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Abstract: New variants of algebraic fictitious domain method are proposed for
solution of the 3D Helmholtz and Maxwell equations in unbounded domains with
the Sommerfeld radiation condition at infinity. They are based on:

e the use of an infinite uniform Cartesian mesh (maybe, locally fitted to an
obstacle) for finite-difference or finite-element approximation;

e nonsymmetric version of fictitious domain method for solution of a resulting
mesh system;

e calculation of the partial solution during the iterative process via summation
of mesh Green functions with corresponding weights, using a fast algorithm;

e a special way of construction of the approximate mesh Green function satisfy-
ing the radiation condition.

New ways of optimization of the fictitious domain method are also proposed.
Results of numerical experiments are presented.
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Simulation Numérique de la diffraction
électromagnétique 3D par une méthode algébrique de
domaines fictifs.

Résumé : On propose de nouvelles variantes de la méthode algébrique de domaines
fictifs pour la résolution des équations de Helmholtz et de Maxwell 3D dans des
domaines infinis avec la condition de radiation de Sommerfeld a 'infini. Elles sont
basées sur:

o l'utilisation d’un maillage cartésien uniforme infini (s’ajustant éventuellement
a un obstacle) pour des approximations par différences finies ou éléments finis;

e une version non symétrique de la méthode de domaines fictifs pour la solution
du systeme discrétisé;

e le calcul de la solution partielle pendant le processus itératif via la somma-
tion des fonctions de Green discretes avec poids correspondant, utilisant un
algorithme rapide;

e un moyen particulier de construction de la fonction de Green approchée satis-
faisant la condition de radiation.

On propose également de nouvelles approches d’optimisation de la méthode de
domaines fictifs. Les résultats des tests numériques terminent ce rapport.

Mots-clé : méthode de domaines fictifs, probleme de diffraction, solution partielle,
fonction de Green discrete, algorithme de sommation rapide.
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1 Introduction

Calculation of a wave, acoustic or electromagnetic, scattered by an obstacle is a
problem of great practical importance. It is also called “diffraction problem”. It can
be two- or three-dimensional. The diffraction problem is mathematically described
by Helmholtz wave equation (in a scalar case) or by Maxwell equations (in a vector
3D case) in an unbounded domain with the Sommerfeld radiation condition at infi-
nity. Various aspects of this problem and methods of its solution were considered in
[2, 3,4, 8,12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 25, 26, 28, 33, 34] and many others.

Application of fictitious domain method (in several treatments and under several
names) for solution of the problem was considered in [2, 3, 4, 8, 12, 13, 19, 25, 26,
28]. Tt turned out to be an effective tool for this purpose. It can be said that this
method combines advantages both of methods solving boundary integral equations
(all handled vectors are non-zeroth at boundary nodes only) and of methods solving
volume differential equations (sparseness of arising matrices).

This article continues the development of fictitious domain method for solution of
the considered problem undertaken in [8, 12, 25, 26]. In that articles discretization of
the problem was carried out by finite-difference [25] or by finite-element [8, 12, 26]
method on a spherical (polar in 2D) mesh. This choice of a mesh type allows to
reduce the problem in an unbounded domain to a problem inside a minimal sphere
(circle in 2D) described around an obstacle and also to calculate an asymptotic form
of a scattered wave in a very simple and precise way.

However, discretization on a spherical mesh has several obvious drawbacks espe-
cially important for the vector problem in 3D case. Among them are the following
ones:

1. Such a mesh is too fine nearby the coordinate axis. This gives rise to a lot of
excessive nodes not improving an approximation.

2. Finite-element approximation of the 3D Maxwell equations on a spherical mesh
and separation of variables in a resulting discrete problem are very complicated
for a practical implementation.

3. Local fitting of a 3D spherical mesh is very difficult for a practical implemen-
tation as well, especially nearby the coordinate axis.

For these reasons the author undertook an attempt to develop a version of ficti-
tious domain method for numerical solution of diffraction problems using a Cartesian
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4 Alexandre Bespalov

mesh. A main difficulty here consists in an approximation of the Sommerfeld radia-
tion condition which would be correct, precise, economical®’ and suitable for the
fictitious domain method.

This approximation could be carried out in the way proposed and considered in
[17, 21, 22] and others. In this approach, a surface I' described around an obstacle
(“an artificial infinity”) is introduced, and then the exact Sommerfeld condition at
infinity is approximated by a special local absorbing boundary condition on I' with
the use of pseudo-differential operators. For the case of the use of a Cartesian mesh,
it is natural to choose I' as a rectangle boundary.

In principle, this approach is workable and can be used in the context of fictitious
domain method [2, 3, 4, 19]. However, to get a sufficient precision it is necessary to
choose I rather far from the obstacle, resulting in a considerable increase of number
of unknowns in an algebraic problem (especially in 3D case). Besides that, most of
such approximations do not allow to separate variables inside the rectangle (which
is necessary for fictitious domain method), so special expensive tricks should be used
to override this. For these reasons such approximation of the radiation condition is
not used in this article.

It is proposed here to approximate the problem on an infinite uniform Cartesian
mesh (maybe, locally fitted to an obstacle boundary) by finite-difference or finite-
element method, without introducing an artificial infinity. For approximation of the
3D Maxwell equation a special approach using staggered meshes is considered.

For solving a resulting infinite mesh problem, it is proposed to apply fictitious
domain method, i.e. iterative process with preconditioner 8~!, where mesh operator
B corresponds to the same approximation of the same differential operator on the
infinite uniform Cartesian mesh in the whole “empty” space.

To be applied, the algebraic fictitious domain method requires so-called “enlarge-
ment” of a solved problem. This enlargement is arbitrary (within some equivalency
conditions), so its choice is to be aimed at speeding the iterative convergence up.
Besides that, an additional preconditioner H can be introduced into the iterative
process. Thus, the problems of optimal choice of the enlargement and of the precon-
ditioner arise. They are also considered in the article, and new possible approaches
to their solving are proposed.

For implementation of the method, it is necessary to calculate mesh function
vh = B71E" in each iterative step, in such a way that v" satisfies some mesh radiation
condition at infinity (the last one should approximate exact radiation condition).
This algebraic problem is partial [23, 24, 27, 30], i.e. a right-hand side £" can be

!From the viewpoint of the algebraic dimension of a resulting problem.
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non-zeroth only at boundary and near-boundary nodes (with respect to an obstacle),
and solution B~1£" should be found at the same nodes only.
For this purpose, it is proposed to use the following obvious formulas:

~1gh) .
£")ij Zfszz 1j—m in 2D case,

h .
(B~ )i = Ef;mnGZ Lj—mi_n i 3D case,

Imn

where G" is the mesh Green function of the operator B. These formulas are va-
lid because all nodes of an infinite uniform Cartesian mesh are equivalent to each
other. For the summation it is proposed to use a fast method using the fast Fourier
transformation algorithm.

The Green function G” (satisfying an approximate radiation condition at infi-
nity) is constructed by means of Fourier analysis. Its value at each mesh node is
represented as an integral of singular highly-oscillating function, but an effective
method for its calculation has been worked out.

For reducing arithmetical expenses and required computer memory, it is also
proposed to replace exact mesh Green function G” in the algorithm by its approxi-
mation G"*. The latter one is built on a base of the exact Green function of the
differential operator of the considered problem. A formula for the asymptotic form
of a scattered wave (RCS) is derived using the same trick.

Implementation of the resulting algorithm in 3D case for a fixed problem requires
O(h=?log h~') arithmetical operations per each iterative step and O(h~?) computer
memory locations (where h is a stepsize), both for scalar and vector cases.

Results of numerical experiments carried out in 3D case for verification and
testifying of the approach are presented.

2 Statement of the problems and discretization

2.1 The scalar problem

Scattering of a stationary longitudinal wave v by an obstacle {2 in a homogeneous
medium is described by the scalar Helmholtz wave equation with the Sommerfeld
(radiation) condition at infinity:

—Au—r*u = 0 in R™\ Q,
Lu = =L on 09, (1)
a m+1
0_?7{ —iku = O(r~—72 ) for r— 0.
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6 Alexandre Bespalov

Here m = 2 or m = 3 is the space dimension, i is the imaginary unity, A is the
“scalar” Laplace operator:

m N2
A= — (2)
a2
i=1 axl
k = const > 0, r = |x|,  is a bounded domain in R™ with a piecewise-smooth

boundary 99 such that R™\ Q is a connected region, v; is an incident wave (usually
it is taken as vy = exp(ik - @), |k| = K), u is a scattered wave, v; and u are complex-
valued scalar functions of &, £ is some known linear boundary condition operator.
We also introduce the wavelength A = 27/k.

Results stating the existence and uniqueness of the solution to problem (1) can
be found in [31, 34].

It is well known that a solution of problem (1) has the following asymptotic form:

ikr
€

u(r,0) = A(0)

+0(r=%) for 1 — o0, m=2,

\/;inr (3)
u(r,0,9) = A0, )5~ + O(r7%) for r — o0, m =3,

where (7, 6) is polar and (r, 8, ¢)is the spherical system of coordinates. Condition (3)
is equivalent to the Sommerfeld one.

Problem (1) corresponds to scattering of acoustic waves. Besides, this 2D problem
approximately describes scattering of TE- and TM-polarized electromagnetic waves
by a 3D cylindrical obstacle with a constant cross-section @ (if its length in z-
direction is much greater than diameter of € and A), see [34].

2.2 The vector (electromagnetic) problem

Scattering of a stationary electromagnetic wave E1 in vacuum by an ideally conduc-
tive obstacle € is described by the following 3D problem:

VxVxE,~rE;, = 0 in  R’\Q,
_ E; = —-FE; on 09, (4)
08125 —ikE; = O(r7%) for r— .

Here Vx = curl = rot, E1 and Eg are electric fields of incident and scattered waves
correspondingly, both are complex-valued vector functions of @, E” is a tangential
component of E.

INRIA
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Equation in (4) (the first line) is simply derived from the Maxwell equations in
vacuum [34]. We note that an incident wave Ep should also satisfy it. The scatte-
ring problem can also be formulated in terms of magnetic field H but we are not
considering that variant.

For problem (4), the existence and uniqueness theorem can also be formulated
and proved [31, 34].

Electric fields E1 and Eg should also satisfy the divergency-free condition

V-E=0 in R*\Q. (5)

Applying operator V- to the both sides of equation in (4) and using the well-known
identity
V-(Vx)=0, (6)

we get that a solution Eg of (4) satisfies (5) automatically.
Incident wave E7 is taken in several ways. The simplest one is to choose it as a
plane-polarized wave propagating in a direction k:

Ey=F, eXp(iK’ : ZB), |K’| =k, (7)

where Ej is a vector constant such that Eq -k = 0. It is easy to check that Et from
(7) truly satisfies both the equation from (4) and condition (5).

It is well known (see e.g. [34]) that a solution of problem (4) has the following
asymptotic form:

Ego(r,0,0) = Ag(@,cp)el; + O(r=?) for r — oo,

Eso(r,0,0) = Aw(O,Lp)el,; + O(r?) for r — oo, (8)
Es.(r,0,0) = O(r?) for r — oo,

where (7,0, ¢) is the spherical system of coordinates. That is, when going to infinity,
radial component s, of a scattered field is decreasing much faster than its transverse
component.

2.3 Transformation of the vector problem

Let us consider a widespread transformation of problem (4). Let us introduce the
“vector” Laplace operator:

AV v ovv. (9)
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8 Alexandre Bespalov

and rewrite (4) as follows:

~AE, - K’E, = 0 in  R%\Q,
E! = —-FE; on 09,
V-E; = 0 on 09, (10)
0E; . _ -2 ,
o —ikEs = O(r=?) for r— 0.

Let us prove that problem (10) is equivalent to problem (4). Denoting w = V- Ej
and applying operator V- to the both sides of equation and Sommerfeld condition
in (10) we get the following problem for w:

—Aw—-rw = 0 in R\ Q,
w = 0 on 01, (11)
%—gf —ikw = O(r~?) for r— .

It follows from results of [32] that w = 0 in R® \ Q, thus, the statement has been
proved.

Formulation (10) of the vector problem is often more convenient because of the
following obvious property of “vector” Laplace operator (9):

AE = (AE,,AE,, AE3)", (12)
where F, F,, F5 are Cartesian components of E. Further we shall use it.

2.4 Approximation of the scalar problem

Let us construct in R™ an infinite uniform Cartesian mesh:

.’Ei = h]’ ] = —OO,—I—OO, = 1,m, (13)

where h < A. Rectangles

J J+1 s -
v <z <x;7, j=-—00,400, t=1,m,

will be referred to as “mesh cells”, their edges — as “mesh edges”, their sides (in 3D
case) — as “mesh sides”, their vertices — as “mesh nodes”.

Basing on (13) let us construct a mesh (R™ \ Q) in the considered domain. It
can be a mesh with the first-order (“staircase” ) approximation of 9€2 (see [10, 25]) or

a mesh locally fitted to 02 and approximating it with the second order of accuracy
[8, 11, 12].

INRIA
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Having constructed a mesh (R™ \ Q), we approximate the problem by finite-
difference or finite element (Galerkin) method. In the latter case we suppose that
bilinear (trilinear in 3D) basic functions are used in rectangular cells. So we get a
mesh problem

Au" = f* on (R \ Q)s, (14)

where A is an infinite symmetric mesh operator, u” is a mesh function defined at

mesh nodes, f” is a right-hand side generated by the right-hand side of the boundary
condition in (1) only.
Note that no radiation condition is yet imposed on an approximate solution u”.

We shall do it further.

2.5 Finite-difference approximation of the vector problem

Now let us construct a finite difference approximation of vector problem (4). To do
this, the approach described in [10, 29, 35] is used, i.e. approximation of differen-
tial operators Vx, V-, V on uniform staggered grids retaining interrelations of the
operators.

Let us take mesh (13) for m = 3 and denote (R \ ), a set of mesh cells whose
centers belong to R®\ Q. It gives a first-order “staircase” approximation of the
domain under consideration. A mesh edge or side will be referred to as boundary
one if it belongs to both a cell of (R*\ Q), and to a cell not belonging to (R*\ Q).

Let us introduce the following notations:

ME i =13, - aset of middle points of all mesh edges of (R*\ ),
parallel to coordinate direction z;;

ME = ME U ME U ME;

ME i =13, — a subset of points of MF not belonging to boundary
edges of (R*\ Q)y;

ME=ME U ME UM,

OME = ME\ ME, OME = ME\ MF;

MH i =T,3, - a set of centers of all mesh sides of (R®\ Q); normal

to coordinate direction z;;
ME = My ME U ME;
M, — a set of all mesh nodes of (R”\ Q)y;

RR n"2729



10 Alexandre Bespalov

4]
M, — a subset of non-boundary nodes of My;

o
(9Md = Md\ Md;
£ — a set of “vector” mesh functions E" whose ith Cartesian compo-
nent E is defined at M¥, i =1,3;
o
& — a subset of functions of £ equaled to zero at dM¥E;

H — a set of “vector” mesh functions H" whose ith Cartesian com-
ponent H} is defined at M, i =1,3;

D — a set of scalar mesh functions w” defined at My;

[
D — a subset of functions of D equaled to zero at M.

Further, let us introduce in the usual way the finite-difference approximations of
differential operators Vx, V-, V:

(Vx)h: & —H,;
(V)b Hﬁg’;

(V)h: & =D
AV D — E&.

(15)

Here defining the operator (V:)" we put
(V'E" =0 at oM, (16)

according with the corresponding boundary condition in (10).
The following easy-to-check interrelation is valid for the introduced mesh opera-
tors:

(V(V)EH" =0 at M¥ for VH" € H. (17)

It is a mesh analog of (6).
Thereafter we can approximate problem (4):

(V)R (V)LE! — k2E! = 0 at  MP¥, (18)
Eshz = —F; at OMF, i=1,3.

As in the scalar case, we have imposed no radiation condition yet.
It follows immediately from (17) that for x # 0 a solution of (18) satisfies the

condition
[

(VY'E'=0 at D, (19)

INRIA
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which is a mesh analog of (5).
Let us represent a solution of (18) in the form

o [
E" =E" — E}, where

o {EIJ at dIME, i=1,3, (20)

h _
Eri= 0 otherwise.
It is obvious that \
E!;=0 at oM}, i=1,3.
Using (20), problem (18) can be rewritten as follows:

(VX)E(VX)E By —r” Eg (V) (Vx)h B} at ME,

. (21)
E!; = 0 at IMF, i=1.3
2.6 Transformation of the finite-difference problem

As in the differential case, let us transform problem (21) to a problem with the mesh
“vector” Laplace operator

def
— AL = (VXO)R(Vx) - VIV (22)
as follows: , ,
—AWE! —R2E! = (VX)L(VX)L E} at MPE, (23)
(El); = 0 at OME, i=1,3.

Equivalency of problems (21) and (23) is proved in the same way as in the
differential case. That is, denoting w* = (V-)*E!, applying operator (V)" to the

both sides of equation in (10) and taking into account (19) we get the following
problem for w”:

—(V)"Vhwh — k20" = 0 at ./{)/ld, (24)
wh = 0 at oM,

It is easy to see that the operator (V-)"V" is the seven-point finite-difference ap-
proximation of the “scalar” Laplace operator (2). Thus, problem (24) coincides with
(14) where the latter one corresponds to the finite-difference approximation and the

RR n"2729



12 Alexandre Bespalov

zero Dirichlet boundary condition. Suppose that a mesh radiation condition is im-
posed on EZ in such a way that problem (24) has a unique solution. Then w" = 0
at M.

A reason for constructing problem (23) is the same as in the differential case, i.e.
it is more convenient in practice than (21). It is easy to check that the mesh analog
of relation (12)

ALE" = (AVEY, AL By, As E5)! (25)

o
is valid everywhere in M*” except for some special points (see below). Here each of
Al i =1,3, is the usual seven-point finite-difference approximation of the “scalar”
Laplace operator (2) defined on E!:

hph _ -2 h _ ph ok .
_(AlEl)j+%,k,1_h (6E1,j+%,k,l El,j—%,k,l E1,j+g,k,l (26)
R h h h

ELH%,k—lJ El,y’+%,k+1,l El,j+%,k,l—1 El,j+%,k,l+1)7

analogously for A, A%, For clarity the half-integer numeration is used here.
Relation (26) for (AL E"), is valid if all the points (j — Sk, (7 + 5.k,

2

o
(7 + 2,k,1) belong to M{. Otherwise the expression for (A% E"), has such a form
as if the Cartesian component E satisfies the mesh Neumann homogeneous boun-
dary condition on mesh sides normal to the direction z;. Let for definiteness (j +

o]
2 k1) ¢ MPE then the expression for A% E" at the point (j + 3.k, 1) corresponds to
setting

h _ qoh
E17J'+%7k71 B El,j-}.%,k,l

and using it for elimination EY, ., from (26).
45k,

Of special interest is a case when a mesh node (j, k,[) belongs to the boundary
(i.e. to OM,) and there are two non-boundary mesh edges of (R \ Q), with this
vertex not parallel to each other. Let for definiteness them be (j+ 3, k,1) and (5, k+

3,1). The expression for (A%Eh)lyH%yk’, is the following one here:

. h h _1,—2 h _ Ik _ 'k _

(AEE )LH%ykﬂ_h (5E1,j+%,k,l Ez,j,k+%,l El,y’+%,k,l (27)
h _ 1h 1A Ik

El,j+%,k—1,l El,y’+§,k+1,l El,j+%,k,1—1 El,y’+%,k,l+1)

(supposing that all the points involved into (27) belong to M¥). The expression for
(A%Eh)m’,ﬁ%y, is analogous.

. . . . . h

A sign in front of the distinctive term (E2,j,k+§,l

(with respect to the coordinate system) of two rays starting with the node (j,%,1)

in (27)) depends on orientations

INRIA



3D Scaltering Simulation by Fictilious Domain Method 13

along the two considered edges. If both of them have positive or negative direction
then the sign is minus, otherwise it is plus.
It is worthy of note that the above-considered special case is the only one where
relation (25) is not valid, i.e. where there is a connection between different Cartesian
h h
components of E” in the mesh operator A%.

2.7 Finite-element approximation of the vector problem

To construct a second-order discretization of problem (4) for an arbitrary-shaped
obstacle €, one can use finite-element Galerkin method. At first glance it can be
done in the ordinary way using the piecewise-linear and/or trilinear continuous basic
functions for approximation of Cartesian components of the searched vector function
E,. But it is well known that such approximation possess considerable intrinsic
drawbacks. First of them relates to an approximation of the boundary condition on
R from (4). Namely, approximating it in the straightforward way we get (generally
speaking) the additional parasite condition for the normal component:

Ep = —Ef (28)

(i.e. Es = —Eq as a whole). The second drawback: condition (5) is not valid for the
mesh solution so it is unclear how to derive correctly a mesh analogue of (23). Thus,
it can be said this kind of approximation is “unnatural” for the problem.

To obtain a good finite-element approximation the approach described in [7, 14,
32] can be used. It is based on the use of special piecewise-polynomial vector basic
functions whose normal component on boundaries of finite elements is (generally
speaking) discontinuous but tangential one is always continuous. It is easy to check
that V x ¥" is defined in the generalized sense for such functions ¥", and V x ¥" is
locally integrable together with its square. Thus, it is possible to build the conformal
finite-element Galerkin approximation of problem (4) using these basic functions.

Basic functions of this (Nédélec) approximation are assosiated with mesh edges,
not nodes. Their coefficients (i.e. mesh unknowns) correspond to the orthogonal
projections of electric field onto the edges. It is easy to see that the boundary condi-
tion on 0f2 being approximated in the obvious straightforward way does not lead to
parasite condition (28). It has been also shown in [7, 14, 32] that a mesh solution
satisfies a mesh weak analogue of (5); basing on it, the mesh problem corresponding
to (4) can be exactly transformed to a mesh analogue of (23) [7].

Suppose that we are going to apply this way of approximation using a rectan-
gular locally fitted mesh (mentioned in Subsection 2.4). In doing so it is natural

RR n"2729



14 Alexandre Bespalov

and convenient to build up the finite element mesh from tetrahedric cells in near-
boundary layer and from regular cubic cells beyond it taking linear Nédélec vector
basic functions in tetrahedrons and bilinear-constant ones® [7] in cubes.

In doing so, the problem of tetrahedron-cube matching arises. It can be solved
as follows. Let us take any side ABC'D of a regular (cubic) cell adjacent to the
tetrahedron layer and assume that the trace of the tetrahedric mesh on this side
consists of two triangles ABC and AC' D. For every lateral edge AB, BC', CD, DA
there is the independent coefficient corresponding to the orthogonal projection of
electric field onto it (assuming this projection to be constant at the approximation).
To get conformality, let us assosiate with diagonal AC two linear edge basic functions
(in tetrahedrons only!) and choose their coefficients not independent but connected
with the coefficients of the lateral sides by linear relations providing coincidence of
traces of any spanned finite-element function from the “cube” side of ABC' D and
from its “tetrahedric” side. It is easy to check out that it is truly possible.

Remark. Suppose that we have approximated problem (4) on a non-fitted “stair-
case” mesh (13) using piecewise bilinear-constant basic functions [7] for the Carte-
sian components of the searched electric field. Suppose also that in doing this mass
lumping was applied. It has been shown in [7] that the resulting algebraic problem
coincides with finite-difference problem (18).

3 Fictitious domain method

In this Section we shall present fictitious domain method in the treatment of [1, 8,
10, 11, 12, 13, 23, 24, 25, 28, 30] for solution of problems (14), (23). To simplify the
presentation, we are carrying it out mainly for scalar problem (14). Generalization
of the approach to solving vector problem (23) is quite obvious.

3.1 General idea

Let us consider the following problem:
—Au—rK’u=0 in R” (29)

and approximate it in the same way on the same grid R}’ from (13). We get mesh
operator B on R}". Suppose that we introduce also an inverse operator B~! defined

2The corresponding 2D basic functions are linear-constant and look like the simplest “house of
cards”.
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3D Scaltering Simulation by Fictilious Domain Method 15

for finite mesh functions ¢" so that B~!'¢" satisfies a mesh approximation of the
radiation condition (this approximation will be introduced in Section 4). Hereafter
a finite mesh function is a function not equaled to zero at finite number of mesh
nodes.

Let us enlarge (formally) problem (14) to be solved:

Ai" = f* on R},

. R h h (30)
where A:[J(é)l i:], fh:l]; ], {Lhzlzzl

It is easy to see that problems (14) and (30) are equivalent to each other if Ay =0
or matrix Ag is non-degenerate®.
For solving system (30) the iterative process is introduced:

at —ah_ = —mB A — M), k=1, ..., ko 1)

where @ = B=1f" 1 = const,

i.e. the operator B~! is used as a preconditioner.
Enlargement (30) can be done in many ways (being focussed on upgrading of
iterative convergence). To be concrete, we exemplify three of them:

1. -Arf = Brf7 -Aff = Bﬂv
2. Ay = By, Ag corresponds to approximation of the problem:

-Av—rk* = 0 in Q,

g—fl —ikv = 0 on 08 (32)
3. A =0, Ag = 0 (the zeroth enlargement [23, 24, 30]).
Here the blocks B¢, By are taken from the 2 x 2-block partition of B:
_ Brr Brf
B_ler BH], (33)

which is the same as in (30).

®Note that anyway the condition uf = 0 (with computational precision) required for the equi-

valence when A ¢ # 0 can be checked out aposteriori, i.e. after solution of (30).
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16 Alexandre Bespalov

Note that way 2 being applied to the scalar finite-difference Dirichlet problems
has given very good results in numerical experiments [26] (in respect to convergence
of the iterative process). This can be explained as follows. Let A = B,,; it is easy
to see that the choice A, = Bys and Ag = By — BB, By makes process (31) to be
a direct solver (for 7 = 1). This choice being formally the best one has obviously
no practical significance, but it points out the way of the enlargement optimization.
Namely, the operator Bfo = Bg — BB, By corresponds to the mesh Helmholtz
problem inside  with the exact absorbing boundary condition on 9€2; thus, operator
Ag has to be chosen as an explicitly known sparse matrix as close to B as possible.
The mesh operator corresponding to problem (32) satisfies this requirement because
it can be treated as the simplest rough approximation of Bj.

3.2 Implementation in the subspace

Let us introduce the mesh operator C:

and rewrite the iterative process as follows:
Er=(1—7)r_, +7CB7Y_, k=1,..., knaxs

where £F def Al — f* — the residual, € = —CB~!f", (39)
34

h_ Lk h
Xk = Xp—1— 7€k

def 5 . 7
where X! = Bal, xh = f*.

Having completed this process it is possible to calculate required components of an
approximate solution 4?  as follows:

kmax

iy, = B7XL (35)
(by definition of x").

It follows from the definitions of A (anyone from Subsection 3.1) and of B that for
any mesh function w” a value of Cw" depends only on values of w" at boundary and
near-boundary nodes, and Cw” can be non-zeroth only at the same nodes (maybe,
not at all of them). Let us denote S a set of all such nodes. Thus, it is easy to see
that the iterative process can be implemented in the subspace of mesh functions
which can be non-zeroth only at §.
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3D Scaltering Simulation by Fictilious Domain Method 17

Remark. Number of nodes in § is of course finite, so, among other things, we
have proved correctness of the above-stated iterative process (indeed, operator B!
was supposed to be defined on finite mesh functions only).

In 2D case denote iyin, tmaxs Jmins Jmax Such values of indices that S is a subset of
mesh rectangle Il = [¢min, tmax) X [Jmins Jmax], and denote N = (%05 — tmin ) Jmax — Jmin )-
In 3D case denote %yin, tmaxs Jmins Jmax> Kmins kmax Such values of indices that S is a
subset of mesh parallelepiped II = [imin, tmax] X [Jmins Jmax] X [Fmins Fmax], and denote
N = (imax — tmin)(Jmax — Jmin)(Fmax — Emin )- It is easy to see that dim S = O(N'/?)
in 2D case and dim S = O(N??) in 3D case.

3.3 GMRES

In practice, the preconditioned generalized residual method (GMRES) is used for
accelerating iterative process (34):

P
€ =81 — D m(ABT &, (36)
t=1
where 7/, ¢ = 1,..., p, are chosen to minimize [|£!|],. We remind that

AB™' = (I -CB™Y).

As it has been shown, all the vectors £!_,, xI_, are very sparse, so it is possible
(in practice) to take a big value of p, up to p = k. In the last case we have the full
orthogonalization version of GMRES:

(= —CB7 gt = ABTeR,
) k-1
gr = ABTYE = pigls k=2, ko,
t=1

where p} = (48‘1&’3_1,9?)’

g = Ji
kE ~ ”
19112
‘EZ = ‘E]];_l - ﬁkg]?v k= 17 "-7kmax7 (37)

where g, = (5}?—1791};)7

Xo=1f" =6,
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18 Alexandre Bespalov

k—1

~h __ ¢h t..h _

Ty = ‘Ek—l - E :katv k= 27"-7kmax7
t=1

G
kT = ’
119 112

XZ = XZ—l - ﬂlel;L? k= 17 "'7kmax-

3.4 Algebraic Optimization of the Enlargement and Additional Pre-
conditioning

In this Subsection we propose some advanced variants of the fictitious domain me-
thod based on ideas of algebraic optimization of the enlargement and introducing
of an additional preconditioner. We assume here that elements of B~! are known
explicitly because it is necessary for practical implementation of the presented ideas?.

First, let us consider a case when operators A and By, coincide or they are in
some sense close to each other. It has been shown in Subsection 3.1 that the best
choice is then A, = By and Ag = Bj. Thus, an actual matrix Ag has to be chosen
as close to ng as possible. Let us try it in the form Ag — Bg—Cq where Cg is a matrix
with some prescribed sparsity pattern, where the latter one is a subset of a sparsity
pattern of BB, By The choice when (Bg — Cg)(B5)~* = If would be the best one,
so let us search the elements ¢;; of Cg allowed to be non-zeroth from the criterion of
coincidence of the matrix (Bg — C)(Bg)™*
positions®. It is known that (B5)™" = (B7!)g, so knowing B! explicitly we are able
to solve this optimization problem constructively. To do this, it is necessary to build

and the identity matrix Iy at all pattern

up for each row i of Cg the corresponding p;-dimensional linear problem for unknown
values ¢;;,, [ =1, ..., p;, and to solve it.

Another proposed approach does not lean upon the suggestion A = By.. It can
be briefly called “the zeroth enlargement + additional preconditioning”.

Let us take way 3 of the enlargement from Subsection 3.1 and represent operators
B and A in the block 3 x 3-form:

By Bia 0 R Bii By 0
B = 321 522 Bzf 5 A= 521 A22 0 . (38)
0 Bp bBx 0 0 0

*Calculation of elements of B™! is considered in Sections 4 — 7.
®It is easy to see that this approach has some treats in common with the incomplete factorization
approaches.
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Here the third f-group consists of all fictitious unknowns and the second one consists
of all real unknowns whose rows in B and in A differ from each other (which is
possible at near-boundary layer only).

Then let us introduce an additional preconditioner H replacing everywhere B~!
by B~'H where (38)-form of H is:

L 0 0
0 0 I

with yet unknown non-degenerate matrix Hs,. Thus, iterative process (31) takes the

form: R X
ar —ar = —7tBTTH(AW_ - "), k=1, knax (40)

where @ = B='f" 1 = const.

It is easy to check that the choice of Hy»:
Hyy = (321(5_1)12 + -/422(13_1)22)_1

makes iterative process (40) to be a direct solver (for 7 = 1). Thus, in practice we can
prescribe some sparsity pattern of Hy and then calculate corresponding coefficients
in the same way as it was proposed for Ag in the first approach.

The arithmetical expenses and the required computer memory for both proposed
approaches depend on the number of pattern positions and on a used method of
solving the arising problems with dense p; X p;-matrices. If max p; is a constant then
anyway in 3D case these expenses and the required memory are of the order of N?/3,

3.5 Application to the vector problem

For solving “vector” mesh problem (23) just the same approach can be applied. For
construction of a preconditioner we consider the problem

-~ AE-k’E=0 in R® (41)

and discretize it in the way described in Subsections 2.5-2.6. As a result we get the
following mesh operator B (see (12)):

B
B=|0 (42)
0

o Ty ©
oy o ©
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where the operator B here is the same as for the scalar case above. Unknowns of the
ith group in (42), ¢ = 1,3, correspond to values of the Cartesian component E! of
the searched vector function.

We see that
Bt 0 0
B'=| 0 B*' 0 (43)
0 0 B!

and each Cartesian component of a solution of the vector problem satisfies the same
condition at infinity as a solution of the scalar one (see (4)). Hence, construction of
an algorithm for multiplying B~* by a finite “vector” mesh function ¢" reduces to
construction of an algorithm for multiplying B! by a finite “scalar” mesh function
o

Thus, there is no difference between the vector and the scalar cases in application
of the fictitious domain method when solving finite-difference systems of equations
or equations of the finite-element approximation with the nodal Lagrange basic func-
tions. But the method cannot be applied directly to the finite-element approximation
of the vector problem when the edge basic functions are used (see Subsection 2.7)
because there is no topological equivalence between edges of mesh R}’ and of a
locally fitted mesh (R™ \ Q), in the near-boundary layer.

To generalize the method to this case, let us modify it as follows:

1. Considered problem (14) is represented in the form
A Ap uy T
A= = 44
[ Az Asy s Iy (44)

where the second group corresponds to all mesh unknowns on (R™\Q),, having
no topological counterparts on R}'.

2. The equivalent form of (44) is constructed:
(An = Ay A uy = fil = AiAz, /3, (45)
uy = Ay (f; = Anu). (46)

3. The iterative method described in Subsections 3.1-3.3 is applied to the problem
in its form (45) instead of (14). It is possible by the construction of (44).
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Of course, for the implementation of this variant it is necessary among other
things to multiply matrix A;2.45, A5 by a vector £F at each iterative step, i.e. to
solve problem with matrix A3;. This can be done by GMRES preconditioned by
the incomplete factorization approach. The corresponding arithmetical expenses are
comparatively small because A,, is an O( N?/®)-dimensional sparse matrix with the
strong diagonal dominance at almost each row.

4 Approximation of the radiation condition

In this Section we shall set forth a way of an approximation of the radiation condition
for constructing an algorithm of multiplying B=! by a finite mesh function ¢". For
this purpose we shall use the Fourier analysis.

4.1 The Fourier form for the exact radiation condition

Let us first establish some properties of an exact solution u of differential problem (1).
Let © belong to the layer xrlni“ <z < 2. For z; < xrlnin and z; > 27 let us
represent an exact solution u of the 2D differential problem in the form:

+o0
u(zq,20) = /(](3517’/2)€in2 dvs (47)

Substituting it into the equation we get the easy-to-solve ordinary differential equa-
tion for each value of 7, and z; < xﬁ“i“, x>

Ul + (k%= y)U =0, (48)

1T

SO

U(xly'h) _ U1(72)€i’ /K2 —v2 + 672(,,,2)64, /K2 -2z (49)

with some U;(72), Us(72). Hereafter for negative a we suppose /a = i/|al.
Anyway, U(z1,72) does not increase exponentially for |z,| — oo, so we have for
ol > |
Ui(72) = 0 for z; < 2™, Us(y2) = 0 for z; > 2. (50)

But the same is valid for |y,| < kif w is a divergent wave. In other words, function
U(z1,72) for each |y, < & is “the left-hand spiral” on left semiaxis z; < z™in
and “the right-hand spiral” in right semiaxis z; > «®*. It is even more general
description of a radiated wave than the Sommerfeld condition.
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Restriction (50) on the function from (49) is equivalent to the following boundary
conditions:

Uz, (@1,72) + VK =73 U(21,72) = 0 for 2, = 2™,
Uz, (21,72) = 1VK? =73 U(21,72) = 0 for 2, = 2™,

The same consideration is carried out in 3D case. Solution u of problem (1) is
represented in the form:

(51)

+0o0 40
u(:Elv:EQv:ES) = / / LT(-Tl,’/2,"‘/3)6”21‘26”3173 d"lr’z d"‘/g, (52)

substituting gives us the ordinary differential equation:
Ube, + (57 = (72 +793))U = 0, (53)
S0
U(@1,72,73) = Ur(7,75)e! V7 O2F100 50 4 1, (5, ) eIV RAm i) e, (54)
for any 74, 73 we have:
Uy(72,73) = 0 for 2y < 2P, Uy(s,73) = 0 for 21 > 2™, (55)
and equivalent boundary conditions are:

Uél(%ﬁzy”r’?)) +ivK? = (722 + 75) U(3317727”r’3) =0 forz, = ﬂfrfnny

Lrél(‘rh’h”y?)) —i/K? — (722 + 7?%) U(‘rlvﬁ/%ﬁ.’/?)) =0 for T =23

4.2 An approximate radiation condition in the Fourier form

The main idea of an approximation of the radiation condition is to repeat all the
consideration of the previous Subsection at mesh level.
For definiteness, let B be the finite-difference 2D operator, i.e.

(th)ij = h_2(4v£’“j — vf_u — v?_}_w — vﬁj_l — vﬁjﬂ) — /-zzvfj.
Let h = 1 for simplicity (without loss of generality).
So, we should solve the equation
Buv" = ¢" (57)
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for a finite mesh function ¢” in such a way that v" satisfies an approximate radiation
condition. We remind that a function ¢" can be non-zeroth only at points of S, and
solution v" should be found at points of S only; the problem in this form is called
“the partial solution problem” [8, 11, 12, 23, 24, 27, 30].

Let us represent v" in the well-known form:

,Uzhj = /‘/Z-(’yz)eij% d"}"z. (58)

Substituting it into equation (57) we get the infinite system of three-point mesh
equations for each value of 7,:

~Vira(32) + (2= & 4 dsin® ZIVi(3) = Via(72) = Bilpa), i = =50,56,  (59)

where

1 I .
®i(12) = 5— D bye T da (60)

J=—00

Obviously, ®;(72) = 0 for ¢ < iy, and @ > fyax. Thus, for ¢ < i, and @ > iyay
we can search a solution of (59) in the form:

Vi(72) = ¢'(72),
getting the quadratic characteristic equation for ¢:
7*(72) = t(12)q(72) + 1 =0, (61)

where
/ )d:efQ — k% + 4sin? %

Solving (61) we get:

_ Uy2) +iv4 = t*(72)

5 =q(72), @(r2) =4 (72),

¢1(72)

so we have: ' '
Vi(72) = Ci(72)¢' (72) + Ca(72)q™ " (72)-

The mesh radiation condition are analogous to condition (50):

Ci(72) =0 for @ <ipin, Co(72) =0 for @ > tyax.
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for any value of v, € [—7, 7].
The equivalent boundary conditions are:

Vimn—1(72) = ¢(72)Vini(72)s Vimaet1(72) = @(72) Vi (72)- (62)

The same derivation is done in 3D case using the two-fold Fourier transformation
instead of the one-fold one.

Remark. We note that such approximation of the radiation condition can be
carried out in the same way when the considered problem has been approximated
by means of finite-element method with bilinear (trilinear in 3D case) basic functions.

5 Algorithm for multiplying B~! by a finite function

In principle, the following method for solving (57) can be proposed. We calculate a
solution v" by means of relation (58) using some approximate integration formula
for calculating the integral there. Suppose that this formula uses values of V;(72)
at points 74, t = 1,...,n,. We calculate values of V;(7%), © = tmin, ... tmax, for each
74 by solving equation (59) with boundary conditions (62), where right-hand side
®;(v4) is calculated by formula (60) (it is easy to see that summation in (60) is in
fact finite).

But estimation of number of arithmetical operations needed for implementation
of this algorithm shows that it is too expensive. This is because the integrated
function in (58) is singular and highly-oscillating, so a grid 7% should be extremely
fine everywhere in [, 7], otherwise fast Fourier algorithms cannot be applied.

Now we propose another algorithm. Let us introduce the mesh Green function
G":

h _J1 if =0, j=0, (k=0,)
(BG )ij) = { 0  otherwise,

and G" satisfies mesh radiation condition (62) for iy, = tmax = 0.
It is easy to derive from equations (58), (59), (60) and (62) that in 2D case

s il () i
1 q"'(v2)e
Gh = — () ds. (63)

2r ) A= (72)

It is seen that value #(72) = 2 (i.e. K? = 4sin® 2) is a singular point of the integrated
function in (63), but it easy to check out that this singularity is integrable.
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The analogous formula in 3D case built up with the two-fold Fourier transfor-

madtion is:
|| ~ A lﬂz ikyas
q /2 /3 €
d~yy dvys, 64
zyk (27)2 // 1= (72, 73) Y2473 (64)

—T —7

where R R
(72, 73) defy _ 42 + 4sin? g + 4 sin? 13

An efficient algorithm for calculation of the integral in (63) has been worked
out by A.Padiy. He used results of the theory of analytical functions of complex-
valued argument. The main idea consists in a choice of another path of integration
in the complex plane (passing far from the singularity) and then in the use of a
special formula for approximate integration of highly-oscillating functions [5]. This
algorithm can also be used for the first integration in (64).

We have the obvious formulas for solution v" of problem (57):

vy = Z¢h G} pm in 2D,
h , (65)
Viik = qu,mnGl Lj—mk_n in3D.

Imn

These formulas are valid because all nodes of an infinite uniform Cartesian grid are
equivalent to each other.

Remark. Note that the Green function G" is nothing but the row of B=!. Thus,
having calculated needed components of G" we are able to apply the optimization
approaches from Subsection 3.4.

Let us estimate arithmetical expenses of partial solution of problem (57) by
means of summation (65). We remind that dim § = O(N'/2)in 2D case and dim S =
O(N?%*3) in 3D case, thus, a number of arithmetical operations needed for the im-
plementation of (65)is O(N) in 2D case and O(N*/3) in 3D case. We see that it is
too expensive in the latter case.

However, a fast algorithm can be proposed for implementation of (65). It has
been taken from the theory of fast multiplication of so-called circulant matrices by
a vector. To diminish cumbersomeness, it is described for 2D case, but its generali-
zation for 3D case is obvious.
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Let
{max—4min Jmax—Jmin . L
—l1wil —lwgm
Glm = E E Gh.e2(’max—’min)+1 € 20max—Jmin)+1
13
i=—(imax—imin) == (jmax—jmin) (66)
l = _(Zmax - 7/min); coos tmax — tmin, M = _(]max - ]min)a vevy Jmax — Jmins
and
¢lm — 1

(2(tmax — tmin) + 1)(2(Jmax — Jmin) + 1)

tmax Jmax

h —imil _ —imgm
Z Z Qﬁue 2((max—tmin)+1 @ 2(Gmax —Jimin)+1 s (67)

t=2imin—tmax J=2Jmin—Jmax

l= _(imax - 7;min)v ey imax - iminv m= _(jmax - jmin)v -"7jmax - jminv
then it can be easily shown that

Jmax—Jmin ?max—?min P
1wgm

o — E Z Glm¢lm€2(imaxifi;in)+1 eZme-rmm ¥ (i, 7) € IL. (68)

Mm=—(jmax—Jmin) {=—(max—%imin)

Thus, the following algorithm for summation (65) is proposed. First, we once
calculate by (66) and store coefficients G'™. Then we calculate coefficients ¢™ by
(67) and next apply formula (68). Of course, fast Fourier transformation algorithms
can be used here, so the arithmetical expenses are O(Nlog N) both in 2D and
3D cases. Adaptation of the algorithm for the partial solution is constructed in the
ordinary way [6, 8, 11, 12, 23, 24, 27, 30], i.e. with the use of the trivial algorithm
for the summations over j in (67) and over m in (68), and dealing there with nodes
of S only.

Remark. Formulas (66)-(68) for summation (65) inside II are valid for an arbi-
trary function G”. But it is known that the Green function is even with respect to
indices 7, j. Besides that, qblh] =0 for ¢ < tmin, J < Jmin- This can be used for a consi-
derable decrease of number of arithmetic operations in practical implementation of
this approach.

The proposed algorithm has an obvious drawback: calculation of the mesh Green
function in the whole mesh parallelepiped 1I is too expensive, and its storage requires
O(N) computer memory. To remove this drawback, a special trick is proposed in
Section 7 for 3D case.
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6 The mesh Green function of (Vx)4(Vx)h — x?

The first way of optimization presented in Subsection 3.4 is the most effective when
the matrix A coincides with By, or is close to it. It is really so for problem (21) but up
to now the fictitious domain method was considered as being applied to problem (23),
for which it is not so. That’s why it would be of the practical importance to apply
the method to problem (21) itself.

For this purpose it is sufficient to replace in (65) the “scalar” Green function G"
of the operator —A* —k? by the “vector” one G" of the operator (Vx)%(Vx)k —x2.
To construct G” let us consider the problem:

ARG — 2@ = 0 at (RP)E\ (1/2,0,0),

- h
G1,1/2,0,0 =1

(69)

(we remind that node (1/2,0,0) of (R®)¥ is the middle point of mesh edge [(0,0,0),
(1,0,0)] and corresponds to the Cartesian component F). It can be easily seen from
Section 2 that this problem is a particular case of problem (23) and its solution Gh
provides us the searched function G* (related with node (1/2,0,0)):

h

G = Gh/ao where a, = (Vx),(VX)LG — HQGh)M/lo’o. (70)

Let us solve (69) by the fictitious domain method. In this case dim .S = 15 (see

~h
Subsection 3.2), and G is represented by means of the “scalar” Green functions G"
of the fifteen neighboring nodes as follows:

o h
— h h h h h
Gl,i+1/2,j,k = ale’,j,k + a2(Gi—1,j,k + Gi+1,j,k) + QS(Gi,j—Lk + Gi,j+1,k
h h 0,0,0
. G o+ Gierjpen) T 850 (71)
e — h h h h
Gi,i,Hl/lk = (G =Gl — Gy T Gily )
e _ h h h R
Gijrrrz = Gy =G — Gily e+ Gilyjega)
0,0,0 . . .
(6,51 is the Kronecker symbol). Here there are only 4 different coefficients instead

of 15 ones because of the simmetry and » = 1 condition. Substituting (71) into (69)
we get:
o — 6(G10,0)*/Go00 = Goo0 = Gooo = 4G110+1
4 — ’
~2(G10,0)*/ G 00+ 8G90+ G0+ 4GT 10— 1= 8GY
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Qa3 = 17
Qo = Oy + 17 (72)

B (20 + 4)G§L,o,o
Gg,o,o

Q=

From the physical viewpoint, G" is the finite-difference approximation of the
wave radiated by the point unit dipole placed at (1/2,0,0), directed along z; and
harmonically oscillating with the frequency w = ¢x.

Remark. Of course, similar formulas can be analogously derived for the finite-
element bilinear-constant approximation.

7 The trick

It can be expected that the mesh Green function G" for r # 0 has to converge locally
to the Green function ﬁel:r of the differential Helmholtz operator for A/h — oc.
This has been validated in numerical experiments. As an example, see Figure 1 where
the exact and mesh Green functions are compared for r < 16Ah in the case of finite-
difference approximation with & = A/10. The first plot in this Figure is the real and

17
€

imaginary parts of ﬁ —, the other three plots are the same for the mesh Green
function obtained by (64), in directions (1,0,0), (1,1,0), (1,1, 1) correspondingly.

This reasoning leads us to the idea to substitute everywhere the exact G” for the
function G":

Gl if 7=+ 72+ k2 < Raw,

1 einr
Ir 7

Gl = (73)

otherwise.

Of course, this substitution produces some error, but it is of the same order as the
approximation error.

Thus, now we need to calculate and to store values ijk inside the sphere r < Ry
only, where a value of Rgy, may depend on the parameter A\/h and needed accuracy.
So, the computer memory required for implementation of the method is O(N%/3) in
3D case.

Numerical experiments for the function G* have shown that modulus of the local
residual |((=A" — £2)G"); ;4 — 87| at nodes (4,7, k) neighboring to the surface
r = Rgy is 10-20 times more than at other points with r > Ry, depending on Ry
and A/h. To avoid this detrimental phenomenon, the least squares smoothing can

INRIA



3D Scaltering Simulation by Fictilious Domain Method 29

be used, i.e. we can take as G" for r < Rsw a mesh function minimizing the norm
(A" — 2)G" — §909||, calculated throughout all mesh nodes in which the residual
depends on values of G" in sphere r < Rgy.

0.04

0.03

-0.01

-0.02 I I \ I I I I I
0 2 4 6 8 10 12 14 16

Figure 1. Comparison of the differential and mesh Green functions

Remark. Note also that the least squares smoothing allows to avoid practical
calculation of G" by (63) or (64). But these formulas remain significant from the
theoretical viewpoint because they provide the exact mesh Green functions.

8 Calculation of the asymptotic function

It is well known that calculation of the functions A from (3), (8) is of great practical
importance. In this Section an approximate formula is derived for it in 3D case.
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It follows from formulas (35), (65) and the used trick that for nodes (7, j, k) which
are far from the obstacle we have (for h = 1):

s 1 i eiF/ =12+ (i =m)?+(k—n)?
Ui = 7

Ximn .
Wi = D2+ (= m)2 + (k= n)?

(74)

Making the Taylor expansion in (74) for r = /i 4+ j2 + k? — oo we get:

iny/(i=0)2+(j—m)2+(k—n)2 igr(1— Ltmithn

€ € r

= + O(T_2) =

V=07 + (G = m)? + (k= n)? ' (75)

. einr _
—e€ 1“(511+[32m+[33”)_T _|_O(7= 2)7

where 0, = i/r, By = j/r, B3 = k/r. The unit vector (51, 82, 33) defines a direction
of observation, its components are connected with the spherical variables 6, ¢ as
follows:

b1 = cosfcosp, (B, =cosfsinp, [z =sinb. (76)

Comparing (3) and (74)-(75) we have:
1 h

= E len
Imn

Ah(0790) e—in(ﬁ11+,@2m+,@3n)‘ (77)

The same formula is valid for the asymptotic form of the Cartesian components
of a scattered electric field E”.

9 Results of numerical experiments

In this Section we present some results of numerical experiments carried out for
3D scalar and vector (Maxwell) problems with the above-described approach for its
verification and testifying. In all of them the author used the full GMRES iterative
method (37), with the criterion % = 107° for stopping, and the trick described in
Section 7 (where Rgy = A was taken) with the least squares smoothing.

First, a set of experiments had been carried out for the 3D acoustic problem
with sherical obstacles, from r = A\/2 to r = 4\ and from h = A/10 to h = A/40,
using way 2 of the enlargement from Subsection 3.1. Each calculated RCS plot (i.e.

|A"(8, ¢)| from (77)) was compared with the exact one obtained by means of the
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exact semi-explicit formula from [34]. This comparison has demonstrated the satis-
factory precision of the calculations (taking into account the rough approximation
of spheres). For h = A/40 these two plots have almost coincided.

The number of iterations in these experiments depended almost not at all on A
for fixed s and obstacle, and it was nearly a linear growing function of x for a fixed
obstacle. The calculation for the sphere » = A with A = A/10 required 18 iterations
and 2 min of HP9000/735 CPU time (without an expense for postprocessing (77)).

Calculations were also carried out for several other obstacles, for example for a
semi-open cavity of circular section (see Fig.2). There results were also quite sa-
tisfactory. The calculation for the Oxford-95 Workshop acoustic test case C3D_3
with A = A/30 and the minimal embracing parallelepiped 38 x 65 x 38 steps requi-
red 31 iterations and 20 min of HP9000/735 CPU time. The calculated RCS plot
was coincide very well with an independently obtained result of Dr. M.-O. Bristeau
(INRIA-Rocquencourt, France).

Second, the same set of experiments with sherical obstacles had been carried out
for the 3D finite-difference Maxwell problem (23) using way 2 of the enlargement
from Subsection 3.1 again (the corresponding computer code is called ElPackl-1.0,
i.e. Electromagnetic Package, the 1st order approximation, version 1.0). The cal-
culated RCS plots for plane-polarized incident waves were also compared with the
exact ones obtained by means of the exact semi-explicit formula [34]. The results
were also satisfactory.

But it should be noted that this variant of the method has exhibited rather poor
convergence, much worse than in the acoustic case. For example, the calculation
for the sphere r = A/2 with A = A/20 required 107 iterations and with »~ = A/30
required 192 iterations. The number of iterations was growing with h~' faster than
linearly, and it was again nearly a linear growing function of s for fixed obstacle and
A/h-parameter.

Third, the approach has been implemented for solving 3D finite-difference Max-
well problem (21) using the enlargement optimization from Subsection 3.4 and the
approach described in Section 6 (the corresponding computer code is called ElPack1-
3.1). In the optimization, an element ¢, of Cgq was allowed to be non-zeroth iff

max{|i; = im|, [j1 = Jml; [F1 = km|} < d, (78)

where in practice the value d = 2 was used. The dense linear systems arising during
the optimization were solved by the Gauss elimination method. Experiments have
shown that for the same problem ElPackl1-3.1 required 3-4 times less iterations than
ElPack1-1.0, but the above-stated dependencies of their number on h and s remained
nearly the same.
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By means of ElPackl-3.1 all the 3D electromagnetic stationary test cases for
uncoated obstacles of the Oxford-95 Workshop [9] have been successfully solved. For
example, test case C3D_1 corresponded to scattering on semi-open cavity of inner
depth 2X and of circular cross section of diameter A (see Fig. 2-8), for various direc-
tions and polarizations of the incident wave. The calculations were carried out with
h = A/20 and the minimal embracing parallelepiped 24 x 42 x 24 steps. They required
130-140 iterations and 3 hours of HP9000/735 CPU time, of which 2 hours 10 min
was the overhead for the optimization from Section 3.4.

Another test case, 03D _2, corresponded to an ogive of length 2A and of elliptic
cross-section 0.4X X 0.8X (see Fig.9-13). The calculations were carried out with
h = A/40 and the minimal embracing parallelepiped 32 x 80 x 16 steps. They required
around 100 iterations and 1 hour 30 min of HP9000/735 CPU time, of which 40 min
was the overhead for the optimization.

Some results of the calculations (components of the total near-field E') are presen-
ted in Fig. 2-13. We remind that the frame of each of these Figures is not an artificial
infinity but a graphical frame only. It can be seen that the plotted fields do not sa-
tisfy the boundary condition near entering angles of obstacles; but this phenomenon
has arisen during the graphical postprocessing only, because being plotted the func-
tions discontinuous at that points were approximated by continuous piecewise-linear
functions.

The calculated RCS plots were compared during the Workshop with results of
other researches obtained mainly by the boundary integral method. They coincided
with a satisfactory precision (taking into account the rough staircase approximation
of obstacle boundaries).

Fourth, the finite-element version of the method (see Subsection 2.7) has been
implemented in a computer code called EIPack2-1.1. It is based on the zeroth enlarge-
ment with the additional preconditioner. The latter one is calculated by the method
described in Subsection 3.4. Transformation (45)-(46) is also used. For generation
of 3D locally fitted Cartesian meshes the code developed by Drs.S. Finogenov and
A. Supalov (Institute of Numerical Mathematics of RAS, Moscow) is used.

As it had been expected, for the same test cases and with the same basic meshes
(13) the finite-element code gave more precise results than the finite-difference one
(being compared with analytical results for spheres and with results of other re-
searches for the Oxford-95 test cases). For instance, the calculation was carried out
for the sphere r = 0.748\ using the mesh h = A/16. Ly-norm of the error of the
bistatic logarithmic RCS plot calculated by ElPack2 was about 3 times less than for
ElPackl.
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But it must be noted that the finite-element code is far more memory-consuming
and arithmetically expensive. For example, Elpack2-1.1 requires about 3 times more
iterations than Elpack1-3.1 for the same value of the parameter d from (78).

In all the experiments, during postprocessing (77) the mesh values of

[rer)”
lim L

d(TM)— o0 / |Es|2
T

were calculated, where E] was the radial component of the scattered wave Eg, I' was
a circle centering at the origin, and the spherical components of the vector field were
calculated from its Cartesian components. Values of (79) should be zeroth (see (8))
but it was not exactly so in calculations because of approximation and truncation
errors. However, for A/h = 10 they were not greater than 1% and were decreasing as
(A/h)~? when the parameter A/h increased. These results seem to be satisfactory.
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Figure 2. Test Case C3D_la
The real part of the total field £j in plane (X, X5) (10 isolines)
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Figure 3. Test Case C3D_la
The imaginary part of the total field F; in plane (X5, X3) (10 isolines)
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Figure 4. Test Case C3D_1b
The imaginary part of the total field £; in plane (X;, X5) (10 isolines)
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Figure 5. Test Cas C3D1b

The real part of the total field 5 in plane ( (10 isolines)
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Figure 6. Test Cas CBle

The imaginary part of the total field F; in plane (X3, X3) (10 isolines)
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Figure 7. Test Case C3D_1b
The imaginary part of the total field F5 in plane (X5, X3) (10 isolines)

/) //U)

Figure 8. Test Case C3D_1b
The imaginary part of the total field F5 in plane (X5, X3) (10 isolines)
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Figure 9. Test Case O3D_2b
The real part of the total field £, in plane (X5, X3) (10 isolines)
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Figure 10. Test Case 03D _2c
The real part of the total field £j in plane (X, X5) (10 isolines)
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Figure 11. Test Case 03D _2c
The imaginary part of the total field £, in plane (X5, X3) (10 isolines)
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Figure 12. Test Case 03D _2d
The real part of the total field £; in plane (X;, X5) (10 isolines)
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Figure 13. Test Case 03D _2d
The real part of the total field £ in plane (X, X5) (10 isolines)
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