )

RR n“"2744
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The result then becomes a consequence of lemmas 4 and 6. O

Lemma 8 For all n less than 2s — 3

FAu, = 0,
FA(c.A7 u,) = 0.

n n+1 n+1
Proof: This follows from the order conditions for the trees [[T,---, 7]y, [T, -+, T}y and [7, [T, -, T],]y.
a
Lemma 9 For all n less than 2s — 4
F(c2uy,) = 0,
F(c.Auy,) = 0,
F(e.A(e.A7tu,)) = o.
n n+3
Proof: The results follow from the order conditions for the trees [[7,7,[T, -, T|yl:]y, [[T:- -+, T)zly,
n n+l n+1
—— —— N
[[Tv [[7—7 T T]y]y]Z]ya [[Tv [7—7 T T]y]Z]y and [[Tv [7—7 [Tv T T]Z]y]Z]y' o

2.3 Results for the 2-stage method

In order to get a third-order method, w has to satisfy the following linear system (.57, 2):

wl'é = 1 (0), wlc? = 1 (2),
wl'c = 1 (1), wlA7'U; = 0 (3).

Taking o = 2 leads to a system with 4 equations and 4 unknowns. For convenience, we recall below
the coeflicients of the 2-stage Radau ITA method,

S
12
3
4
1

The matrix M corresponding to (57, 2) is then of the form

1 1 1 1

M _ %‘7’1 T %(1 —|— 27’1) 1

- %7’% 2 %(1 +2r +4rd) 1 ’
i grf —%(1-m)? §(1—ry)?

and we have S
det(M) = —%7‘1(47"? — 871 4 51 — 2).

Hence, for all 7 € (0,1), M is non-singular and (.57, 2) has the following unique solution

w _ 3 Ti’—47"‘11+77"i’—77"%+47"1—1 w _ 1 r§—67f+llri°’—5rf—4rl +3
1 i ArSri4en-2 3 2r1 47T —8r245r —2 ’
_3ri—6r$41277 107143 _1ri-8ri41277-6r143

2 4ri-8rit5r -2 2 4r{-8ri+5r -2

wyg =

INRIA
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2.4 Results for the 3-stage method

In order to get a fifth-order method, w must satisfy the following linear system (S, 3):

wl'€ =1 (0), wlct = 1 (5),
wl'C =1 (1), «'A™ly, = 0 (6),
wl'C? =1 (2), w'U; = 0 (7),
wl'c? = 1 (3), wlcAlU; = 0 (),
wl A7 = 0 (4), wlA7Y(C.U3) 0 (9).

Taking o = 3 now leads to a system with ten equations but only nine unknowns. However, we will show
in this section, that one of these equations is identically satisfied. Collecting all results of Section 2.2,

we get
T%U3 T%/1_1U3

Us = T%Ug s ¢4_IL% = T%[l_IU3 s
7‘§U3 'rgA_luS
riA= uy riA=1(c.uz)

AU, = raA ™ ug + 4r3so A7 ug |, ATHC.U3) = raA Y eouz) + risg A7 ug |
raA ™ uy + 4r3sz A7 ug raA™(c.uz) + riss A lus
ric. A7 ug

CA U3 = ric. A7 ug + r3sp A7 ug

r§c.A‘1U3 + r§’53A_1U3

Let V; be A~1U; — 4A71(C.U3), V3 be C. A7 U3 — A7L(C.U3), v; be A7 ug — 447 (c.ug) and vy be
c. A7 ug — A7 (c.uz). It is found that

T%Ul T%UQ
Vi=| rivy and Vo = | rivy |,
Tg@l r§v2
and the system (S, 3) is equivalent to

wl'€ 1 (0), wfct 1 (5),
wTC =1 (1), 'y = 0 (6),
wl'c? =1 (2), w'U; = 0 (7),
wTc? =1 (3), 'y = 0 (8),
wl A71U; 0 (4), wlA=YC.Us) = 0 (9).

Theorem 1 Vi, V; and Us are linearly dependent.

Proof: It is enough to show that vy, v; and us are linearly dependent. Since R = (A, b, c)is of order
5 for the differential component, we have

va—led = 1, v'A=1(c.A®) = L
bl Ac? = 21—0, blct = %,
bleA et = %,

so that bTus = bTvy = bTvy = 0. Now, b # 0 implies the result.O

Remark 1 Whenever r{ = 19 = 13 = %, the vectors A~'Us, Us and V; (for example) become linearly
dependent. To prove this, it is sufficient to show that A~ us, us and vy are dependent. As bT A= us =

RR n°"2744
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bTed3 — %bTA_lc4 = 0, we can conclude as in Theorem 1. In this case, w depends on one parameter
that can be chosen so as to minimize the quantity

> alw)lly(ww e(u) - 1],

uwEDAT?2.(5)

where DAT?2,(5) = {u € DAT2,|p(u) =5}. This seems a natural goal to achieve, since this is an
attempt to minimize the local error. For convenience, Table 2 collects the trees of DAT2,(5) and the
values of the associated functions o, v and ®. To compute the a’s, we refer to [Hig93].

tryee U a(u) | v(u) O(u)
[[7—7"'77_1/]2 1 1 65
[7—7. . .77—]2 % A1
[[[T7 7—775—77—]1/]1/]2 5 AC4
[[7—7 [7—7 ) T]z]y]z 5] % c.A7LeP
(7, [7, 7,7, Ty]» 6 2 A7l(c.Ac?)
[7—7 [[7—77—77—]1/]1/]2 6 13—0 A_I(C.AQCS)
[r, [ rlL] | 24 | 3 | A (e A(e.A71cY)
(7,7, [T, 7, Ty) 15 % A_I(CQ.ACS)
[[llr, 7 Tlylylyl- 1 20 A%ed
[[[7—7 [7—77—77—7 T]z]y]y]z % A(C.A_IC4)
[[T7 [7—77—77—]1/]1/]2 5 4 C.A63
[[7—7 [7—7 [7—77—7 T]y]z]y]z 25 % C.A_I(C.ACS)
r,7,[r, 7,7, 7]]y]. | 10 5 2. A7 A

Table 2: Trees of DAT2,(5) and their associated functions

2.5 Sketch of the case s =14

To achieve order 7 for the algebraic component, we have to solve the system (S, 4) composed of (Cy),
(C5), (Cs) and (C7) (see Section 2.1), that is to say 24 equations. Comparing the number of equations
and the number of unknown, we could consequently think of taking ¢ = 6. In fact, it can be shown
that ¢ = 5 is sufficient, since 5 equations are identically satisfied (see Section 6.1). However, it does
not seem reasonable any more to consider a practical implementation of the corresponding method,
owing to the complexity of the formulas for variable stepsize.

Remark 2 [f the stepsize is constant (i.e. ry = rg = --- = r,) then 9 equations are identically satisfied
(see Section 6.1), and o can be chosen equal to 4.

3 Modifications to the code RADAUS5

The 3-stage Radau IIA method has been implemented by E. Hairer and G. Wanner in order to solve
problems of the form MY’ = F(Y'). ODEs and DAEs of index less than or equal to three can be solved
by this code, called RADAUS5. A precise description is given in Section IV-8 [HW91] and we will adopt
the notations used there. Implementing our method requires slight modifications to the subroutines
“radcor” and “solout” which are actually replaced respectively by “radcorz” and “soloutz”.

INRIA



Un tmproving ithe convergence of naaau 1A metnoas appiiea (o inaexr < 1LJALS

3.1 Modifications to radcor

Only the computation of the algebraic component (z) is modified (if an index 2 DAE is solved). Once

the n'" step has been accepted, two cases are considered:

1. less than three steps have been computed. Then, we keep the internal stages z, 1, 25,2, 25,3 and
the step size h,. The value of (yn41, 2n41) 1S (Un,3, 2n,3)-

2. three or more steps have been computed. Then, we keep the internal stages 2,1, 2,2, 2,3 and
the step size h,. r1, 79 are computed by the formulas
hn_z hn—l

ry = and ry =

hn—? + hn—l + hn hn—2 + hn—l + hn7

and w by the subroutine “vectw2”. For (y,41, 2nt1) wWe put

Yn+1 = Yn,3,
Zpgl = W1Zp_21 + WaZp_22 + W3Zp_23 + WaZp_ 11 + WsZn_12+
WeZp—1,3 T W7Zp1 + WeZp 2 + WoZp 3.

Remark 3 For continuous outputs, we need also to keep the internal stages over two steps for the
differential components (see section 3.2.2).

3.2 New subroutines

3.2.1 Vectw?2

In order to compute the formal expression of w and to create the associated fortran subroutine, the
manipulation package Maple was used. A call to vectw2 uses the format vEcTw2(1cAS,vW,R1,R2),
where the inputs are one of the five cases described below (1cAs) and the parameters 71, 75 (R1,R2).
The output is the vector w (vw). Five cases are considered:

l.ri=rpo=1r3= % In this case, we have seen that w depends on one parameter. It is optimized
as explained in Remark 1.

2. ry =19 and r3 # rq.

3. rg = r3 and rq # ro.

4. ry = rz and rq9 # rq.

5. 11 # 19,71 £ r3 and 19 # r3.
This allows us to reduce the cost of computation and to eliminate computational problems: had we
used the general expression of w (case 5), divisions by zero would have occured in the cases 1 to 4.

3.2.2 Continuous outputs

In the code Radaub, the subroutine “solout” provides the user with approximations at equidistant
output-points. The corresponding interpolation formulas are implemented in the subroutine “contr5”.
“contr5(I,x)” gives an approximation U/(X) to the I** component of the solution Y at the point z (z
should lie in the interval [z, 2,,41]). U is the collocation polynomial: it is of degree 3 and defined by

U(z,) = Y,,
U(.Tn + Cihn) = Ymi, 1 =1,2,3.
RR n°2744
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For index 2 DAEs, U = (u,v) where u, v are polynomials of degree 3 which satisfy

U,(l‘n) = Yn, ?J(:L‘n) =  Zn,
w(zy, + cihy) = Y, v(xy, + chy) = 2y, ©=1,2,3.

By Theorem 7-8 ([HW91]), we have
u(z) — y(z) = O(h*) and v(z) — 2(z) = O(h?).

As our aim is to increase the order of convergence for the algebraic component, it seems natural to
search for an approximation P(z) = (p(z),q(z))of Y (z) = (y(z), 2(z)) satislying P(z)-Y (z) = O(h®).

Approximation of z(z)

Let x be of the form z,_9 + 8k where h = h,_o + h,_1 + h,,. We define ¢ as follows

3
q(z) =D wi(0)zn_2i + w34i(0)zn_1i + weri(0)zni,
=1

where the vector w(f) = (wy(8),- - -, we(f))" satisfies the linear system
wl(0)€ = 1 (0), wT(o)ct = 6* (5),
wl(8)C =0 (1), whOW = 0 (6),
57s(0) 4 wi(0)C? = 0* (2), w(6)Us = 0 (7),
wl'(9)C? = ¢ 3), wl(®OW = 0 (8),
wl(0)A71U; = 0 (4), w'(0)AHC.Us) = 0 (9).
Using the notations of section 2.4, we have
Proposition 2 For all 6 € (0,1], 57 5(6) possesses a solution and
¢(xn_g 4 0h) — 2(xn_y + 6h) = O(R®).
Proof: From Theorem 8-5 and 8-6 in [HW91], we have
s . gr(v)
q(xp—2 +0h) — 2(xp—2 + 6h) = O(R’) iff w (0)®(u) = ——, Yu € DAT2,, p(u) < 4.

v(u)

According to the analysis of section 2.1, this leads to the system 533(0) which, by Theorem 1, pos-
sesses a solution. O

The subroutine “vectwz” computes w(#). As for the vector w, five cases are considered. When h,,_; =
hp—1 = hy, w(#) depends on one parameter (case 1) which is not adjusted as in Remark 1. In
this case, the value defined by continuity for w(#) is choosen. A call to “vectwz” uses the format
VECTWZ(ICAS,VWZ,R1,R2,T), where the inputs are one of the five cases described before (1cAs) and
the parameters 71, 73, 6 (respectively R1,R2,T). The output is the vector w(8) (vwz).

Approximation of y(z)
Let z be of the form z,_1 + nh where h = h,,_1 + h,, and h,_1 = rh. We define p as follows

3
p(CL‘) = Z Bi(n)zn—l,i + BS—}—i(n)Zn,h

=1
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where the vector B(n) = (By(n),---, Bs(n))! satisfies the linear system

BY(mE = 1 (0), BT(n)C? n° (3),
Sta(m)y BEmC = n (1), B'mCt = gl (4),
BT(n)c? = n* (2), BT(nAC? o (5).

(A, ATB(1),C) is the Runge-Kutta method R obtained by the composition of the 3-stage Radau ITA
method R = (A, b, c) over two steps,

TC TrA 0
Ry= re+(1—r)c|rebt (1-71)A,
| rb (1—r)b

and F is the vector (1,---,1)7.

Proposition 3

Vi € (0,1], p(an—1 + nh) = y(zn_1 + nh) = O(R?).

Proof: Let us introduce the vector D(n) = A~TB(n) = (Di(1))i=1....c and the following polynomial

u:
3

W(Tn—1 +nh) = Yn-1 + Z Di(n) f(Yn—1,i» 2n—1,:) + Dig3(0) f(Yn,i» 2ni)-

=1
From Theorem 8-5 and 8-6 in [HW91], we have

w(zn_1 + nh) — y(z._1 + nh) = O(R?) iff DT(n)®(1) = ZZ(Z)) Vi€ DAT2,, p(t) <4 (P).

Using the points of the internal stages, it follows
3
u(Tn—1 + nh) = R(00)yn—1 + Z Di(m)yn-1,i + Diy3(0)¥n,i;

so that (P) is equivalent to the system S} 4(7). O

The subroutine “vectwy” computes B(n). A call to “vectwy” uses the format VECTWY(VWY,R,T),
where the inputs are the parameters r and n (respectively r,T) and the output the vector B(n) (vwY).

The subroutine “soloutz” provides the user with approximations (p(z®,,), ¢( Out)) of (y(2%,,), 2(x! ;)
at equidistant output-points (z?,,);=1,... . For the differential component, z;,, is of the form @, +
N(hp—1 + hy) where 7 is choosen so as to satisfy z, < wout
of the form z,_3 + 0(hn—2 + hn—1 + hy,) where 8 is choosen in satisfy z,_; < '
“soloutz” uses the format

< 2,41 and for the algebraic one, zt, is
< z,. A call to

out

SOLOUTZ(NR,XOLD,X,Y,NEQN,ICAS,R1,R2,HTOT,H2,H3,LAST),

where the inputs are the number of accepted steps (NR), @, (XOLD), nt1 (X), (Ynt1,2nt1) (Y), the
system’s dimension (NEQ), one of the five cases described before for the computation of w(f) (1cas),
the parameters r1, r2 (r1,R2), the stepsize hy,_2 + hp—1 + by, b1, by, (RTOT,H2,H3) and a Boolean
variable (LAST) to indicate if the last computational step has been reached.
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significant digits
12 29 gt —
modified radau5 —

radau5 -----

10

-2 L L cpu time
0.01 0.1 1 10

Figure 1: Precision versus computing time - algebraic components - test problem

4 Numerical experiments

4.1 Test problem

We consider the index two problem:

v = wt)(? _ol)y(””(”y(” del-1)
0 = y(y)-1

where ¥ is the following infinitely smooth function:

2 .
Zexp (t?tTl) if |t <1,
(t=5) :
t—10 .
Zexp (%) if [t —10] < 1,
0 otherwise,

with consistant initial values. The exact solution is

yi(t) = cos(¥(1)),
y2(t) = sin(V(?)),
z(t) = 0.

In both codes, we set WORK(4) = 0.001, WORK(5) = 0.99, WoRrK(6) = 1.3 and initial step size h = 1077
(WORK(4) is the parameter k in the stopping criterion for Newton’s method. WoRK(4), WORK(5) are
the parameters ¢y, ¢z in the stepsize control, see [HW91], page 130-134).

In figure 1, we plot the CPU time against the number of significant digits (—log;, (absolute error)) of
the algebraic components, for both codes. For this, we use continuous outputs : outputs are required
at t; = {;_1 + 0.2, we compute the global error and then take the maximum over all values. In figure 2,
we plot the cpU time against the number of significant figures of the differential components, for both
codes.

In the following problems, only the modified parameters will be shown.
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significant digits
14 29 ALl

modified radau5 —
radau5 -----

12 | g

10

0 L L cpu time
0.01 0.1 1 10

Figure 2: Precision versus computing time - differential components - test problem

4.2 Pendulum

The simplest constrained mechanical system is the pendulum, whose equations of motions are described
in [HW91], page 483-485. We have applied the code Radau5 and the modified code to the GGL (Gear,
Gupta and Leimkuhler) formulation

PO = ult) = p(0)a(),
o =
mu' (¢ = —p t),
’m’l]l(t) = —q()A(1) — g, t € [0,10],
0 = p(t)*+q(1)* = 1%

Hu(t) + q(t)v(1),

(

0 =

with consistant initial values p(0) = 1, ¢(0) = 0, u(0
simplicity, we took m =1,g=1and [ = 1.

In figure 3 (respectively 4), we plot the cpu time against the number of significant digits of the
algebraic (resp. differential) components, for both codes.

= 0, v(0) = 0, A(0) = 0 and p(0) = 0. For

4.3 Multibody mechanism

A seven body mechanism is described in [HW91], page 531-545. We have applied the code Radaub
and the modified code to the index 2 formulation

¢(t) = (),
(1) = M) (Fa(t),o(8) = GT(g(t)A®)), € [0,3.1077,
0 = Glg()w(),

with consistant initial values.

In figure 5 (respectively 6), we plot the CPU time against the number of significant digits of the algebraic
(resp. differential) components, for both codes. Here, outputs are required at ¢; = ¢;_; + 0.0003.

4.4 Discharge pressure control

This simplified model of a dynamic simulation problem in petrochimical engineering is described
in [HLR&9], page 116-118. We have applied the code Radau5 and the modified code to the following
RR n°2744
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significant digits

10

modified radau5 —
radau5 -----

1 L L cpu time
100

Figure 3: Precision versus computing time - algebraic components - pendulum

significant digits
14 9 T 9 -

modified radau5 —
radau5 -----

12

10

cpu time
00

Figure 4: Precision versus computing time - differential components - pendulum
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Figure 5: Precision

10

significant digits

modified radau5 —
radau5 -----

10

. cpu time
100 1000

versus computing time - algebraic components - seven body mechanism

significant digits

modified radau5 —
radau5 -----

. cpu time
100 1000

Figure 6: Precision versus computing time - differential components - seven body mechanism
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Figure 7: Precision versus computing time - algebraic

Figure 8: Precision

index 2 formulation:

with consistant initial values.

significant digits

modified radau5 —
radau5

1 1

significant digits
12 9 T 9 -

cpu time
0.1 1 10

components - discharge pressure control

10

modified radau5 —
radau5

cpu time
10

versus computing time - differential components - discharge pressure control

15 + tanh(¢ — 10),

M (3.35 — 0 075m(1) + 0. 001m(t)?),
L (s(t) )
20 ! o
“ o0 - 901, o
u(t) — m(1), 2
(450)" —49.582 + (740)",

Here, initial step size h is equal to 1072,

In figure 7 (respectively 8), we plot the cpu time against the number of significant digits of the
algebraic (resp. differential) components, for both codes. Here, outputs are required at ¢; = ¢;_1 + 0.5.
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5 Conclusion

A new simple technique to overcome the order reduction phenomenon, appearing for the algebraic
component when Radau IIA methods are applied to index two DAEs, is proposed.

Increasing the order of convergence of z is made possible by considering the composition of the basic
method with itself over o steps. As 2,41 is defined in the basic method as a linear combination of the
internal stages, a good choice of ¢ should provide enough freedom for the order conditions associated
with the composite method to be satisfied. We have determined these order conditions which derive
straightforwardly from the work of E. Hairer, C. Lubich and M. Roche (section 2.1). Then we have
shown that some of those conditions are redundant and might be omitted for s-stage Radau IIA me-
thods with s < 4 (section 2.3 to 2.5).

It could be interesting to generalize this simplifications to any Radau ITA methods. A general question
will be to determine how many compositions of a s-stage Radau ITA method have to be considered to
obtain an order of convergence equal to 2s — 1 for the algebraic component. However, it does not seem
reasonable any more to consider a practical implementation of the corresponding method for s > 4,
owing to the complexity of the formulas for variable stepsize.

The formulas for s = 3 have been incorporated in the code Radaub developed by E. Hairer and G.
Wanner. Slight modifications were required (section 3). Only the computation of the algebraic com-
ponent was modified and a new procedure in order to have continuous outputs was created where we
have used our technique for both components (algebraic and differential) to compute approximations
of order five at equidistant output-points.

According to our numerical experiments, results for the differential components are disappointing.
However, the use of our technique in the code Radaub leads to an increase of the accuracy for the
algebraic components (when tolerances are sufficiently small).

6 Annexe

6.1 Construction of the vector w in the case s =1

In this section, we explained the calculus of linear algebra used to show that composed five times the
s-stage Radau ITA method is sufficient in the case s = 4. Let expand the following vectors of (Cg) (We
use Lemma 8)

AU, = [(T?A_1U4)T]TZ_:1 o

AT - [(rfA‘1u5 + 5T§152-7A7_1U4)T]TZ,:LM’U,
Uy = [<T?u4)T]Ti:1 B

C.AU, = [(rfc.A_1u4 -|-7 T%SiA_IM)T]TZ.:l o’
Al = [ e +risatu)'] T

and the following vectors of (C7) (We use Lemma 9)
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A-104 — [(T?A—lqm + 6r2s; A7 us + 5r§1522A_1U4)T]T2,:LM707

Us = [(7‘?% + 5rf8iu4)T] TZ,:17W707

C.A-U; _ [(T?C‘A—l% + r2s; A7 us + 5r2s;c. A uy + 5T?SZ2A_1U4)T]TZ.:1 o
A7L(C.U5) = [(T?A_I(C.U5) + rPs; A7 us + 5r2s; A7 (couy) + 57‘?5?A‘1u4)T Tl_zl ey
A-1(C.AUY) = [(*r?A_l(C.AZM) + *rfsiu4)T]Ti:L,,,7g’ -
ATHC.AC.ATIUY)) = [(r$A7 . A(e. A uy)) + 108, A7 eouq) + r2sic. A7 uy

T
—|—T432A_11L4)T]

. ’
1=1,-,0

T
A-L(c2.Uy) = [(T?A_l(CQ.M) + 2r2s; A7 eouy) + Tfsz_1U4)T] L
. 1,00
.AU4 = [(T‘?A’LM)T] 1 )
=1, 0 -
A(C.A7UY) = [(’T?A(C-A_1U4) + rlsiug) ] s
, 1,0
C.U, = [(T?C.U4—|—T’Z-5.SZ'U4)T] - ,
1,0 ’
C. A1 (C.Uy) = [(T?C.A_I(C.?M) +r2sie. AT uy + r2s; AT euyg) + 7‘?82214_1U4)T] i
, 1,0
CrLAU, = [(r?cQ.A_1U4 + 2r2s;c. A7 uy + r?s?A_1U4)T] -

Let introduce the following vectors

/Tl - .A_l(]5 - 5.A_1(C.LT4),

T = C.A_1U4—A_1(C.U4),
Vl - LT5 - 5.A(C.A_1 U4),
Vo = Us— 5A_1(C.A(J4),
V3 - U5 - 5C.LT4,
V, = CATY(C.Uy — AYHC.A(C.ATIY)),
Vs = ANCRUy) +C2ATU, — C.A(C.ATIU,) — C.ATHC.Uy),
V6 = 2 (C.A_1(]5 - A_I(CU5)) -5 <C2..A_1U4 - A_I(CQ.U4)) i
V: = 15 (CQ.A_ILT4 + A_I(CQ.U4)) -6 (C.A_1U5 + A_I(C.LT5)) + 2-’4_1(]67
(idem for the vectors ¢; = A7 us — 547 e.uy, {y, vy, ... ,v7) then
T
’]i = [7’25 (A_lu;, — 5A_1(C.U4))T] 1 )
f=Lo
T, = [rf (c. A uy — A_l(c.U4))T] L
o) il
Vl = [7‘26 (u5 — 5A(C.A IU4)>T] - 5
= R
V, = [7‘26 (u5 — 5A_1(C AU4))T] X s
T -
Vs = [r?(% — 5¢ ’U,4)T] L
Vi = [rf(c.A (c) — AT (e A(e. A )| o
=1, ,
Vs = [r? (A7 (c?ouy) + 2 A uy — e A(e. A7 uy) — C.A_I(C.U4))T] AP
F=Lo
Ve = ['r? (2 (c. A7 us — A7 cous)) — 5 (2. A7 uy — A_l(c2.U4)))T] L
=1, ’
V, = [T?(—G (c.A7 us + A7 eus)) + 15 (2 A7 uy + A7 (cPuy)) + 2A_1u6)T] L

and the system (S7,4) is equivalent to
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wl'€ = 1 (0), wl A71Us = 0 (12),
wl'c = 1 (1), wl'Us = 0 (13),
wTC? = 1 (2), wl'Vg = 0 (14),
wl'C? = 1 (3), wl'V; = 0 (15),
wTct = 1 (4), wl'V, = 0 (16),
wl A71U, = 0 (5), wl'V, = 0 (17),
wl'C® = 1 (6), wl A7Y(C2.Uy) = 0 (18),
wl' Ty = 0 (7), wl AU, = 0 (19),
wl'Uy = 0 (8), wl'y, = 0 (20),
wT' T, = 0 (9), wl'Vy = 0 (21),
wl A7 c.Uy) = 0 (10), wlcA Y Cc.Uy) = 0 (22),
wTco = 0 (11), wly; = 0 (23).

Proposition 4

1. Vi, Vo, AUy and Vs are linearly dependent.
2. Vi, Vo, AU4 and V4 are linearly dependent.
V1, V2, AUy and Vs are linearly dependent.

V1, Va2, AUy and Vg are linearly dependent.

S e

V1, Vo, AUy and V; are linearly dependent.

Proof: Because of the expression of the vectors Vi, Vs, AU, and Vs, it is sufficient to show that
v1, v, Aug and vz are linearly dependent (idem for the part 2 to 5 of the proposition). The method
R = (A,b,c)is of local order 8 for the differential component. Thus, order conditions associated with
the trees of DAT2,(7) are satisfied. In particular,

bT AT 1, bT A7 (c. A%c%) = %,
VPA7 (. A®) = L bTAT (e A(c. A1) = 2,
b:;A_l(CQ.lA(Sf‘l) = %,’ b;é@ = 111—2,
b'c.Ac = 35 b'c. A" ¢ = =,
bTe. A7 (e Act) = £, bTc2A™le 2.
Finally, we obtain
bT?Jl = bTUQ = bT’03 = bT?)4 = 0,
los = bTwg = blo, = bTAuy = 0,
but b # 0, hence the proposition is shown. O
Remark 4 If the step size is constant (i.e. 1y = ---=1,), then we have

1. V1, Va, A7YU, and V4 are linearly dependent.
2. V1, Vo, Uy and Vs are linearly dependent.

3. V1, Vo, AU4 and Ty are linearly dependent.
4. V1, Vo, AUy and T3 are linearly dependent.

Hence, nine equations are identically satisfied and p can be choosen equal to four.
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