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Bornes pour des Métriques de Qualité de Service
dans les Réseaux
avec Application au Contréle d’Admission

Résumé : Dans cet article nous considérons un multiplexeur modélisé par une
file d’attente a temps discret et de capacité infinie, nourrie par un nombre fini de
sources hétérogénes. Sous I’hypothése ou les dates d’arrivée des paquets de chaque
source forment un processus de Markov modulé, nous proposons et analysons deux
nouvelles métriques de Qualité de Service (QS) qui portent sur (2) la fraction d’un
intervalle pendant lequel le nombre de paquets en attente exceéde un seuil fixé, et (1)
la fraction de paquets dans un groupe de N packets consécutifs d’'une méme source
qui, a leur arrivée, trouvent une longueur de file supérieure a une valeur donnée.

Ces mesures de performance sont importantes car elles traduisent de facon plus
précise que les criteres usuels la QS requise par les applications audio et vidéo dans les
réseaux. Nous développons des bornes supérieures et inférieures pour ces nouvelles
mesures de performance. Ces bornes sont ensuite utilisées pour définir des regles
d’admission des nouvelles sources plus & méme de satisfaire des contraintes temps-
réel fortes de certaines applications.

Mots-clé : Files d’attente; Bornes exponentielles; Chaine de Markov; Algebre
linéaire; Processus de Markov modulé; Qualité de Service; Bande passante équiva-
lente; Controéle d’admission.



Bounds on Finite Horizon QoS Metrics 3

1 Introduction

There exists a substantial body of work on the problem of providing guaranteed
quality of service (QoS) to different service classes in BISDN’s. Most of this work has
been dedicated to guaranteeing that the packet loss probability seen by a random
packet or the probability that the delay of a randomly chosen packet lies below
some threshold, see [5, 8, 10, 17, 18] and references contained within for examples.
However, this type of QoS metric appears inappropriate for envisaged audio and
video services in BISDN’s [3, 22, 4]. For example, metrics such as losses and delays
in talkspurts [3] and losses within blocks of packets for packet video [3, 22, 4] are

more appropriate.

The focus of this paper will be on two finite horizon QoS metrics, the interval
QoS and the block QoS, introduced in [21]. These QoS criteria are defined over
intervals of time and finite groups of packets from a single connection respectively.
These metrics will be studied for a single network link modeled as a discrete time,
single server system in which packets arrive from a finite population of sources. More

specifically, we consider the following two metrics,

e the amount of time within an interval of time during which the queue length

of the system exceeds a fixed value,

e the number of packets within a group from an individual source that arrive to

find that the queue length exceeds a fixed value.

We develop upper and lower bounds on the probabilities that these quantities exceed
a threshold for the case that the arrivals from the sources are modulated by a finite
state Markov chain. These bounds are developed using bounds on the queue length
distribution at an arbitrary time developed recently in [18]. Last, an application to

call admission is also given.

RR n°2735



4 Z. Liu, P. Nain, D. Towsley

Several papers have studied finite horizon metrics. However, they have focussed
on very simple systems that usually contain a single source. For example, [20, 21]
provide approximate analyses of these metrics for the case of an M/M/1/K queue
and simulation results for a finite population of On-Off sources feeding a single
server. Exact and asymptotic analyses of the block metric for a discrete time queue

and the M/M/1/K queue when fed by a single source are given in [7] and [1, 6].

This paper is organized as follows. Section 2 contains a description of the model
and the finite horizon metrics being considered along with a review of the results
in [18] that will form the foundation for our analysis. Sections 3 and 4 contain the
derivations of bounds on the interval and block metrics, respectively. Numerical
results and an application to call admission are given in Section 5. Finally, Section

6 summarizes the contributions of the paper.

2 Model and Preliminary Analysis

We model a statistical multiplexer as a single server serving an infinite capacity
buffer in first in first out (FIFO) order in a discrete time system where the server
can transmit up to ¢ packets in one time unit. Assume that M sources labelled
m =1,..., M, feed packets to this multiplexer and denote by A}* the number of
arrivals from source m during the n-th slot. Let (Q,), be the process describing the

backlog in the queue at time n. It satisfies the following recursion,
Qﬂ+1:(Qn+An_c)+7 n=0,1,...
where A, :=YM_ A™ is the total number of arrivals during the n-th slot.

We are interested in the following finite horizon performance measures (I >
—-1,N >1):

I+N

Pl Y 1{Qu>z}>1L

n=I[+1

INRIA



Bounds on Finite Horizon QoS Metrics 5

N-1
P(Z 1{@;’L>m}zL), m=1,...,M
n=0

where (Q™), is the queue-length process embedded at arrival epochs of packets from
source m. The first of these will be referred to as the interval metric and the second

one will be referred to as the block metric.

We will develop upper and lower bounds for these quantities under the assump-
tion that the arrival processes (A'),, 1 < m < M, are modeled by M indepen-
dent Markov Modulated Arrival Processes (MMAP’s). That is we assume that
A = U™(Y,™), where (Y,*),, is an irreducible, aperiodic, homogeneous Markov
chain on the finite set &,, with transition matrix P,, and stationary distribution
T, and where (U (k)),, is a renewal process for fixed m and k. We further assume
that the Markov chains (Y;7*),, (1 < m < M) and the renewal processes (U (k))

(k € Smy, 1 < m < M) are mutually independent. It is worth noting [9] that the
aggregate arrival process (A,), is also a MMAP with state-space S = [[¥_, S,,
underlying Markov chain (Y,), = (Y,},...,¥;M),, transition matrix P = @_,P,,,
and stationary distribution 7 = ®*_,r,,m, where ® denotes the Kronecker pro-
duct. Define U, (k) = SSM_, U™ (k,,) for k = (ky,... k) € S so that 4, = U, (Y,),
and let p; ; be the (4,j)-entry of the transition matrix P. Last, we assume that

P(A,, > ¢) > 0 for some n > 0.

We shall assume throughput the paper that the Markov chain (Y;,), begins in
equilibrium, that is P(Yy = k) = w(k) for all k& € S. Under this assumption, the
sequence (A, )y is stationary and the stability condition for this model is E[4,] < ¢
[19]. We will assume from now on that F[A4,] < ¢ and will denote by @ the stationary

regime of the process (Qy)n.

We conclude this section by introducing some additional notation and by re-

viewing several results from [18] pertaining to the tail distribution of the backlog,

P(Q, > z).

RR n°2735



6 Z. Lwu, P. Nain, D. Towsley

Define Fi.(z) = P(U,(k) < z) for k € S and 91 (0) = E[exp(8U,(k))] for k € S.

We will assume that the set © = {68 > 0 : 9;(0) < 00, Vk € S} is non empty and
open. These technical assumptions are satisfied in most cases of practical interest

which includes r.v.’s with phase-type distributions.

Let us introduce further notation. Let A be an n-by-n matrix with real entries.
AT will denote its transpose, A* its k-th power, and r(A) its spectral radius. For
any vector @ = (a1,...,a,), diag (a) or diag ((a;,7 = 1,2,...,n)) will denote the

diagonal matrix with diagonal elements aj,...,a, and |a| will stand for >>7_; ag.

For 6 € ©, define the matrix
H(0) = (P{ ¥'(0)) ® - ® (Pf, ¥¥(9))
where ¥™(0) := diag (Elexp(8UM(k))], k € Sm.).

Since H(#) is nonnegative and irreducible we know from Perron-Frobenius theory
[14] that the spectral radius 7(6) = r(H(6)) is an eigenvalue and that any right-
eigenvector corresponding to this eigenvalue has strictly positive components. Denote

by z(0) = (2(0), k € S) the unique right-eigenvector such that [z(6)| = 1.
In [18] we showed that
PQ,>z)<C@e ™ 2>0,n=12,... (1)

for all 8 € © such that 7(6) < exp(fc), where

C(0) = sup = (2)
#205€8 N py iz (0) | D dE (u)
keS “
and
Be_e*wSP(Qn>m)7 :EZO,’I’L:LQ,--- (3)

INRIA



Bounds on Finite Horizon QoS Metrics 7

where 6* is the unique solution in (0,00) of the equation 7(8) = exp(fc), and B is
given as
> pym(k)(1 — Fi(z))
B= inf bes

20e8 Zpk,jzk(a)/ ! dFy (u)
kes z

The upper (resp. lower) bound in (1) (resp. (3)) will hold if it holds for n = 0. For
instance, (1) holds for n = 0 if the queue is initially empty. The same bounds hold
for the tail of the stationary backlog distribution, P(Q > ), without any additional

conditions.

We will find it useful to use bounds on the backlog distribution conditioned on

the state of the Markov chain. These are, see [18],
P(Qn >z |Yy = k) < C(0) (21(0)/7(k)) e (4)

and

P(Qu> 2 |Ya = k) > B (s(6%)/n(k)) e (5)
forallz >0,ke S, n=1,2,... and for all § € © such that 7(0) < exp(fc).

It has been shown elsewhere (e.g., [18]) that it is much easier to compute 6*, C(6),
and B for the case of independent sources, than for the case of an arbitrary arrival
process, even if the numbers of states in the underlying Markov chains are the same.
In addition, one can introduce the notion of effective bandwidth [8, 11, 10, 13, 15, 16]

for each source when the performance criterion is
PQ>z)<e ™ (6)

as ¢ — o00. The effective bandwidth, ¢, (6) for source m is

n(6) = 7108 7n(0)

where 7,,(0) = r (P% \I’m(())).

RR n°2735



8 Z. Lwu, P. Nain, D. Towsley

We have the following result (Proposition 3.1 in [18]).

Proposition 2.1

M
im 28POQ>%) 4y Y0 <

T—00 T
m=1

This carries the implication that admission control can consist of simply checking
if there is sufficient excess bandwidth at a server to cover the effective bandwidth
requirement of a new source. This type of result has been shown in more genera-
lity (see [18]). It has also spawned considerable interest in developing practical call

admission policies based on the idea; see [10] for one example.

3 Interval Metric

Our interest in this section is to develop, to the extent possible, an equivalent theory

for the interval metric P (Zij':];q_l 1{Q,, >z} > L) as exists for the backlog distri-

bution which was described in the previous section.

We begin by establishing an upper bound. An application of Chernoff’s bound
yields

I+N
P( > I{Qn>m}2L)

n=I[+1

1 [ I+N
< —F 1{Qn > =
L [n:zlg—l { g }]
N —bz
< Yewe 7

for all z > 0 and for all § € © such that 7(0) < exp(fc). The last inequality follows
from (1).

INRIA



Bounds on Finite Horizon QoS Metrics 9

We next obtain a lower bound. We have the following inequality

n=I[+1

I+N
P(Z I{Qn>a:}2L)

> P(Ql+1>ma"'an+L>m)' (8)

We focus on the right-hand side of (8). It can be expressed as

P(QH—I >ma"'an+L >£I:)

= Y P@Qu>e,,Qur>e, Y =71,

J 7"'?jL—1
o Yiyn—1=7Jjr-1)

> Y P(Ura(Yigr) > ¢, -, Uy 1 (Yigno1) >,

]17"'ajL—1
Qi+1> =, Y1 =41, Yiqr—1=jr-1)

= Z P(QH_l >z |Yl+1 = jl)(l - Fjl (c)) 7T(j1)

J1s-dL—1
L—-1
H pji—lyji(]' - Fji(c))
=2

> Be”" Y 2, (0)(1— Fiy(c)

VIR 1
L-1
1 piivii (1= Eji(e)). (9)
=2

The first inequality is a consequence of the definition of @Q,, whereas (9) follows from

the application of the inequality (5). Combining (8) and (9) yields

I+N
P( > I{Qn>m}2L)

n=I+1

(10)

Be 0%, L=1
=1 z(69D (PD):21TBe "¢, L >2

RR n°2735



10 Z. Lwu, P. Nain, D. Towsley

with D = diag (P (U,(j) > ¢),j € S) and 1T = (1,1...,1).

We turn our attention now to the notion of effective bandwidth. Assume now

that the performance criterion is

I+N
P( S 1{Qu > 7} > L) < exp(~0a) (11)

n=I[+1

as ¢ — oo in such a way that log(L/N)/z — —¢& with 0 < £ < oo.

The following result follows from (7):

Proposition 3.1

log P (T4, 1{Qn > 2} 2 L)

T

S5,
log(L/N)/z——§

M
if Y em(@+&) <c
m=1

We make the following observations. First, since ¢y, (6) is nondecreasing in 6, we see
from Proposition 3.1 that fewer sessions will be admitted when applying criterion

(11) rather than criterion (6). Second, Proposition 3.1 is not as strong as Proposition

2.1 in that we have not established that P (Ei‘g}rﬂ 1{Q, >z} > L) < e b (as

x — o00) implies 2%21 em(0 + &) < c. We conjecture that this is, in fact, true.

However, our lower bound (10) is not tight enough for us to establish the result.

4 Block Metric

We now turn our attention to the block metric P ( 7127:_01 H{Q» >z} > L). Again

our objective is to derive upper and lower bounds and to address the existence of

an effective bandwidth theory for the block metric.

INRIA



Bounds on Finite Horizon QoS Metrics 11

Let T, be the time of the (n + 1)-st arrival from source m. It is easily observed
from the statistical assumptions placed on the model that for every m =1,2,..., M,
(@', Ym )y is a Markov chain, further ergodic under the stability condition E[A,] <
c. From now on we will assume that the M +1 Markov chains (Qn, Y, )n, (@7 YT )ns
m=1,2,..., M, all begin in equilibrium (this assumption is made possible because
of the property that any ergodic Markov chain on a countable state space couples

with its stationary version after a time which is finite a.s. [2, 143-144]). This assump-
tion implies, in particular, that (Q()”,YTOm) =o (Q,Yrr) and (Qo, Yo) =st (Qn,Yn)
Vn = 0,1,... We first establish an upper bound. Applying again Chernoff’s bound
yields

N-1
P(Z 1{Q™" > z} 2L>
n=0

=

< P(Qy > =)

0

n

|z SI=

= S P@>e) (12)

A lower bound is derived by observing,

P(Qy" > z)
= P(Qo>z|A] >0)
= Y P(Qo>z,Yy=k|Af >0)
keS
1

= m%P(Qo>m|Yozk)

P(AG > 0] Yo = k) (k)

e—0z
< % 3 A OP(AF > 0¥ =) (13)
o e
= BT >0 2(0)E1T ~? (14)

RR n°2735



12 Z. Liu, P. Nain, D. Towsley

where

E = diag (P(U,"(z) > 0),t € S)
and the last equality comes from (4),

By combining (12) and (14) we finally obtain

= N N\ C(0)z(0) E1Te*"
(5, vew > 1)<(7) SR

for all « > 0 and for all § € © such that 7(0) < exp(fc).

We next obtain a lower bound. We have

N-1
P<Z 1{Q™ > z} ZL)

n=0

> PQy >z,Q">a,...,Q7_1 > )

= P(Qo>z,Q">z...,QT 1 > x| Ay > 0)

= Y P(Q>zQ">z,....Q7 >z,
i]'ES

§=0,1,...,L—1

Y(J :iOaYT{” :il""’YTLm—l :iL—llA’g% > 0)

> Z P<Q0>CE,Q’T’>$,...,Q?,1>CE,

i]'ES
j=0,1,.,L—1
Yo = i(),YT{ﬂ =11,... ’YT}f:l =1ir_1, at least

c arrivals in each slot of the period [77",T774],

j=0,1,...,L—2| Ay >0)

1
= S P(Qo > =|Yy = o)
P(A7 > 0) z%
j=0,1,..L—1

INRIA



Bounds on Finite Horizon QoS Metrics 13

L
P(A'(')n > 0|Y0 = io)ﬂ'(io) R

2525+1
=0

|
N}

<
Il

B*e—G*z
> — i 6"
= P(Ar > 0) ZE;S Zia (67)
J
j=0,1,..L—1
L
P(AG" > 0Yo =19) || Rijijps (16)
=0

|
N}

<
Il

where (16) follows from (5), and R;j = P(Yr» = j, at least c arrivals in each slot
of the period [T¢", T1"] | Yrm = 1).

In order to compute the matrix R = [R; ;] we introduce the matrix R' = [R] ],
where R;ﬂj is the joint probability that the next arrival of source m will occur when
the Markov chain is in state j and that at least ¢ arrivals will be generated in each
slot between the current time (say t) and the arrival time of the next arrival from
source m given that there is no arrival from source m at time ¢ and that the Markov

chain is in state ¢ at time ¢, namely, Rg’j = P(Yrm = j, at least c arrivals in each

slot of the period [t,T;*]|Y; =i, A =0, Ve =1t,t+1,...,T," —1). We have

Ri; = pijP(A; > c|AP =0,Y; =1)
P(A{1 > 0]Yi41 =)

+ Y pit P(Ay > c| A7 = 0,Y; = i)
leS

P(AY11 =0|Yi1=1) Ry
Riﬂ' = pi’]’P(AtZClAZn>0,Yt=Z‘)
P(A{{1 > 0]Y11 =)

+3  pit P(Ay > c| A" > 0,Y; = 0)
les

P( ﬁ1:0|Yt+1:l)R?,j

RR n°2735



14 Z. Liu, P. Nain, D. Towsley

or, in matrix form,

R’ = G,PE+ G;PER’ (17)
R = GsyPE + G,PER/ (18)
with
E = I-E

G; = diag (P(4, >c|A) =0,Y,=1),1€S8)
Gy = diag (P(A, > c|A™ >0,Y, =1),i € S)

where the matrix E has been defined earlier.

Solving for R’ in (17) and substituting the obtained matrix for R’ in (18) finally

gives

— —\ —1
R = G,P [I +E (I ~ G{PE) GlP] E. (19)
In summary, we have shown (cf. (16) and (19)) that

N-1 * * L-14T _—6*z
B* (6 ERI 117
P 1H{Q" >z} > L) >—=
(35 rar >z ) 2 PO

V& > 0. Assume now that the performance criterion is
N-1
P (Z {Qy >z} > L) < exp(—fz)
n=0

as ¢ — oo in such a way that log(L/N)/z — —¢& with 0 < £ < oco. The following

effective bandwidth-type result is a direct consequence of (15):

Proposition 4.1

log P (X0 1{Qm > 2} > 1)

lim

log(L/N)/2—¢ ?

INRIA
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NE

if em(0+€) <ec

1

m

Again, the discussion following Proposition 3.1 for the interval metric applies equally

as well to the block metric.

5 Call Admission

Consider a single T1 channel serving a population of voice sessions. For simplicity
we discretize time into 16 ms segments and model each voice source as an on-off

source with transition matrix

975 .025
P = [ .045 .955 ]

where the number of arrivals in a time unit is 0 when the source is in state 0
and 1 otherwise. The mean on and off periods correspond to 355 ms and 640 ms,
respectively. The service rate of the channel is taken to be ¢ = 48 which corresponds
to each source generating data at a peak rate of 32 Kb/s. With this data, it is easily
seen that the size of a packet is 512 bits and that the available bandwidth is 1,536
Mb/s, which in turn implies that the time needed to serve a packet is 1/3 ms.

Observe that there is no contention if the number of sources M is less than 49

and that the system is unstable whenever M > 134.

Define D,, and D, as the delay at time n and as the delay at the n-th arrival

epoch of a packet from source m, respectively.

We ask ourselves the following questions:

(1) What is the maximum number M;,, of voice sessions that can be supported

by the channel such that P (25;2124—1 1{D,, > b} > 1) <q?

RR n°2735



16 Z. Lwu, P. Nain, D. Towsley

(2) For fixed m, what is the maximum number My, of voice sessions that can be

supported by the channel such that P ( 1211:0 1{D"* > b} > 1) <q?

Here b represents the maximum tolerable delay (in ms) and ¢ a tolerance. Note that
N = 22 corresponds to the average duration of an on period. Hence we are interested
in the probability that the delay exceeds b at least once during an on period (L = 1)
and in particular, the number of sessions that can be supported while ensuring that

this probability lies below the tolerance q.

We shall only concentrate here on determining a lower bound on Mjy,, (resp.

My,,) which we will denote as M9t (resp. Mo"er). Since D, = Q,/3 ms and
D = Q7"/3 ms from the definition of the model, the distribution bounds in (7) and

in (15) can be used to obtain these lower bounds — namely

M.lower
= argmaxyg< <134 {M : In(22C(0%)/q) — 366" < 0}
Mlower

bm

= argmaxyg< <134 {M :1n(22 D/q) — 366" < 0}
where D := C(6*) z(6*) E1T /P(AD > 0).
Hints for the computation of §*, C(6*) and D are given in Appendix A.

Figures 1 and 2 give lower bounds on M, and on My,,, respectively, as a func-
tion of the tolerable delay, b and for tolerances of 1%, 5% and 10%. Also included
are approximations for the lower bounds on M;j, and Mjy,, based on the effective
bandwidth approach (cf. Propositions 3.1 and 4.1), where we let £ = In(1/22)/b
for every fixed b € (0,1000]. We observe, as in [10], that the effective bandwidth

approach is conservative for small values of b (i.e. for b < 100).

INRIA
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Figure 1: Supportable number of voice sessions for the Interval Metric (N =

1)
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Figure 2: Supportable number of voice sessions for the Block Metric (N =22, L =1)
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Bounds on Finite Horizon QoS Metrics 19

6 Summary

In this paper, we have derived lower and upper bounds of an exponential form
on two QoS metrics, the interval metric and the block metric. In addition, based
on these bounds, we have partially developed a theory of effective bandwidths for
there two metrics. An application to call admission has been presented to show
the applicability of the bounds. Future work will focus on completing the theory of
effective bandwidths for these two metrics and on tightening the bounds presented

in this paper.

A Appendix

This section contains simple formulas for the numerical computation of the upper
bounds both for the interval metric and for the block metric in the case where the
offered traffic is the superposition of M independent, identical, on-off sources as

described in Section 5.

More precisely, we assume that each on-off source is modulated by a Markov
chain (Y,;),, with state space Sy, = {0,1}, where 0 (resp. 1) corresponds to the off

(resp. on) state, with transition matrix

p,—|17PP
q 1—gq

and where U (V") = A ifY,” =1 and 0if ¥, = 0 (A = 1 in Section 5). In this case,
it is easily seen that the stationary distribution m,, = (7, 71) of the Markov chain
(Y,)n is given by =, = (¢/(p+q),p/(p + q)). We now examine the computation of
the different quantities involved in the upper bounds reported in (7) and in (15).
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Computation of 6*.

Let () be the spectral radius of PZ ¥™ () (note that v(6) is independent of
m since the sources are all identical). From an elementary result from the theory of

Kronecker products [12, p. 27] we have
7(8) = v()

so that 6* (cf. Section 2) is simply the unique position solution of the equation

M log(v(0)) = fc, where

(1-p)+(1-gqe
2

\/((1_p)+(l—q)e’\‘9)2—4(1_p_q)e,\6
) .

v(f) =

+

Computation of C(0).

By observing that 1 — Fy(z) = 1{\ e|k| > z+c} forall k € S = {0,1}M, we get
(cf. (2))

c(9)
> pigm(k)(L = Fi(z))
= sup kesS
ngg Zpkjjzk(Q) / ! dFy (u)
kes r

M
> prym(k)

i=l keS,|k|=i
= max max
0<r<M | lh<I<M M

ng,IJ_'\ZTZ Z pk’]—zk(a)e)‘e(ifl)

i=l k€S, |k|=i

where ly := inf{l = 1,2,... : IA > ¢}. The right-hand side of the above equation
can be further simplified by noting that 7(k) = =i W(J)Mfi for all & € S such that
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|k| = i. Similarly, we get that z;,(8) = v1(8)* vo(6)M % for all k € S such that |k| = 1,
where v() = (vy(6),v1(6)) is the unique right-eigenvector of the matrix PL ¥™(4)
corresponding to the eigenvalue v(6) such that |v(f)] = 1 (here we use the result
that z(0) = ®M_,v(0) [12, p. 27]). By a simple algebraic computation we obtain
00(6) = (¢ = w(8))/(e — 1) and w1 (6) = (4(8) — 1)/(e — 1).

These simplifications yield

e = (&%)M

M\
eAIaZ 7T_0 Z Phj

i=l keS,|k|=i
max max . . (20)
0<r<M | b<isM Mooy (9) o\
JES.|jl=r e E Pk,j
vo(0) -
1 kS, |k|=i

Define ¢;, = P(|Yn| = r||Yn=1]| = %) for all 4,7 = 1,2,...,M. In words, ¢;, is
the probability that there are r sources active at the beginning of a time-slot given
that there were ¢ sources active at the beginning of the previous time-slot. It is not
difficult to show that for all j € S such that |j| = r,

()

> =% gis (21)
keS, [k|=i <M>
T

and

min(z,M—r) i '
Gir = 3 (l> ¢'(1—q)i!

s=max(0,i—r)
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Combining (20) and (21) finally yields

M i
M m\*
A6 E .
o M € p < 7 ) <7r0) i

o) 222%%( ) (29

It can be shown that the maximun is always reached for | = M if (71 /7g) /(v1(6) exp(A0) /vp(6)) >

1. In this case C(6) = (w1 /v1(6)M.

Computation of the upper bound for the block metric.

Fix 6 € © such that 7(0) < exp(fc). From (12)-(13) we have

m Ny _ C)
(Z Ha ”}“) (2) rr>o
> z(0) P(A] >0|Yy=k)e ™. (22)
kes
Since P(A]"* > 0|Yy = k) = 1{ky,, = 1} for all & = (k1,...,km) € S from the

definition of the model, we have

> zi(0) P(AY >0|Yy = k)
kesS

= Z zr(6)

kES o =1
M-1
= v1(0) IT (0 (23)
Z{E{ 1} =1
1=1,2,. M 1
= v1(0) (24)

where (23) and (24) are direct consequences of the identities z(8) = @M_, v(8) [12,
p. 27] and |v(0)| = 1, respectively.
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By combining (22) and (24) and by noting that P(A7J* > 0) = m; from the
definition of the model, we finally obtain

P <NZI1{Q$ >z} > L) < C(0) (%)(”l—w)e—“.

n=0 T
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