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Abstract: In this paper, we consider a multiplexer with constant output rate
and infinite buffer capacity fed by independent Markovian fluid on-off sources.
We do not assume that the model is symmetrical: there is an arbitrary number
K of different traffic classes, and for each class k, an arbitrary number Nj
of sources of class k. We derive lower and upper bounds for the stationary
distribution of the backlog X of the form

Bexp(—0*z) < P{X >z} < Cexp(—0*z).

When K = 2 or K = 1, we numerically compare our bounds to the exact
distribution of X. as well as to other previously known results. Through
various examples, we discuss the behavior of P{X > z} and the tightness of
the bounds.
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Bornes Inférieures et Supérieures pour le
multiplexage de sources markoviennes fluides

Résumé : Nous étudions un multiplexeur avec taux de service constant dont
le flux d’entrée est la superposition de sources markoviennes de type on-off. Le
modele est en temps continu: chaque source alterne entre un état d’émission a
taux constant (on) et un état de silence (off), le temps de séjour dans chacun
de ces états étant une variable exponentielle. Nous ne supposons pas que le
modele soit symétrique: il existe un nombre arbitraire K de classes de trafic
différentes, et un nombre arbitraire N} de sources de classe k.

Nous montrons qu’il existe des bornes inférieures et supérieures sur la dis-
tribution de la charge stationnaire X du multiplexeur ayant la forme

Bexp(—0*z) < P{X >z} < Cexp(—0*z).

Lorsque K = 2 ou K = 1, nous comparons ces bornes avec la distribution
exacte de X calculée numériquement. Certains résultats précédemment connus
sont retrouvés comme des cas particuliers et sont généralisés. Au travers de
plusieurs exemples, nous analysons le comportement de P{X > z} et des
bornes.

Mots-clé : Bornes exponentielles; bande passante équivalente; sources mar-
koviennes fluides; multiplexage statistique; grandes déviations.
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1 Introduction

In a network node, a large number of incoming data streams are multiplexed
and share the common buffer space and bandwidth. The advantage of statis-
tical multiplexing is to allow an inferior output bandwidth than what would
be required if the input streams were all emitting at their maximum rate. The
price to pay for this saving is the risk of overflow and congestion, which may
harm network users in two different ways. Some of the traffic is time sensitive
and suffers mainly from queueing delays building up when congestion occurs,
another part of the traffic can tolerate some delay but will not accept a single
lost cell in the transmitted data. Estimating the delay and cell loss probabi-
lity is thus an important part of network control. Two main problems arise:
the first difficulty is to define mathematical models which render as closely as
possible the principal characteristics of real traffic; the second difficulty is to
analyze these models and derive accurate bounds or estimates. We are here
mainly concerned with addressing the second difficulty.

The model considered here, where the input data stream is represented as
the superposition of a given number of Markovian fluid on-off sources, has been
the subject of numerous studies in the past few years. Even for such a simple
queueing model, bounds or approximations of the backlog distribution are not
easily obtained. Nevertheless, some significant progress has been made by using
a few different techniques. The recent theory of effective bandwidth provides
some insights on the asymptotical behavior of the backlog distribution; papers
of interest dealing with effective bandwidth include Chang [3], Elwalid and
Mitra [6], Kesidis, Walrand, and Chang [12]. The use of large deviation theory
also leads to asymptotical results, examples can be found in Weiss [16], Hui
[10], and Hsu and Walrand [9]. Duffield, in [5], and Buffet and Duffield, in [2],
introduced some martingale techniques to treat the problem.

So far, most of the papers on this subject either considered only symmetri-
cal models, where all sources are of the same type, or presented only asymp-
totical results, for large buffer size or large number of sources. The originality
of our work is to find upper and lower bounds which hold for any number of
sources, any number of different source classes, and any buffer size.

Our results are obtained by following the approach presented by Liu, Nain,
and Towsley in [14], which extends the work of Kingman in [13]. The results in
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4 D. Artiges & P. Nain

[14] are for discrete time processes defined by a recursive equation, while the
model which we consider here is in continuous time. For this reason, the bounds
in the continuous time model are not immediate to obtain: we first define a
discretized model, where the time line is split into segments of length 6; we
find bounds for the discretized model from [14]; and when the discretization
parameter ¢ tends to 0, we show that these bounds tend to finite positive
values, which are the bounds for the continuous time model.

From the precedent remark, it would seem easier to analyse directly a pro-
blem with a discrete time formulation and avoid the limiting scheme necessary
to study the continuous time model. But we find that the bounds in the discre-
tized model are complicated and not easily computable, while their limits in
the continuous time model have much simpler expressions. This is the reason
why we choose to formulate the problem in continuous time.

The paper is organized as follows. In the next section, we define the model
and show how to make use of the bounds proposed in [14]: we define the dis-
cretized model and give the expression of the discrete time bounds. In section
3, we take the limit and find the continuous time bounds. In section 4, we
present numerical results and discuss the validity of our bounds. We study the
particular case of symmetrical sources in section 5.

2 Approximation by a Discrete-Time Model

2.1 Problem Formulation

A multiplexer with constant service rate ¢ and infinite buffer capacity is fed by
independent Markovian on-off streams. There are K classes of traffic (K > 1)
and N, streams of class k. A source of class k emits data at a constant rate r,
when in state on and is idle when in state off. The time spent by the source in
the off or on state before changing state is exponentially distributed with mean
value 1/A; and 1/py, respectively, Ag/(Ar+ ) is then the stationary probability
to be in the on state. Let 7 = >>;4<x N7 be the maximum instantaneous
input rate, and 7 = ¥j<p<x NiTrAi/(Ar + pi) be the mean input rate. We
assume that 7 < ¢ < 7.

Let Y = (Y;)icr be the Markov process describing the state of the sources,
and S = {0, I}EN’f its finite state space. If the process Y is in state s € §

INRIA



Ezxponential Bounds for a Multiplezer with Fluid Markovian Sources 5

at time t, with s = (s};k = 1,...,K;i = 1,...,N;), si = 0 (resp. 1) if the
ith source of class k is in state off (resp. on), and we call s, the number of
class k sources which are active at time ¢, the corresponding instantaneous
input rate being then 7(s) = Y1<j<x si7r. We assume that the process Y is
stationary. For t > 0, let W; be the excess workload in the interval (—t,0],
i.e. the difference between the amount of work arrived in that interval and the
total available service, and let X be the backlog at time ¢t = 0. We have

W, = /O(T(Yu) — o)du (1)

—t
X = supW,. (2)
>0
Our objective is to find bounds on the probability P{X > z}. We first show
that the continuous time model considered here is the limit of a discretized
model defined in the following way: we change the original model only by
sampling the input rate r(Y;) every é units of time (with § > 0), and by making
it constant in the interval [né,(n + 1)¢), for all integer n. In the discretized
model, the amount of work arrived in the time interval [né, (n+1)§) is 67(Yas)
and the offered service §c. Thus, if X°(n) denotes the backlog at time né,
the dynamics of the new system are described by the equation X?(n + 1) =
[X3(n)+8(r(Yas) —c)] T, where (Yo5)nez is a stationary Markov chain on S. Let
(Y,9):cr be the process defined by Y;? = Y5, with n € Z and né < t < (n+ 1),
and let X? be the backlog at time n = 0, then, as in (1) and (2):

W= [ () - ) Q
X = sg%)Wt‘s. (4)

For such a discrete-time model with a Markovian environment, Liu, Nain,
and Towsley [14] extended the results found by Kingman in [13] and derived
exponential bounds of the following form:

Bsexp(—0;z) < P{X? > z} < Csexp(—0;z), = >0. (5)

In section 3, we show that Bjs, Cs, and 65 tend to finite positive values B, C,
and 6* as § tends to 0; we also show in Appendix A that X? tends almost
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6 D. Artiges & P. Nain

surely to X, so that for all z > 0, P{X? > z} tends to P{X > z} as § tends
to 0, which finally yields for the continuous time model:

Bexp(—0*z) < P{X >z} < Cexp(—6*z), x>0 (6)

We now show how to calculate the decay rate 05 and the coefficients Bj

and Cj.

2.2 Discrete-Time Coefficients

Between the instants né and (n + 1)6, a source of class k switches from off to
on with probability p; and from on to off with probability ¢, (0 < pr, < 1 and
0 < g < 1), then, the transition matrix of the state of this source is

Il—pr P&
P, = .
* < qk 1-%)

The transition matrix P = [ps(t, s)|.s)esxs of the Markov chain (Y,s)nez is
given by the Kronecker product (see Graham [8]) of the matrices P: P =
®i<rer PEVE. We further define W,() = Diag(1,exp(80r;)) and Ji(0) =
P,:f\_lfk_(ﬁ) By the Perron-Frobenius theorem, we know that the spectral radius
7(0) of the positive matrix Ji(#) is its unique largest (real) eigenvalue and that
there is a unique corresponding positive eigenvector z(6) with L' norm |z;(6)|
equal to 1. Finally, let W(0) = Diag(exp(80r(s)),s € S), J(0) = PTW(0), let
7(6) be the spectral radius of J(6) and z(#) be the corresponding eigenvector
with |2(0)| = 1. The following properties hold (see [8]):

vO) = Q@ ()™

1<k<K

10) = ® K6

1<k<K

§0) = @ ()™ (7)

1<k<K

) = I =)™ (8)

1<k<K

From [14] (Proposition 2.3), the decay rate 65 > 0 is now given implicitly as
the unique positive solution of the equation:

7(05) = exp(é5c) (9)

INRIA



Ezxponential Bounds for a Multiplezer with Fluid Markovian Sources 7

We denote by z,(65), for all s € S the components of the vector z(65), and
by m = (7,)ses the stationary distribution of the Markov chain (Y,s),ez (note
that 7 does not depend on §). Then, the coefficients Bs and Cj are (from [14]):

Bs = inf F(s,x) (10)
ses

Cs = supF(s,z) (11)
ses

where
Yies(a) Ps(t, s) m

Lies(z) Ps(t, 5) 21(05) exp(05(6(r(t) — c) — z))
and S(z) ={t € S/z < §(r(t) — ¢)}. We now simplify the above formulas to
get looser bounds Bj§ and Cj: in the denominator of F(s,z),

F(s,z) =

1 < exp(05(8(r(t) — c) — z)) < exp(067)

and thus

EtES(z) pS(t’ S) ﬂ-t* < F(57 -T) < EteS(z) pa(t, S) ﬂ-t* .
Yies() Ps(t, ) z(05) Yies(a) Ps(t, 8) 2:(0)

From the definition of the set S(z), the numerator and denominator in the

exp(—0567)

above fractions are constant functions of = on every interval (a,b], where a
and b are two consecutive values of §(r(h) — ¢) with A € S. Thus, the extrema
of the fraction over > 0 are equal to the extrema over the values of z of the

form 6(r(h) — c), where h is in the set T'={s € S /r(s) > c}. Define

rty>r(h) Ps(t,s) T

5 ;ég Z7‘(t)>r(h) Ps(t s) Zt(9*) ( P ) ( )
t.s)m
C! = max Yr(ty>r(n) Ps(t, s) . "
;gg E'r(t)>r(h p&(t S) Zt(e )

then B < Bs < Cs < (. It is easier to deal with B and C§ than with Bj
and Cjs because the extremum is over a finite set of variables. Note that the
ratio between the two lower or upper bounds is no more than exp(8567), so
that they have the same limit as 6 tends to 0, and thus the simplification does
not affect the tightness of the bounds in the continuous time model.

RR n°2734



8 D. Artiges & P. Nain

3 Upper and Lower Bounds

3.1 Exponential Decay Rate 6*

We now show that the decay rate 0} defined in equation (9) for the discrete
time model has a finite positive limit when § goes to 0. The first step is to find
a Taylor expansion of 7(0). As the larger root of the 2nd degree characteristic
polynomial of Ji(6), 7,(€) has a simple explicit expression, and if we let ¢
tend to O in this expression, by using the fact that pr = éA\; + o(6) and
qr = 6y + 0(8), we find:

Tk(g) =1 + 6Gk(0) + 0(5)

where we have defined

1
Gk(e) = 5 (\/()‘k + pup + TkH)Q — 4#]97’]99 — (/\k + M — Tk0)> .

Let G(6) = > NpGr(0), then from (8) we have
7(0) = 1+ 6G(0) + o(6)

and thus .
lim 5 log7(0) = G(8)

§—0

Note that G(6)/0 is nothing else than the effective bandwidth of the input
process (see e.g. [12] and [6]). We also know from [14] (Proposition 2.3) that,
for all 8 > 0,

1
0 <0 — glogT(e) < fc (14)
1
0>0;, — 510g7‘(9) > fe (15)
The equation G(f) = 6fc has a unique positive solution which we call §*.

The existence and uniqueness of 6* come from the following properties of G,
which are easily established: G(0) = 0, G is differentiable and strictly convex

INRIA



Ezxponential Bounds for a Multiplezer with Fluid Markovian Sources 9

(G" > 0), G'(0) increases from 7 for # = 0 to 7 when 6 goes to +oo. From the
above, we also have the following characterization of 8*: for all 8 > 0

<0 <= G(#)<bc (16)
f>0" = G(0)>0c (17)

Now choose 6 such that 0 < § < 6*, then lim;_ 3 log 7(6) = G() < fc. Thus,
there is a 8y > 0 such that for all 0 < § < &, $log7(0) < fc, and then from
(14), 0 < 6. This shows that liminfs_,, 05 > 6, and because the inequality is
true for any choice of € in (0,60*), we have lim infs_,o 65 > 6*. In the same way,
we prove that limsup;_,, 05 < 6*, and we have finally

lim 6% = 0%,
6—0

Unless K = 1, in which case 6* is given by a very simple formula (see section
5), there is no explicit expression for the decay rate 6*, and the equation
G(0) = Oc has to be solved numerically. Nevertheless, the analytical study of
this equation yields asymptotic results in light or heavy traffic conditions. We
consider 6* as a function of the parameter ¢ varying between 7 and #, then,

for e\ 7: 0" =a(c—7T)+o(c—T) (18)
for ¢/ 7: 0 =p/(F—c)—b+o(1), (19)

where
Ak b -
2 k ok
a = E -_
< E T /\k ‘|‘NL) )

k
b = lz Al

L Tk

In sections 3.2 and 3.3, we suppose that 6* is known and calculate the limits

of B} and Cj.

RR n°2734



10 D. Artiges & P. Nain

3.2 Lower Bound Coefficient

We show in this section that the coefficient Bj tends to a positive number B
as ¢ goes to 0. The first step is to find a limit to the following fraction as ¢
tends to 0:

2or(t)>r(h) ps(t,s) m
rty>r(h) Ps(tss) z(0F)

As(h, s) (20)

Let 2;0(65) and 2;1(6;) be the components of the eigenvector z;(65), and ¢
be the number of active sources of class k in state ¢, then from (7),

a(0) =TI 2o(65)™ "z (65)"

1<k<K

We can obtain the limit of z;(6;) by calculating z;(05) and 2,1(6;) explicitly
and by letting 6 tend to 0 in the above formula. We omit the details and give
only the final formula in Lemma 3.1 below. We define forall k =1,..., K

1

WO = ST ) (\/(/\k + pir + TR0*)? — A0 + (A + e+ ?“k9*))21)
1

Wl = ST ) (\/(/\k + g + m0%)? — A0 + (A + e — ?“ke*))m)

It is easily seen that 0 < up; < 1 < ugg. For any state t € S, we also define

u(t) = H Uﬁéftk%fl,
1<k<K

then the following result holds:
Lemma 3.1 For all state t in S,
%in(l) 2(0%) = m/u(t)
The next lemma gives a Taylor expansion of ps(t,s). For any pair of states s

and t in S, we denote by |t — s| the number of sources whose state differs in s
and t: |t — 5| = Xy, [t} — skl

INRIA
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Lemma 3.2 For all s, t in S, there is a positive number b(t, s) independent
of & such that
ps(t,s) = b(t, s)81= 4 o812,

Lemma 3.2 is established by writing the explicit expression of ps(¢, s) in terms
of pr and g; and by using the properties p;, = 6\, + o(8) and g = S + o(9).
From the above two lemmas, we now derive that for each pair h,s with h € T
and s € S, As(h, s) has a positive limit A(h, s) when 6 tends to 0, where A(h, s)
is defined as follows, by considering two cases:

1. 7(s) > r(h). In this case, in the numerator and denominator of As(h, s),
all terms of the sum tend to zero with 6 except the term corresponding
tot = s, so that we have simply

A(h,s) = u(s)

2. r(s) < r(h). In this case, let ¢ be the minimum of |t — s| over all states ¢
such that 7(¢) > r(h). We now introduce the set S(h,s) ={t € S/r(t) >
r(h)and |t — s| = i}, then,

Yies(hs) b(t,8) T
Yies(hs) blt,s) m/u(t)

Recall that By = exp(—0567) x min{As(h,s)/h € T,s € S}. As § tends to 0,
As(h, s) tends to A(h,s) for all pairs (h,s) with A in T and s in S, thus the
minimum of As(h, s) tends to the minimum of A(h, s), because there is a finite
number of pairs (h, s). The limit of exp(—0367) is 1 and so, as § tends to 0, Bj
tends to a positive number B defined by:

= inf{A(h,s) /h € T,s € S}.

The minimum of A(h,s) is found without any difficulty: let § be the state
where all the sources are in the state on (s = Ni for all k), then, from
up1 < 1 < ugg, we have u(t) > u($) for all state ¢, and thus A(h,s) > u(3),
which entails B > u(§). On the other hand, § is in the set T' (r(8) = 7 > ¢)
and thus B < A($,§) = u($). Finally:

B = J[ ub (23)

1<k<K

A(h,s) =

RR n°2734



12 D. Artiges & P. Nain

3.3 Upper Bound Coefficient

By using the same line of arguments as in the previous section, one can show
that the coefficient C} tends to a finite positive number C' as ¢ tends to 0, with

C = sup{A(h,s) / h € T,s € S}.

Let m be a state in T such that u(m) is maximum. Then, A(h, s) < u(m) for all
h €T and s € S, and thus C < u(m), but we also have C > A(m, m) = u(m),
hence C' = u(m). Calculating C is thus equivalent to finding some integers my,
satisfying the conditions:

> oy >c (25)
1<k<K

H uﬁg_mkqu is maximum. (26)
1<k<K

The problem of finding these numbers can be expressed as an integer linear
programming problem of the knapsack type: let mj, = N —m;, then the above
conditions can be rewritten as

0 < mj < Ny (27)

Y omyr <7F—c (28)
1<k<K

Z my, log(ugo/uk1) is maximum. (29)
1<k<K

Note that for all k, log(ugo/uk1) > 0. The coefficient C' is then given by the
formula

log(C) = log(B)+ > mjlog(urg/usy). (30)

1<k<K

In terms of complexity, the exact calculation of the coefficient C' is a difficult
problem: the simplest algorithm uses a Dynamic Programming approach where

all possible combinations of numbers m}, are considered, and has a complexity
of O(IIy Ni) (see Garfinkel and Nemhauser [7]). To overcome this difficulty, we

INRIA



Ezxponential Bounds for a Multiplezer with Fluid Markovian Sources 13

consider the equivalent problem in real numbers: let D be the number defined

by

log(D) = log(B)+ Z xy, log(uko/ur1), (31)

1<k<K

where the xj are real numbers satisfying 0 < z; < Ni, Dpapre < 7 — ¢,
and such that Y zy log(ug,o/ug,1) is maximum. Because the numbers mj, have
to satisfy stronger conditions than the zj, we have clearly ¢ < D, thus
Dexp(0*z) is also an upper bound of P{X > z}, although possibly not as
tight as Cexp(6*x). The gain in considering the coefficient D instead of C' is
that the computational complexity is much lower: assume that the classes are
sorted in decreasing order of log(uo/ur,1)/7+ (the sorting requires O(K log K)
computations), then the numbers z;, are given by the following straightforward
algorithm, of complexity O(K). Initial parameters are Volume = 7 — ¢, Value
= log(B), z; = 0 for all 4, and k& = 0.

While (Volume > 0)
do
zj, = min(Ny, Volume/ry,)
Volume = Volume —z7y,
Value = Value +zy log(w,o/uk,1)
k=k+1
done

The condition 0 < 7 — ¢ < >}, Ni7 ensures the correct termination of the
algorithm, and log(D) is given by the parameter Value at the exit of the while
loop. The numerical comparisons in section 4 show that the difference between
the two bounds log(C') and log(D) is relatively small, which suggests that, in
most cases, the improvement of tightness from one bound to the other is not
worth the extra computational cost.

We now summarize our results: we have defined a function G(6) and have
shown that the exponential decay rate 6* is the unique positive solution of
the equation G(f) = Oc. We have then introduced three coefficients B, C,
and D depending on #* and satisfying B < C' < D. B has an explicit form
(assuming 0* is known) and is easily calculated, log(C') is the value of an integer
programming problem, and log(D) is an approximation of log(C') which is

RR n"2734



14 D. Artiges & P. Nain

obtained through a simple and fast algorithm. These coefficients define bounds
on the distribution of the backlog X in the following way:

Ve >0, Bexp(—0*z) < P{X >z} < Cexp(—0*z) < Dexp(—0*z).

We conclude this section by making a remark which shows that, in some
sense, the coefficients B and C' are the best possible. We consider the case
where the service rate c is such that the only state s of S with input rate 7(s)
larger than c is the state 5, where all sources are on. This condition is true if
we have 7 — ming 7, < ¢ < 7. In this case, it is easily seen that C' = B, and
thus, the lower and upper bounds are equal and give the exact queue length
distribution: P{X > z} = Bexp(—6*z). The bounds are then obviously the
best possible. Although the study of this particular case is not necessarily of
great practical importance, it suggests that the tightness of the coefficients B
and C' may not be easily improved.

4 Numerical Comparisons when K =2

We now present some numerical experiments which compare our bounds to
the exact value of the probability P{X > z}. For every system considered,
the bounds were obtained by following the steps described in section 3: we
solved numerically the equation G() = e, calculated log(B), and derived
log(C') through a Dynamic Programming algorithm. The exact backlog dis-
tribution was computed via the procedure described by Elwalid and Mitra in
[6], by solving a linear system of differential equations. The difficult part in
this procedure is to find all the eigenvalues and eigenvectors of a matrix of
dimension [];(1 + Ni). This spectral analysis and the resolution of a linear
system were implemented by using some functions of the library Meschach, a
freeware package in C language for linear algebra (see reference manual [15]).
In theory, the exact distribution can be obtained for any number of sources,
but in practice, only very small systems can be studied because of the high
computation time.

Figures 1, 2, and 3 show a few examples of the the models that we have
considered, each has two different classes of traffic (K = 2) and a relatively
small number of sources of each class (IV;, < 12). The mean durations of off and
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Ezxponential Bounds for a Multiplezer with Fluid Markovian Sources 15

on periods, respectively 1/A;, and 1/, are given in seconds, and the rate 7, in
Mb/s. In each figure, log;,(P{X > z}) is plotted as a function of the queueing
delay in the multiplexer, which is equal to z/c, and compared to the lower and
to the two upper bounds. All three bounds are represented by straight lines
with the same slope, and correspond to the three previously defined coefficients
B, C,and D.

In Figure 1, the load 7/c is 0.6, sources of class 1 represent voice channels,
with parameters 1/A\; = 0.650, 1/p; = 0.352, 71 = 0.064, and sources of class
2 model data streams with average on and off periods of 0.2 and 0.8 seconds
and peak rate 320 Kb/s. In Figure 2, the parameters are the same but for the
load which is taken equal to 0.40.

Because of the difficulty to analyze exactly large systems, it would be in-
teresting to know how to quickly and accurately extrapolate the behavior of
P{X > z} with many sources from the study of smaller systems, where the
exact distribution of X or some approximations of this distribution are more
easily obtained. More precisely, let a be a positive integer, which will act as a
“scaling factor”, let X, be the stationary backlog in a system with a/NV} sources
of class k and with a service rate equal to ac: the size of the system has been
“multiplied” by a. How does P{X, > az} compare to P{X > z}? We do not
have any clear answer to this question; however, a very simple remark can be
made about the scaling property of our bounds: we observe that the decay
rate 0* does not depend on a (this is because the function G() is linear in
respect to the size of the system: G,(0) = aG(0)), and if we let B, and D, be
the coefficients of the bounds in the new system, it is also easily shown that
log(B,) = alog(B) and log(D,) = alog(D). We have finally:

a(log(B) — 0*z) < log(P{X, > az}) < a(log(D) — 6*z).

Thus we can easily compute the bounds for large systems from the bounds
calculated for small systems. The above formula also reveals a difficulty: our
ability to estimate log(P{X > z}) is determined by the difference between
the upper and the lower bound, namely log(D) —log(B). This difference grows
linearly with the size of the system, so that we may expect a loss of accuracy
of at least one of the bounds when the number of sources is large. To address
this difficulty, we now derive from the numerical results a couple of heuristic
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.
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o
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-45
0 50 100 150 200
Queueing delay t (ms)
Figure 1: Load=0.6 (Ny,1/A,1/p,m) = (12,0.650,0.352,0.064),

(N27 1/>‘27 1/”27 T2) = (6? 08) 027 032)

rules which can help to decide whether the actual distribution lies closer to
the upper or to the lower bound.

We first notice that in all the cases that we have considered, log(P{X > z})
as a function of z is decreasing and appears to be convex. Thus, the difference
with the upper bound (which is linear in ) is smallest for z = 0, and the
difference with the lower bound is smallest for large z.

The second observation is that log(P{X > z}) can be very close to the
lower bound when z is not close to 0, and when the load of the system is
very low, i.e. when the service rate c is of the same order as 7 (but still with
¢ < 7 — ming 7). This phenomenon is illustrated in Figure 3 where we have
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Upper bound (coef. D) ——
Ny Upper bound (coef. C) -----
-2 EESa Exact -+

: - Lower bound (coef. B) -

g
g 6
g -7
-8
-9
-10
-11
0 50 100 150 200
Queueing delay t (ms)
Figure 2: Load=0.4 (Ny,1/A,1/p,m) = (12,0.650,0.352,0.064),

(N27 1/>‘27 1/”27 T2) = (6? 08) 027 032)

taken 7/c¢ = 0.125. However, for medium or high loads, the exact value is
usually closer to the upper bound, even for larger z.

We continue this discussion in the next section, when there is only one class
of traffic, and when the number of sources is larger.

5 Symmetrical Model (K =1)

We consider a system with N sources of the same class, with parameters A,
i, and r. We denote by ¢; the service rate per source, i.e. ¢; = ¢/N. In this
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Upper bound (coef. D) ——

R Upper bound (coef. C) -----
7 T . Exact.-----
- Lower bound (coef. B) -

? -10
a3
%: 1
-12
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-14
-15
0 50 100 150 200
Queueing delay t (ms)
Figure 3: Load=0.125 (Ny,1/A1,1/pa,71) = (12,9.0,1.0,1.0),

(N27 1/>‘27 1/”27 T2) = (4? 90) 107 20)

case, the exponential decay rate 8* and the coefficients of our bounds have
explicit expressions which we give in section 5.1. Then, we consider separately
the model with or without buffer and compare numerically the upper bound
with the exact distribution. When K = 1, the simplicity of the formulas and
the ability to confront them with other known results enables us to get a more
precise insight on the behavior of the bounds.
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5.1 Decay rate and Bounds
When K = 1, the positive solution of the equation G(8) = fc is :

A
A (32)

T —C C1

The above formula is not new and can be found for instance in [1] and [16]. If
we report this value in (21) and (22) to calculate the numbers uy and uy, we

find:

ur
U =
’ (A+p)(r —c1)
Ar
U = —.
' (A + e

We now define m = |¢/r| + 1, the integer m is the minimum number of active
sources such that the total input rate exceeds c. Note that m > N¢j/r. Then,
the coefficients of the bounds are

B = uf

_ N—m_m
C = uy; "uj

_ l1—ci1/r e1/r\N
D = (uy “uit’")v.

We write D = exp(—NI(cq)), with I(c1) = —(1—c¢1/7)log(ug) — (c1/7) log(uy).
The formula for the coefficient D was previously known as a large deviation
approximation for the overflow probability in a bufferless model with large N
(see for instance Weiss [16]), our work shows that this approximation is really
an upper bound. This upper bound was also obtained by Buffet and Duffield
in [2] for a discrete time model: we can derive D as the limit of their formula,
if we let the discrete time model which they study tend to a continuous time
model, as we have done in section 2.

5.2 Buffered Model

We present here some numerical comparisons in the symmetrical system. Three
different curves are plotted: the upper bound with coefficient C, the exact dis-
tribution, and an approximation for small buffers due to Hsu and Walrand (see

RR n°2734



20 D. Artiges & P. Nain

[9]). The exact value of P{X > z} was computed by following the method pro-
posed by Anick, Mitra, and Sondhi in [1], their approach is not fundamentally
different from the heterogeneous case, but leads to a simpler and quicker algo-
rithm, which makes it possible to analyze larger systems. The approximation
found in [9] is of the form A(N)exp(—NC3+/z), where A(N) is an estimate of
the probability that the input rate exceeds ¢, and the coefficient Cs is derived
for small buffer asymptotics by Weiss [16].

-0.5 |
\ i Exact —
Upper bound (coef. C) ---—
Hsu-Walrand approx. -----
-1
= -1.5 R L
ts 777777777
<R I R NG N S S S N R U N
a3
S
o
-
g
- -2
-2.5
-3
0 5 10 15 20 25 30 35 20 p

Queueing delay t (ms)
Figure 4: Load=0.82, N = 100
We consider a system of 100 sources modelling voice channels (1/A = 0.650,
1/p=10.352, 7 = 0.064). In Figure 4, the service rate c¢ is such that the load of

the system is 0.82, and in Figure 5, the load is 0.66. The buffer occupation X
is represented by the corresponding queueing delay in milliseconds. On both
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figures, we observe that our upper bound is close to the real distribution for
small z (z = cxdelay), but, as noted also in the heterogeneous model, the
gap may increase by several orders of magnitude for larger . The small buffer
approximation is also very close for small z.

-3 T

b : Exact —
Upper bound (coef. C) ---—
Hsu-Walrand approx. -----

log10(P{X>ct})

-10

0 5 10 15 20 25 30 35 40 45
Queueing delay t (ms)

Figure 5: Load=0.66, N = 100

The lower bound with coefficient B is in both cases very inferior to the real
probability (log(B) would be about -8 in Figure 4 for z = 0 and -18 in Figure
5), and was left out of the picture. This is not a surprise: as mentioned in section
4, the difference between log(D) and log(B) grows linearly with the size of the
system and thus, at least one of the two bounds is expected to miss the exact
value by a large margin when the number of sources increases. When K = 1, we
have seen that log(D) is the large deviation approximation of log(P{X > 0})

RR n°2734
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when N goes to +oo, the difference between these two terms is thus o( V),
which is consistent with our observations: the upper bound log(D) is good
when z is small, even for large N. This implies that log(P{X > 0}) — log(B)
has to grow linearly with N. Thus, for large systems, we can expect our lower
bound to be very inferior to the exact probability, and the upper bound to be
reasonably good.

5.3 Bufferless Model

We finally consider a system with no buffer. Let ®(N) be the stationary pro-
bability that the input rate exceeds c, i.e. the probabiliy of having m or more
emitting sources at one time, which is given by the formula

2N = é(JZ) (Aiuy(Aiu)Nk'

We have ®(N) < P{X > 0}, because in the model with buffer, the queue
length is positive whenever the input rate is larger than ¢, and thus ®(N) < C.
In Figures 6 and 7, we compare numerically log(®(N)) and log(C') for up to 200
sources with two different sets of parameters. We also plot the approximation
log(A(N)) calculated by Hsu and Walrand in [9], A(N) is a refinement of the

large deviation formula and has the following form:

log(A(N)) = —h(ex) — 5 log(N) ~ NI(ey).

We can see on the curves that this estimate is very close to the exact value
of log(®(N)). Recall that log(D) = —NI(cy). If we now think of ®(N) as an
approximation of P{X > 0}, the above formula indicates that the difference

between log(P{X > 0}) and the upper bound log(D) is roughly given by
h(c1) + 21og(N).
6 Conclusion

The multiplexing of Markovian on-off sources has received a lot of attention in
the recent past, with most of the results concerning symmetrical systems. We
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Figure 6: Plot of log;o(®(N)), with load=0.72 and (1/A\ 1/p,r) =
(0.650,0.352, 0.064)

have proposed exponential upper and lower bounds of the queue length distri-
bution which are easily computed, and which hold for any number of different
traffic classes. We have conducted numerical experiments to test the validity
of the bounds, and have compared them with other authors’ results when pos-
sible. When considering a symmetrical system, we retrieve some previously
well known formulas as a special case. We have argued that in large systems,
our lower bound may greatly underestimate the exact value, whereas the upper
bound, as observed in the symmetrical case, is presumably reasonably close for
small buffers.
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Figure 7: Plot of log;,(®(N)), with load=0.4 and (1/A,1/p,7) = (45.0,5.0,1.0)

A Approximation of X by X°
We prove here the following result, used in section 2.1:

lim X° = X a. s.

6—0
For all ¢ in R, we have |r(Y?) — r(Y;)| < 7, but if the process Y; stays in the
same state in some time interval [né, (n + 1)§), then Y;? =Y for all ¢ in that
interval. Furthermore, if N(t) denotes the number of state transitions of the
process Y in the interval (—t, 0], there are no more than N(t) + 1 intervals of
the form [né, (n + 1)d) intersecting (—t,0] and containing a state transition of
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Y, thus
we-wil = | / (¥)) = ()l
< SP(N(t)+1),
which yields
wp W,
It T
PRI
It can be shown that, almost surely, W;/t tends to 7 — ¢ and N(t)/t tends
to a finite positive number v as ¢t goes to +00. We now adopt a sample path
approach, and consider one given trajectory of the process Y such that the
above limits exist. Because ¥ — ¢ < 0, there is a positive number M; such that
for any t > M;, W; < 0. Let 4, be a positive number such that ¥ —c+y7v < 0,
then, there is a number M, such that, for ¢ > My, the term W, /t + §o7(N(t) +

1)/t, which tends to 7 — ¢ + éo7v, is negative. If t > M, and 6 < §y, we have
then

PCOR]

(]
WEo_ Wi, (V@) )
t t t
N(t)+1
< W g N0+
< O.

Let M = max(M;, M,), then for t > M and for all § < &, W; and W} are
negative, which yields

X = sup W;
0<t<M

X = sup W,.
0<t<M

Thus we can write for all 6 < ¢,

X-X*| = | sup W,— sup WP
0<t<M 0<t<M
< sup |Wt_Wt5|
0<t<M

< SA(N(M) +1).

When we let § tend to 0, 6#(N(M) + 1) tends to 0, and we have finally
lims_o X® = X, which concludes the proof.
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