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Abstract: In this paper, certain well-known upwind schemes for hyperbolic equations
are extended to solve the two-dimensional Saint-Venant (or shallow water) equations.
We consider unstructured meshes and a new type of finite volume to obtain a suitable
treatment of the boundary conditions. The source term involving the gradient of the
depth is upwinded in a similar way as the flux terms. The resulting schemes are
compared in terms of a conservation property. For the time discretization we consider
both explicit and implicit schemes. Finally we present the numerical results for tidal

flows in the Pontevedra ria, Galicia, Spain.
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Schémas décentrés en maillages non-structurés
pour les équations de Saint-Venant

bidimensionnelles avec profondeur variable

Résumé : Ce rapport présente ’extension de plusieurs méthodes de décomposition de
flux a 'approximation des équations de Saint-Venant. Nous considérons des maillages
non-structurés et un nouveau type de volumes finis bien adaptés au traitement des
conditions aux bords. Le terme source contenant le gradient de la profondeur est
décentré de maniére consistante au traitement des flux; les schémas résultants sont
comparés vis a vis d’une propriété de conservation. En ce qui concerne la discrétisation
en temps, des schémas explicites et implicites sont considérés. On présente finalement
des résultats numériques de calculs de marées dans la Ria de Pontevedra (Galice,

Espagne).

Mots-clé : Equations de Saint-Venant, profondeur variable, schémas décentrés,

maillages non structurés
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1 SHALLOW WATER EQUATIONS 0

1 Shallow water equations

The shallow water equations are frequently used as a mathematical model for water
flow in coastal areas, lakes, estuaries, etc. Thus they are an important tool to simulate

a variety of problems related to coastal engineering, environment, ecology, etc. (see
Gambolati et al. [6]).

These equations can be obtained by integrating the incompressible Euler equations
in depth and then taking into account the kinematic and kinetic boundary conditions
on both the free and the bottom surfaces. For the sake of simplicity we consider
neither wind stress nor Coriolis effect nor bottom friction. Then we get the following

generalized conservation law (see for instance Stoker [12]):

ow OF; OF:
— (2,9, ) + o (w(z,y,1) + ——(w(z,y,1) = Glz,y,w(z,y,1))
ot ox oy (1)
(z,y) € Q C IR? tel0,7]
h h 0
OH
w=| huy |=]| ¢ |, Glyw) = gha—x(:r,y)
q1 q2
2 q192
B =| Ftsgn [, Bw)=| T
0 o, 1,
h n T g9k

where h(z,y,t) denotes the height of the fluid at point (x,y) at time ¢ and H(z,y)
the depth of the same point but from a fixed reference level. The vector field (u1, us)
is the averaged horizontal velocity. Finally, the conservative variable ¢ is given by
(g1, 92) = (huy, husy) and €2 denotes the projection of the domain occupied by the fluid
onto the xy plane.

If we use a symbolic notation for the vectors (F;(w)),_, , in equation (1),

F(w) = (Fi(w), F2(w)), (2)
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Figure 1: Shallow domain

then the conservative system becomes

%—Z]—FV-}—(M):G(%%W) (3)

The boundary conditions consist of a slip condition for the “coast” boundary and
the specification of the height (k) of the fluid on a “open sea” boundary.

Non-homogeneity of the flux

If A does not vanish, the system of partial differential equations is strictly hyperbolic.
Indeed, for any («, ) and any w € €2, the matrix

A(w’ (O" ﬂ)) = aAl(w) + ﬂA2(w)a

in which A, (i = 1,2) are the Jacobian matrices of the two components of the flux F;

has 3 distinct real eigenvalues given by:

Moo= el g2, 4)
Yo = afh+ B+l B)l1V/gh (5)
o= a4 65— (e ) [Vgh. (6)

In what follows, upwind techniques combined with finite volume discretizations are
applied to approximate the solution of (3). As is well known, many flux-vector and
flux-difference splitting techniques have been developed to solve the Euler equations

for aerodynamics. Some of them use the assumption of a homogeneous flux function.
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1 SHALLOW WATER EQUATIONS

Unfortunately the functions F; given by (2) do not satisfy this property as it can be

easily deduced from the expression of their respective Jacobian matrices

0 1 0 0 0 1

2 Q192 @ ¢

Aiw) = | —g5+gh 250 0 |, Aw=| Ty
2

q192 g2 g1 q5 p)

_ 4142 2 1 _12 912

12 hoh e toh 029

Thus in this paper we introduce two other matrices A¥ (i = 1,2) such that

EW)=A W)W (i=12),

(7)

(8)

to apply the mentioned techniques as well as to get linearizations of the implicit

schemes.

The expressions of these matrices for the shallow water equations are the following

0 1 0 0 0 1

2 0% @ a

w)=| —5+50n 270 0 [, Ajw) = #oh o h
2

q192 2 q1 q5 1 q2

) LR ~R2 oy Cap 0 22

[E Lo n2 739 3

and the eigenvalues of matrix A* = a A} + SA; are
qQ a2
)\){ = OJE + ﬁﬁ’
AN IVEL
h h ’ 27

so_ LI g% gh
Xo= a4+ 87— [l By T

(9)

(10)

(11)

(12)
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2 Discretization

In this section we introduce an explicit upwind discretization by using finite volume

techniques and Riemann solvers.

2.1 Finite volume of the edge-type

We introduce a set of degrees of freedom relying on mid-edges. We note that such
degrees of freedom have been considered by Crouzeix and Raviart in the context of

non-conforming P; finite-element [3].

We assume the computational domain €2 to be a polygonal bounded domain of IR%.
Let 73, be a standard finite element triangulation of €2 and A, as usually, the maximal
length of the sides in 7},

The domains we deal with may have nonsmooth boundaries. The correct treatment
of the boundary conditions has led us to introduce a new type of finite volumes, the
centers of which are the midpoints of the edges of triangles N; (i =1,---,n;). This is

why we call them finite volumes of the edge-type. We define cell C; as follows:

e Every triangle is subdivided in 6 subtriangles by means of its medians.

e The cell C; is then defined to be the union of the resulting subtriangles having

N; as a vertex.
We also introduce the following definitions:
e K; is the set of the indices of neighbouring nodes of V.
e The “edge” I';; is the cell interface between the cells C; and C; ( see Figure 2).

e If node 7 belongs to the boundary, then the “boundary edge” I';z is the side of
the triangle to which node N; belongs.

e 7,; is the outward normal vector to I';; having the same length as I';; and
1
fij = 77— 7i;j- For the boundary edge I';z, we denote by 7, the corresponding

|| 75|
outward normal vector.

A
e The subcell T;; is defined to be the subtriangle N; PL, (see Figure 2). Its area is
il dij
ATi- — ||77.7|| .7’ (13)
! 2
where d;; is its height.

INRIA



2 DISCRETIZATION 9

e Finally, A; denotes the area of the cell C; and I'; = Ujek, 'y its boundary.

Figure 2: Finite volume of the edge-type

Remark that to define the “dual finite-volume mesh” we do not need to impose res-

trictions over the finite element triangulation.

The union of all these control volumes Cy, is a partition of the domain 2. Related to
this partition, we consider the following discrete space

Wy, = {Wh : Wh\ci = constant, Vi=1,- --,nh}.

We start by considering the explicit Euler method for time discretization

Wn+1($7 y) - Wn(x’ y)
At

+V-FW*(z,y)) = Gz, y, W"(z,y)). (14)

where W™ is an approximation of the exact solution w(.,.,%,). In Section 4 we will use

an implicit time discretization.
The two-dimensional extension of the class of one-dimensional three-point upwind

first-order accurate schemes is done as follows (see Dervieux and Desideri [4]):
First we integrate (14) over the cell C;

//C Wn+1(x,y)A; W"(x,y)dxdy +//C V- FW™(z,y))dzdy =

/ /c G(z,y, W"(z,y))dz dy, (15)
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Figure 3: Finite volume of the edge-type mesh for the Pontevedra ria

and then we apply Gauss theorem to the flux term

1V

Fiydo = / / Gz, 9, W"(z,y))dzdy,  (16)
C;

+ F ()

n

(2

Wit —
A. (3
’ At

of the cell C;

(2

we split the boundary I';

101n.

n+1

W,

where W denotes the value of W" at node NV;.
To give the approximation of the flux integral,

into the cell interfaces I';;, where j; € K;.

2.2 Flux discretizat

(17)

W") - fi;do = // G(z,y, W")dzx dy.
C;

)7

wp N Z
JEK;

At

A
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2 DISCRETIZATION

Notice that if node V; belongs to the boundary (I';z), the integral of the normal flux
over I';z must be added.

We now specify the integral over I';;. Actually, the evaluation of this term corres-
ponds to the one-dimensional calculation of the flux along the direction N;N;. For

upwinding, we introduce a numerical flux function ¢

| F) s do sl (W, W ). (18)
Then the approximate system is rewritten by
VVin+1 B I/Vzn n n n
A S gl v wp ) = [ [ Gl Wrdsay. (9)
C;

JeK;
The expression of the numerical flux ¢ depends on the upwind scheme. In this paper

we will consider the )-schemes of Roe and van Leer and the fluz splitting techniques

of Steger-Warming and Vijayasundaram.

2.2.1 Q-schemes

These schemes are a family of upwind schemes (see van Leer [14]) corresponding to

numerical fluxes of the form

o (W7, W ihis) = : 5 S —§‘Q(WQ(VW’WJ')”7U)|(WJ'_Wz‘)’

where @ is the Jacobian matrix of the function Z(W,n) = F(W) -n and Wy, is defined
by

v+v (@Q-scheme of van Leer)
Wo(U,V)=1{ _* (20)

W(U,V) (Roe scheme)

and W(U, V') denotes the Roe average of U and V' given by the equation

Z(V,n) = Z(Un) = A(W(U,V),n) (V - U). (21)

In [7] Glaister gives W for the one-dimensional shallow water equations. In this case

it is easy to see that this average has the expression

. hih;
_ a; g
Wwawy=| g =] 0% 0~ H)h—j : (22)
~ 2 2
¢ L L (1- )L
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where 6 is

g VM _ (23)

Vhi +Vhi
2.2.2 Flux splitting techniques

These techniques are also generalizations of the three-point upstream differencing
scheme to the homogeneous problems of nonlinear conservation laws (see [10] ). The
physical flux is split in a forward flur F;* and a backward fluz F, , that is

F(W) = FX(W) + FZ(W) (i=1,2), (24)
or, in terms of the normal flux Z,
ZW,n) =Z"(W,n) +Z~(W,n), (25)

and then the numerical flux is defined using the above splitting by

¢(U, Vi) = ¢*(U,V,n) + ¢~ (U, V,n), (26)

with
¢* (U, V,m) = BY(U, V.U, (27)
¢~ (U, V,n) = B (U,V,n)V, (28)

and BT and B~ are two matrices such that:

) Zt(Wym) = BY(W,W,n)W,
l Z=-W,m) = B~ (W,W,m)W.

ii) B" (resp. B™) only has real positive (resp. negative) eigenvalues.

Note that conditions i) imply consistency with the physical flux.

We consider in particular the flux-splitting schemes of Steger-Warming and Vijaya-

sundaram.

Steger and Warming [11] introduced the notion of flux vector splitting for the equa-
tions of gas dynamics. They took advantage of the fact that in gas dynamics Z is a

homogeneous function of W of degree one, that is
Z(W,n) = AW,mW, (29)

where A is the Jacobian matrix of the flux Z.

INRIA



2 DISCRETIZATION

Using the diagonalization of A, we have
Z(W,n) = AT(W,mW + A~ (W, n)W. (30)

Then, the flux-splitting of Steger and Warming corresponds to the following choice of
matrices BT and B~

B+(U5Vva77) = A+(U’ 77): (31)
B~(U,V,n) =A"(V,n) (32)

yielding the following numerical flux

o(U,V,n) = AY(U,nU + A~ (V,n)V. (33)
Another similar flux splitting technique has been proposed by Vijayasundaram [16]
by taking
U+V
5.V = 4" (T3 ), (34)
U+V
B0V =4 (T3 ). (35)

As we mentioned in Section 1.1 the flux of the shallow water equations is not homo-
geneous; thus in order to define matrices B* for the flux splitting of Steger-Warming
and Vijayasundaram we consider instead the matrices A* (i = 1,2) defined in Section
1.1, to obtain A* by

A* = Af7h + A;"?z, (36)

and then we define the matrices BT by replacing the Jacobian matrix A by A*.

Remark 1
Notice that for all of the numerical fluxes presented above

il (W, Wi i) = 6 (W Wi i) (37)
and the approximation scheme (41) can be rewritten as

wrtl —wnrq
ZA—tz + vy Z ¢ (VVZ’, W]n, 77ij) + boundary terms

tjek;

1
:_// G(z,y, W")dzx dy. (38)
A; c
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2.2.3 Numerical results

In order to compare the behaviour of the above numerical schemes in situations of
constant depth (G = 0, i.e. no source terms), we have applied them to a problem
reported by R. J. Fennema and M. H. Chaudhry [5], P. Glaister [8] and F. Alcrudo and

P. Garcfa-Navarro [1].

This problem corresponds to a partial breach. A dam is assumed to fail instanta-

neously or their sluice gates are assumed to be opened instantly.
This test is similar to the shock tube problem for the Euler equations.
The computational domain comprises a 200-m-long and 200-m-wide channel. The

nonsymmetrical breach or sluice gates are 75-m wide and the structure of the dam is
10-m thick in the direction of the flow (see Figure 4).

30m § *l
75£n

Figure 4: Definition sketch for partial dam breach

As initial conditions two levels of water are considered h; = 10m. and hg = 5m..

Function H(z,y) is taken to be constant and equal to hy.

INRIA



2 DISCRETIZATION

Numerical results with the ()-scheme of van Leer for time ¢t = 7.2 are shown in Fi-
gures 5-7. First a 3D view of the water surface elevation is presented and for the same
time the corresponding map of the level lines for A is shown in Figure 6. Finally the

velocity field is plotted in Figure 7.

The obtained results are similar to those presented by the different authors men-
tioned. It is important to remark that in our case the schemes under study are only

first-order accurate.

Figure 5: Water surface
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2 DISCRETIZATION

2.3 Source term discretization

In a previous paper (see A. Bermidez and M.E. Vdzquez [2]) the interest of using an
upwind discretization of the source term was justified in the case of one space dimen-
sion as a means to avoid the propagation of spurious waves. In some sense, it was
shown that the discretization of the source term should mimic that of the flux. In this

paper, we extend these ideas to two-dimensional problems.

In that follows we only propose extensions of the two ()-schemes considered due to
the mentioned study of the one-dimensional shallow water equations in relation with a

conservation property [2].

First, to apply to the source term a treatment similar to that of the flux, the integral
of the source term is separated into sums which involve all of the neighbouring nodes
of Nz

The idea is to decompose cell C; into subcells T;; and to compute at the same time the
integral of the flux over I';; and the integral of the source term over the corresponding

subcell.

More precisely, the integral of the source term over the cell C; is written in the form

1 . —i §
Xz//c Glw,y, W")dw dy = A. Z//T] G(z,y, W")dz dy, (39)

' jEK;
and then the value of the integral of G in each subcell T;; is approximated by a function

G (a mean value of G in the nodes N; and N;) to obtain an approximation of the left

hand side of (39), taking all of the neighbouring nodes of N; into account.

As in [2] the second step is to upwind this approximation. To such end, the function

G is replaced by a numerical source 1. Thus we obtain the following discretization

1 . 1 o

jeK;

Let us remark that in (40), 1 depends on the normal vector. This fact is equivalent
to define the left numerical source function in the one dimensional case, because now

we also have one direction given by the outward normal vector.
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Then the discrete scheme takes the form

wrtl —wn ~
AizT + Z 7|6 (VVZn, W, nij) + boundary terms =
JEK;
> Ag (i, N, W W i), (41)
JEK;

In order to construct the upwind numerical source, we follow the ideas given in [2]
in the one-dimensional case: the projection of the centred source term, @, onto the

eigenvectors of () associated with positive (resp. negative) eigenvalues is added to the
state W; (resp. Wj).

In other words, for each edge I';; the contribution of the source term to node iN; is
defined as the projection of the centred source onto the eigenvectors of the Jacobian
matrix of the flux corresponding to negative eigenvalues. Let us remark that 7;; is
the “outward" normal vector, so the numerical source function is just the part of the
source that “flows into” the finite volume. In that way, it seems natural to define the

2D numerical source function in each subcell T;;, by the following expression

17[} (NiaNja VVin: anaﬁ’ij) = <I - |Q‘Q_l) é (N’iaNj: I/Vinaanvﬁij) .

To simplify the notation, the dependence of the matrices @ and @' on (W7, 7;;) has
been omitted. The state W7 = W2 (W;", W) is defined in (20).

Remark 2
Contrary to what happens for the flux function (see (37)), the numerical source term
is independent of the norm of 7 and

q/j (Nza Nj7 VVina W]"n: ﬁl]) = q/j (Nza Nj7 VVina I/an: 771]) ) (42)
Indeed, for the diagonal matrix A given by the eigenvalues of () we have
A (W (WP W) i) = lmgllA (We (W, W), mis) (43)

and then

INRIA



2 DISCRETIZATION

In order to obtain the expression of the numerical source function v, it only remains
to define G. The election of this function is related with the verification of a conserva-

tion property, which is introduced immediately afterwards.

In the one-dimensional case, G is defined as an approximation of GG in each subcell
by taking the average of values of G' at the two neighbouring nodes; similarly, for the
two-dimensional case, we define G in each subcell T;; as a centred approximation of G
using the two states W; and W;.

If we consider the analytical expression of G' to obtain G , two difficulties appear:

e The first difficulty is related with the announced Property C. As will be proved, to
use the analytical expression of the gradient of the depth prevents the verification
of this property (see Section 2.4 ).

e In the applications, the water depth is obtained from the bathymetric charts,
by discrete values of H. In this case the analytical H is not known, and it is
necessary to approximate its gradient.

Thus we suppose that the values of the depth at the nodes N; and N; are known;
the gradient is then discretized using the directional derivative in the direction N;N; .

More precisely, the two elections of the function G that we will consider are

( 0 )
. e hi+hi\ (Hj —Hi\
hi + h; H; - H;\ _,
\ ¢ ( 2 ) ( dij )mj J
for the extension of the Q)-scheme of van Leer and
( 0 )
~ H; — H;\ .
G(NiaNjawinawjn:ﬁij) = 9 hzh] ( ]d.. > 7711-7 ) (45)
ij
H; — H;\ _
i (72)

U )

for the extension of the scheme of Roe. In both cases H; denotes the value of depth at

the node N;.
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2.4 A conservation property

In the one-dimensional case it was proved that a requirement for the numerical scheme
to have a satisfactory behaviour when the bottom is not flat is that it approximates
properly the trivial stationary solution ¢(x,t) = 0, h(x,t) = H(z) when it is an exact

solution to the continuous problem.

Similarly, we notice that a stationary solution for the two-dimensional shallow water

equations is given by

h = H, (46)
46
g = (0,0),
in which case the nonvanishing terms are
o (1 ,, OH
%(59”) = I
(47)
2 lh2 = ha_H
oy 29 -9 oy

Therefore when the bottom is not flat, a good test problem for a numerical scheme
for the shallow water equations should be (47).

The equations in (47) indicate that an appropriate scheme for the source should

mimic the discretization of the flux terms in the left hand side of (47).

The importance of this requirement leads us to introduce the following definitions.

Definition 1

Ezact C-property

A scheme is said to satisfy the exact C-property if it is exactly compatible with the
stationary solution (46).

Definition 2
Approrimate C-property to the order p
A scheme is said to satisfy the approrimate C-property to the order p, if, when compu-

ting the stationary solution (46), it is formally O (h?)-accurate.

INRIA



2 DISCRETIZATION

In what follows, it is proved that the extensions of the ()-schemes verify the Property

C in a exact or approximate way depending on the choice of the function G.

Proposition 1

i) The proposed extensions of the Q-schemes of Roe and van Leer to the shallow water

equations verify the exact C-property, if we consider the choice of@ given by (44).

i) If we consider the function G given by (45), then the extension of the Roe scheme

verifies the approrimate C-property to the order 2.

Proof:

We assume that the initial conditions are ¢ = 0, h = H. Thus the numerical flux and

the flux term are given by

0

1
o (Wi Wiiny) = B 2 (RF +B3) g,
% (hf + h?) Mg,

]EIC

Z ¢ (VVZn’ Wi, 771'1') = ig hi Z Mijy + Z h’277w1

JEK; -

h; + h;
where ¢;; =4/ g <L>

2

/ > —%Cz‘j (h;

JEK;

JEK;

The numerical source function is given by

1/1 (Nza Nja VVz‘na ana ﬁlj) =

h;)

cijlimi |l (hy —
0
0

ha) ||l

JEK;

JEK;

\ ig h2 Zn112+ Zh iMijo

H. — H,;
UL
tJ
cz.(H] HZ) N, -
v dl] tJ1
2,(H] — H)
\CU dl] 771.72 /

Then the contribution of the source term is

)

(50)

il dij "W
Z %d’ (Ni,NbWi W ’mj) B

JEK;
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[ =3 eullml (- H) [ Y ety -mml )
JEK; ]EIC )
h; + h;
%Zg ( 5 ]> (H; — Hi) nij, - 19 —hQanA—ZhQnm
JEK; T B JEK; JEK;
h; + h; 7
1 Pp— . ..
\ ZK: ( ) (H] Hz) Nijq / H=h ig _h? Z Tijs + Z h,2771]2
7€ \ B JEK; JEK;
In order to prove the exact C-property the following equality must be verified
ZQS(VVZ aWjanij) = Z#l/f Ni,Nj,#j,’lﬁj s (51)
JEK; JEK:

This equality is trivial for the first components. To establish it for the other two, it
suffices to observe that the sum of the coordinates of the vertices of a closed polygon

is null, that is
> mi =0, (52)
JEK;

thus part i) is proved.

In the second part of the proposition, the function G is given by (45) and the proof

is obtained as a consequence of the equality

h? + R
\/hrhn = 5 L+ 0(n). (53)

2.5 Discretization of the boundary conditions

The difficulty of the treatment of the boundary conditions comes from the fact that for
a boundary node some neighbouring nodes which are necessary to define the numerical
flux do not exist.

For this reason, the value of the solution in the supposed neighbouring node is ta-
ken to be the same as the value of the solution in the boundary node which, for the
consistency of the numerical flux, is equivalent to taking the numerical flux equal to
the physical flux.

More precisely, according to the type of boundary conditions, the procedure will be
the following;:
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1. Open sea boundary

The value of the height of the water is imposed, more precisely:

e To update the variable ¢, the numerical flux is taken equal to the physical

flux.

e Then the value of A is imposed
hitt = @ (tnsr) + H(zi, y:) (54)

2. Coast boundary

In this case a slip condition is considered: ¢ -n = 0. To impose this condition

strongly, we subtract the normal components, i.e.
@t =g + (Agi— < Agi, Nir > Mip) (55)
where Ag; are the last two components of the vector AW, given by

AW == " 6 (W W mg) — Z (W) + Y (Noy Ny, Wi W i)

JEK; JEK;
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2.6 Numerical Results

Propagation of a tidal wave in a ria

We present a numerical test for the computation of tidal currents in the Pontevedra
ria, Galicia, Spain. The corresponding bathymetry is given in Figure 8. This domain

has evidently a nonsmooth boundary

\!

0 tth“‘iw"h}; wu'h"n i
IR, C“"

. .:&1}51!{!1,“{, A #H,rn.r"r- t'; ks

o R ey tl
{.,y b 11:1“ !}\1‘1. .r:f' fj ii i::t‘

St

hr
i

B2y o
N
3 5
ll-\\'-‘“"

Figure 8: z(z,y) = —H(z,y) for the Pontevedra ria.

We consider the following initial and boundary conditions

ho(l‘,y) = H(m,y)

QO(xayaO) =0

Initial Conditions

hz,y,t) = H(z,y)+¢t) if(z,y) €l
Boundary Conditions (56)
g-n =0 if (z,y) € I'y
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where

go(t)=4<1+3in <7r (sé%m*%))) (57)

We start with the numerical results obtained with the type of finite volume more ex-
tensively applied in the papers devoted to the Euler equations for unstructured meshes,
that we refer to as finite volume of the “vertex-type”. As is well known, the nodes are
the vertices of the standard finite element triangulation, and the problem appears in
the definition of the normal vector at boundary nodes. This difficulty prevents the

correct treatment of the boundary condition ¢ - n = 0.

More precisely, for the time ¢ = 10800s the integral of the flux through the coast
boundary T'y is 197.65m®s~! instead of 0. The corresponding velocity field is given in

Figure 10.

To prevent the numerical viscosity of the mentioned ()-schemes from vanishing when
some of the eigenvalues of the Jacobian matrix of the flux is zero, we apply the Harten
regularization (see Harten [9] and [15] for details). To illustrate the need of this regula-
rization for this type of problems, the numerical results are given in Figure 9 “without”

regularization whereas the other ones are obtained with the mentioned regularization.

In the velocity field of Figure 9, the oscillations on the remarkable zones are produ-

ced by the existence of zero eigenvalues.

Finally, Figures 11-14 show the numerical results of four points in time of the first
tidal cycle. As can be noticed, the results confirm the good qualitative behavior of the

proposed method.

In particular, the difference on h(z,y,t) — H(z,y) between two arbitrary points of
the ria is small, which is natural for a domain of small length. With respect to the ve-
locities, the results seems to be acceptably accurate except in the area near the “open
sea boundary”, due to the “boundary layer” which is generated when imposing the
boundary condition over the water height.

In the following table the values of the typical velocity obtained at an interior point

P for the four mentioned points in time are shown.

Let us remark that for times ¢ = 21600 and ¢t = 43200, the function h — H is
smooth because the velocities are small, contrary to the cases when times ¢ = 10800
and t = 32400.
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Cycle step time (s) | ¢(t) (m) | Velocity (ms™!)
“half”-rising tide 10800 4 0.1485
high water 21600 8 0.3119E-02
“half”-ebb tide 32400 4 0.1461
low water 43200 0 0.4059E-02

Table 1: Velocities for the first tidal cycle at point P.
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Figure 9: Extension of the ()-scheme of van Leer “without” Harten regularization.
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Figure 10: Extension of the ()-scheme of van Leer finite volume of the vertex-type
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Figure 11: Extension of the Q-scheme of van Leer; ¢ = 10800 (finite volume edge-type)
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Figure 12: Extension of the Q-scheme of van Leer; ¢ = 21600 (finite volume edge-type)
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Figure 13: Extension of the )-scheme of van Leer; ¢ = 32400 (finite volume edge-type)
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Figure 14: Extension of the -scheme of van Leer; ¢t = 43200 (finite volume edge-type)
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3 Implicit discretizations.

3.1 Implicit discretizations of 1D problems

In the previous section, the time discretization was explicit, and this implied a severe

restriction on time step.

Indeed, for a given mesh, according to the Courant-Friedrichs-Lewy condition, the
time step is determined by the largest eigenvalue of the Jacobian matrix of the flux.
For the tidal current computation, this eigenvalue is of the same order of magnitude
as the velocity of propagations of waves, i.e. ¢ = v/gh which, in our previous example,
is about 20m/s, i.e. two orders of magnitude higher than the velocity of particles u

(u = %) which is the relevant unknown in the this kind of applications.

The main aim of this section is to combine the upwind schemes presented above with

an implicit discretization in time to obtain unconditional linear stability.

For the sake of simplicity, the presentation of the resulting schemes is done first in
one dimension. The simplified linearized implicit scheme we apply is similar to that
introduced by B. Stoufflet in [13] for systems of conservation laws without source terms

and in the case where the flux is a homogeneous function of degree one.

The problem to be solved in this section is a hyperbolic nonlinear system of the form

ow oF
5 (@1 + 5 (w(, 1) = Gz, w(z,1)). (58)

The vector form of an implicit scheme to solve (111) using upwind schemes for flux

and source terms is

Wn+1 _ Wn

n+l) _
N +H (W) =0, (59)
where
HW) = He(W) + Ho(W) (60)
n ¢ Wﬂ+1’ W'n+1 - ¢ W'n—+17 W’(H—l

(/HF (W +1))j _ < J Jjt+1 )Aj ( j—1 J ) (61)

1

(HG (Wn+1))]- = _K {ATjLwL (xj—la Ly an—+11a an+1)
J

+ Az Vs (25, i, WL WD L (62)

J
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The difficulty with this scheme is the high required computing power. Hence it is
quite reasonable to replace ‘H by a linealization

H(W™) (W) +H (W) (W — W) (63)

The resulting scheme is called linearized implicit scheme (see Dervieux and Desideri

[4]). It can be rewritten in the following J-form:

(Ait +H (W")) W = —H (W"). (64)

where W™t = W+l — Wn. Nevertheless, this scheme also presents difficulties. For
instance in the case of the (Q-schemes, due to the presence of the absolute value of
matrix A in the expression of the flux, operator H. is not defined if the eigenvalues of
this matrix change their sign. Moreover, in case that such operator exists, its compu-

tational cost may be high.

In such situations it is necessary to replace H' with another approximate linear
operator, denoted P", so that (117) takes the form

I
(Kt +P" (W")) SWH = —H (W™). (65)
These types of schemes are known as simplified linearized implicit schemes (see [13]).

Next, a procedure to realize one such construction is detailed.

Construction of the operator P™

In order to obtain the expression of P* = Py + P(, the corresponding part of the

flux (P7) and the source term (P2) are introduced in parallel.

1. First we suppose that the flux and the source numerical functions verify the
following property:
There exist R, Ry and S, y Sp such that:

o (U V) = R (UV)U+Rx(UV)V. (66)
Uy (z,y, U V) = S (z,y,U,V)(U+V), (67)
Yr (2,9, U, V) = Sp(z,y,U,V)U+V). (68)
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2. If the previous property is verified, then operators H, and Hg can be written in

the form
1
(e (W), = [Re (W W) W R (W5, W) WY
V]
1 n n n n n n
= [Ra (WIS W) W R (W W) W] (69)
Ar.
(HG (Wn+1))j = _% [SR (xjaxjﬂa an+1, W;ﬂl) (anH + W;fll)}
j
ATJ’L n+1 n+1 n+1 n+1
+A— [SL (.’L'j_l,iﬁj, Wj—l ,Wj ) (I/Vj—l + Wj )} . (70)

J

3. Then we change (122) and (123) by evaluating matrix Ry, Ry, S, and Sy at time

t,, instead of ¢,,1. The resulting approximations are

1
(e (W), = - [Ra (W5, W) W0 R (W W) W]

J .
J

1
+ A_ [_RL (eril’ an) I/I/vjn——i_l1 — Rx (anfl’ an) anﬂ} : (71)
J
T
(%G (Wn+1))j = f [_SR (a:j’ Lj+1 VVJ'n’ an-I-l) (W;“H + an-l:kll)}
J
TjL n n n+1 n+1
+ A— [SL (.’17]'_1,37]', Wj—la Wj ) (Wj—l + Wj ):| (72)
J

4. Finally, if we introduce H, (W™) and He (W") in (124) and (125) respectively,
the following expressions Hy (W"*!) and Hs (W™t) are obtained,

He(W™) ~ H(W") + PR (W)Wt (73)
He(W™H) ~ H (W™ + PHW™) W™, (74)
where
(P (W), = Ai [Ro (W}, W) = Re (Wity, W) (75)
(Pr <W">)jj+1=AinR (WrWn) | (76)
(Pe (W) LR, (W, wr). (77)
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(PG (W ))jj = fSR (.Tj, Tj+1, Wj aWj—H) + fSL (mjflaxja I/Vj—la Wj ) ) (78)
(PG (w ))jj+1 = TSR (xja‘rj-l-la Wj aVVj+1) ) (79)
J
n n CFJ'L n n
(Pc; (W ))j—lj = ISL (xj—laxja Wj—la Wj ) : (80)
J
Remark 3

When the numerical flux verifies (119), the consistency property reduces to
F(W) = [Ry (W, W) + Rey (W, W)] W. (81)
If the flux is a homogeneous function of degree one, (134) is satisfied in particular when
AW) =Ry (W, W) + R (W, W) (82)

where A is the Jacobian matrix of F'. In fact, this is the hypothesis that B. Stoufflet

considers in [13] when introducing matrices R, and Ry to factorize the flux. o

Operator P™ for the QQ-scheme of van Leer

The numerical flux of the ()-scheme of van Leer for the shallow water equations is a
particular case for which property (119) holds.

Recall the expression of the numerical flux

¢(U,V)=M—1‘A<U;V>‘(V—U). (83)

2 2

As mentioned in the first section, the flux is not a homogeneous function. Neverthe-
less there exists a matrix A* such that F(W) = A*(W)W (see [15] for details). Then

matrices R, and Ry can be defined in the following way:

Ry (U, V) :%<A*(U)+‘A(U;V>D, (84)
RR(U,V)=%(A*(V)-‘A(U;LV)D. (85)

Next, we prove that the numerical source functions defined in [2| for the extension
of the @-scheme of van Leer for the shallow water equations verify (120) and (121).
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First, recall the expressions of the mentioned numerical source:

e (g, U, V) = {I—|—‘A<U;V)‘A_1<U+V>}@(x,y,U,V) (86)

2
Ue (2,9, U, V) = {1—‘A(U';V>‘A1(U;V>}@(:c,y,U,V). (87)
then
S (2,9, U,V) = %[I-l—‘A(U—;V)‘A‘l(U;Vﬂ/\/l(x,y) (88)
Su(z,y U V) = %[I—‘A(U;V>‘A_l(U;Vﬂ/\/l(x,y). (89)
where
0 0
M=\ oy -HE ] (50)
g

3.2 A simplified linearized implicit scheme for the 2D shallow
water equations
In this section we introduce a simplified linearized implicit scheme to the two-dimensional

shallow water equations. As in the explicit case, the main aim of this section is to solve

the system of conservation laws given by (3). The corresponding implicit scheme is

n+l n

P ) = o, (91)
where, in this case
HW) = Ho(W) + Ho(W) (92)
1

(%z (Wn—i—l))z = I Z ¢ (I/I/i'ﬂ‘Fl’ I/I/]n+17 771]) (93)

' jex;
(94)

1 ~

(%G(Wn+1))i - A Z ATijw (Nia Nj, I/Vz'n+1’ W;H—l’ nij) : (95)

' jeK;
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The procedure to obtain the operator P" can be deduced from to the one-dimensional
case for each pair of neighbouring nodes. Thus it is necessary to obtain matrices R,
Rz and S such that

(U, V,n) =R (U, V,n)U + R (U, V) V. (96)

,w(Nl;NQ;UaVaﬁ):S(NI:N%UvV?’f]) (U+V) (97)

Let us remark that requiring only one matrix S, instead of S, and Sy for the one-
dimensional problems, is analogous to defining only one numerical source function. It

is related with the dependence of ¢ and S on the normal vector 7.

For the flux of the @)-scheme of van Leer, matrices R, and Ry are given by

1 U+V
RV = g{awn+a(F5 )] (99
1 N U+V
R v = g {awn-|a(SEEa), (99)
where, matrix A* is given in Section 2.
Then
(Pz )zz = X Z Re (I/Vz aWj ,mj) ) (Pz )ij = ERR (Wz aWj ,mj) , J € K. (100)

! jeK;

Finally, matrix S is given by

S (N1, No, U, V, ) = [I — |Q(U, V,7)|Q~ (U, V, 7)] M(N1, N, i)

where
( 0 0 0
H; —H;\ .
M (Ni, N, 1) = | 9 2d,; )M 00 f. (101)
Hi = By s 000
\ g 2d1] Tll]2
The linear operator Py is thus:
1 ~
(Pg)u = A Z ATijS (Ni’ Nj, Wi, ana 771'3') ) (102)
' jeK;
1 ~ .
(Pg)zg = EATZ'J’S (Ni’ Nj’ I/Vz'na ana 772']') . J €Ki (103)
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3.3 Discretization of the boundary conditions

In this section, we describe the treatment of the two types of boundary conditions for

the implicit schemes. In the first stage, the diagonal blocks of operator P} are modi-

fied, and in the second one the value of a conservative variable is imposed.

1. Open sea boundary

To modify operator P} we propose the following development:

e Split the variable W as the sum of the projections on the first and the last

two components respectively, that is,

W=W+W

where
N 0
W = 0 y W = q1 ’
q2

the flux is split analogously:

ZW,n) =2Z(W,n)+Z(W,n),

where

ZW,n) = AX(W,)W, 7= A(W,mW.

(104)

(105)

(106)

(107)

e To modify P} we only take Z into account, since for the boundary nodes

belonging to this boundary, the solution of the system only affects ¢; and ¢,.

Since the following identity holds

0 T 2
= q1 q2 q1
ZWm) =10 2mg-tmy Yy

0 771@ 7712 + 2772%

h

W, (108)
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the update of P} is equivalent to adding the matrix which appears in (162)
to the diagonal block of the corresponding boundary node.

On this boundary (T';), as in the explicit formulations, the value of the height of
the fluid is imposed.

. Coast boundary

The procedure is analogous to the previous one: to compute P, only Z is taken
into account, due to the fact that for this type of boundary condition the solution
of the system only affects variable h.

>From the identity

0 00
. @ 1. AN
Zwny=| m (- +59n) +m(-53) W, (109)
2
q1q e 1
n(~5) o (i gon) 0 0

if the condition of null flux is introduced in (162), one obtains

0 0 0

1

1
77259’1 00

since g1 + qam2 = 0.

Then updating P? it is equivalent to adding the matrix in (163) to the diagonal

block of the corresponding boundary node.

Finally, over the boundary (I';) the slip condition is imposed strongly, in a way similar

to the explicit case.

3.4 A conservation property

Recall that the problem considered in the definition of the C-Property is stationary.

Thus, for this property to be satisfied by the numerical scheme, it is necessary that
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SWn™tt = 0. Now then, since the ezact C-Property is satisfied by the explicit scheme, if
follows that H (W™) is null.

The aim is to solve a homogeneous system, and we are interested on its trivial
solution. The unicity of this solution is guaranteed, at least for At sufficiently small,

since in that case the matrix is diagonally dominant.

3.5 Numerical results

The problem of propagation of the tidal wave in the Pontevedra ria is also used for the

implicit schemes.

The numerical results are very similar to those obtained with the implicit ones. Ho-
wever, in the preset methods the Courant number y was set equal to 150, whereas the

explicit scheme could only be operated stably with p = 0.9.

The computations were carried on an IBM RISC/6000 and the CPU time necessary
to compute a tidal cycle was 126390°“ with the explicit scheme, and only 6592°¢° for
the implicit one. Thus, a substantial gain in efficiency was realized by the implicit

formulation.



A. Dermuace, A. LUervieur, J.A. LJestacrt © M.1h. VAazquez

4 Implicit discretizations.

4.1 Implicit discretizations of 1D problems

In the previous section, the time discretization was explicit, and this implied a severe

restriction on time step.

Indeed, for a given mesh, according to the Courant-Friedrichs-Lewy condition, the
time step is determined by the largest eigenvalue of the Jacobian matrix of the flux.
For the tidal current computation, this eigenvalue is of the same order of magnitude
as the velocity of propagations of waves, i.e. ¢ = 1/gh which, in our previous example,
is about 20m/s, i.e. two orders of magnitude higher than the velocity of particles u

(u = %) which is the relevant unknown in the this kind of applications.

The main aim of this section is to combine the upwind schemes presented above with

an implicit discretization in time to obtain unconditional linear stability.

For the sake of simplicity, the presentation of the resulting schemes is done first in
one dimension. The simplified linearized implicit scheme we apply is similar to that
introduced by B. Stoufflet in [13] for systems of conservation laws without source terms

and in the case where the flux is a homogeneous function of degree one.

The problem to be solved in this section is a hyperbolic nonlinear system of the form

ow oF
5 (@ 0) + 5 (w(z,1) = Glz, w(x,1)). (111)

The vector form of an implicit scheme to solve (111) using upwind schemes for flux

and source terms is

W"+1 - wr n+1l) _
—Qx; — THMWT) =0, (112)
where
HW) =He(W) +Ho(W) (113)
o (Wi W) — ¢ (Wi, i)
n+1 — J Jj+ J i
(He (W), = A, (114)
1
(HG (Wn+1))j = _X {ATleDL (333'—1, x, W]n_+11’ an+1)
J
+ATJ’R¢R (Zj’ Tj+1, an+1, W;fll) } . (115)
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The difficulty with this scheme is the high required computing power. Hence it is
quite reasonable to replace H by a linealization

HW™) = H(W™) +H (W) (W — W) (116)

The resulting scheme is called linearized implicit scheme (see Dervieux and Desideri

[4]). It can be rewritten in the following §-form:

(Ait +H (W”)) SWnH = —H (WM. (117)

where §W™t! = W+l — Wn. Nevertheless, this scheme also presents difficulties. For
instance in the case of the )-schemes, due to the presence of the absolute value of
matrix A in the expression of the flux, operator H. is not defined if the eigenvalues of
this matrix change their sign. Moreover, in case that such operator exists, its compu-

tational cost may be high.

In such situations it is necessary to replace H' with another approximate linear
operator, denoted P", so that (117) takes the form

I
(Kt +P" (W")) SWH = —H (W™). (118)
These types of schemes are known as simplified linearized implicit schemes (see [13]).

Next, a procedure to realize one such construction is detailed.

Construction of the operator P™

In order to obtain the expression of P" = Py + P(, the corresponding part of the

flux (Pg) and the source term (P2) are introduced in parallel.

1. First we suppose that the flux and the source numerical functions verify the
following property:
There exist R, Ry and S, y Sp such that:

o(U,V) = R, (UVIU+Rx(UV)V. (119)
U (z,y, U, V) = S(z,y,U,V)(U+V), (120)

,wR(xayaUaV) = SR(x:yava)(U+V) (121)
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2. If the previous property is verified, then operators Hy and Hg can be written in

the form
1
(He (W), = 1 [Re (WL W) Wt R (W, W) W
J
1
- A_] [RL (anj—ll’ WJ?H_I) Wynjll + R (W]nj_lla W;H_l) anH] (122)
Ar.
(HG (Wn+1))j = _% |:SR (xj,wjﬂ, anH, I/V;fll) (an+1 + Wj’fll)]
J
ATjL n+1 n+1 nt1 il
T (S (g, zj, WP WD) (WAL + W) ] (123)

J

3. Then we change (122) and (123) by evaluating matrix R, Ry, Sp and Sy at time
t, instead of ¢,,,,. The resulting approximations are

(e (W), [Re (W7 W3 W77 4 R (W7 W7) W
N Aij [~ Ry (W, W) W — Ry (W, W) W] (124)

(e (W), 2 S (=S (s W W) (074 W)
bR (8 (g, Wi W) (W 4 W] (125)

4. Finally, if we introduce Hy (W") and Hq (W") in (124) and (125) respectively,
the following expressions Hy (W"*) and Ho (W"*!) are obtained,

'Hp(Wn+1) ~ Hg(W")+ P?(W")éW”Jrl (126)
HG(Wn+1) ~ He(W™)+ Pg(W”)(SW”“, (127)
where

n n 1 n n n n

(Pe (W ))jj = A_J [RL <Wj 7Wj+1) — R (Wj_l, | )] (128)
1
(Pe (Wn))jj+1 = A_jRR (W;Z, W]Z_l) ) (129)
1

(P;L (Wn))jfu = _A_jRL (W]n_p W;l) . (130)

INRIA
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T: T;
(P& (W™)y5 = =S (5, 2500, W, Wiiy) + S5 80 (50, 25, Wiy, W) (131)

23 Aj AJ
(PG (W ))jj+1 = A—jSR (xjaxj—i—la Wj ;Wj+1) ) (132)
(PLW™),yy = 28, (21,3, W, W) (133
a j—15 — A L \Lj-1,Zj, j=1 Vs )

J

Remark 4

When the numerical flux verifies (119), the consistency property reduces to
F(W) = [Ry (W, W) + Rey (W, W)] W. (134)
If the flux is a homogeneous function of degree one, (134) is satisfied in particular when
AW) =Ry (W, W) + Rz (W, W) (135)

where A is the Jacobian matrix of F'. In fact, this is the hypothesis that B. Stoufflet

considers in [13] when introducing matrices R, and Ry to factorize the flux. o

Operator P™ for the (Q-scheme of van Leer

The numerical flux of the (-scheme of van Leer for the shallow water equations is a
particular case for which property (119) holds.

Recall the expression of the numerical flux

¢(U,V)=M—1‘A<U;V>‘(V—U). (136)

2 2

As mentioned in the first section, the flux is not a homogeneous function. Neverthe-
less there exists a matrix A* such that F(W) = A* (W)W (see [15] for details). Then

matrices Ry and Ry can be defined in the following way:

Ry (U, V) = % (A*(U) + ‘A (U;V> D , (137)
Ra (U, V) = % (A*(V) - ‘A (U‘;V) D | (138)

Next, we prove that the numerical source functions defined in [2| for the extension

of the @-scheme of van Leer for the shallow water equations verify (120) and (121).
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First, recall the expressions of the mentioned numerical source:

v (2,9, U,V) = {I+‘A<U;V>‘A‘1(U+V)}§(x,y,U,V) (139)

2
Un (2,9, U, V) = {1—‘A<U;V>‘A1<U;V)}@(I,y,U,V). (140)
then
S.(z,y,U,V) = %[1+‘A(U;V>‘A—l(U;V)]M(a:,y) (141)
Se (2,5, U, V) = %[I—‘A(U;V)‘A‘l<U;V)]M(a;,y). (142)
where
00
M(z,y) = Hw-nw | (143)
—-

4.2 A simplified linearized implicit scheme for the 2D shallow
water equations
In this section we introduce a simplified linearized implicit scheme to the two-dimensional

shallow water equations. As in the explicit case, the main aim of this section is to solve

the system of conservation laws given by (3). The corresponding implicit scheme is

Wn+1 — W

T + H(wn—H) — 0’ (144)
where, in this case
HW) = Ho(W) + Ho(W) (145)
1

(Hz (WTH—I))i - A Z ¢ (I/Vin+1, an—l_l,nij) (146)

' jex;
(147)

1 ~
(He (W), = L Z Ag,; o (Ng, Nj, WL Wit o) (148)
' jeKs
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4 IMPLICIT DISCRETIZATIONS.

The procedure to obtain the operator P" can be deduced from to the one-dimensional
case for each pair of neighbouring nodes. Thus it is necessary to obtain matrices R,
Rz and S such that

(U, V,n) =R (U, V,n)U + R (U, V) V. (149)

¥ (N1, No, U, V1) = 8 (N1, No, U, V) (U + V) (150)

Let us remark that requiring only one matrix S, instead of &, and Sy for the one-
dimensional problems, is analogous to defining only one numerical source function. It

is related with the dependence of ¥ and S on the normal vector 7).

For the flux of the ()-scheme of van Leer, matrices R, and Ry are given by

1 U+V
R = g{awn+a(5 )] (151)
1 N U+V
Row v = g{amn-|a(SEEa)|), (152)
where, matrix A* is given in Section 2.
Then
(Pz )zz = X Z R. (Wz aWj ,mj) ) (Pz )z’j = ERR (I/Vz aWj ,mj) , J €K (153)

jeK;

Finally, matrix § is given by

S (N1, No, U, V, 7)) = [I — |Q(U, V, ) |Q™ (U, V, )] M(N1, Na, )

where

) H — H) _
M (N, N, 7ii) = | 9 2d,; )M 00 f. (154)

The linear operator P is thus:

1 ~

(Pg)m = Z ZATijS (Ni’Nj’VVinaI/Vgn:nij) ) (155)
' jex;
1 ~

(Pg) = —ATiJ.S (Ni,Nj, VVZ-n,an,nij) y ] € K:l (156)
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4.3 Discretization of the boundary conditions

In this section, we describe the treatment of the two types of boundary conditions for
the implicit schemes. In the first stage, the diagonal blocks of operator P} are modi-

fied, and in the second one the value of a conservative variable is imposed.

1. Open sea boundary

To modify operator P} we propose the following development:

e Split the variable W as the sum of the projections on the first and the last

two components respectively, that is,

W= W+ W (157)
where
N h — 0
W=1|0]|, W=|a |, (158)
q2
the flux is split analogously:
Z(Wyn) = Z(Wyn) + 2 (Wyn), (159)
where
(W) = A W)W, 7= A W)W, (160)

e To modify P, we only take Z into account, since for the boundary nodes

belonging to this boundary, the solution of the system only affects ¢; and ¢5.

Since the following identity holds

0 m )
ZWm=|0 mT+mT  owmT | W, (161)
q2 q1 q2
0 L2 Dy op, 2
m h m L + 21 5

INRIA



4 IMPLICIT DISCRETIZATIONS.

the update of PJ is equivalent to adding the matrix which appears in (162)
to the diagonal block of the corresponding boundary node.

On this boundary (I';), as in the explicit formulations, the value of the height of
the fluid is imposed.

2. Coast boundary

The procedure is analogous to the previous one: to compute P} only Z is taken
into account, due to the fact that for this type of boundary condition the solution
of the system only affects variable h.

>From the identity

0 0 0

~ 1 N1g
Z (W,n) = m( h2+29h> up (—ﬁ) 00 |w, (162)

qg g
m (- }1122)+772< = gh) 00

if the condition of null flux is introduced in (162), one obtains

0 0 0

. 1
ZWm)=| mzgh 0 0 |W (163)

1
772§gh 00

since q171 + @212 = 0.
Then updating P? it is equivalent to adding the matrix in (163) to the diagonal
block of the corresponding boundary node.

Finally, over the boundary (I'y) the slip condition is imposed strongly, in a way similar

to the explicit case.

4.4 A conservation property

Recall that the problem considered in the definition of the C-Property is stationary.

Thus, for this property to be satisfied by the numerical scheme, it is necessary that
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SWnt!l = 0. Now then, since the ezact C-Property is satisfied by the explicit scheme, if
follows that H (W™) is null.

The aim is to solve a homogeneous system, and we are interested on its trivial
solution. The unicity of this solution is guaranteed, at least for At sufficiently small,

since in that case the matrix is diagonally dominant.

4.5 Numerical results

The problem of propagation of the tidal wave in the Pontevedra ria is also used for the

implicit schemes.

The numerical results are very similar to those obtained with the implicit ones. Ho-
wever, in the preset methods the Courant number y was set equal to 150, whereas the

explicit scheme could only be operated stably with = 0.9.

The computations were carried on an IBM RISC/6000 and the CPU time necessary
to compute a tidal cycle was 126390°°“ with the explicit scheme, and only 6592°¢¢ for
the implicit one. Thus, a substantial gain in efficiency was realized by the implicit

formulation.

INRIA
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