Numerical Simulation of 3D Electromagnetic Scattering by Algebraic Fictitious Domain Method

Abstract : New variants of algebraic fictitious domain method are proposed for solution of the 3D~Helmholtz and Maxwell equations in unbounded domains with the Sommerfeld radiation condition at infinity. They are based on: \begin{itemize} \item the use of an infinite uniform Cartesian mesh (maybe, locally fitted to an obstacle) for finite-difference or finite-element approximation; \item nonsymmetric version of fictitious domain method for solution of a resulting mesh system; \item calculation of the partial solution during the iterative process via summation of mesh Green functions with corresponding weights, using a fast algorithm; \item a special way of construction of the approximate mesh Green function satisfying the radiation condition.
Type de document :
Rapport
[Research Report] RR-2729, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00073965
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:11:23
Dernière modification le : vendredi 16 septembre 2016 - 15:13:09
Document(s) archivé(s) le : dimanche 4 avril 2010 - 22:10:08

Fichiers

Identifiants

  • HAL Id : inria-00073965, version 1

Collections

Citation

Alexandre Bespalov. Numerical Simulation of 3D Electromagnetic Scattering by Algebraic Fictitious Domain Method. [Research Report] RR-2729, INRIA. 1995. 〈inria-00073965〉

Partager

Métriques

Consultations de la notice

76

Téléchargements de fichiers

142