A Fermat-Like Sequence and Primes of the Form $2h.3^n+1$

Yannick Saouter 1
1 API - Parallel VLSI Architectures
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : Fermat numbers are a classical topic in elementary number theory. Fermat introduced them and claimed that all these numbers are prime. This claim was disproofed by Euler who gave a property on the eventual divisors of the Fermat numbers. In this article we exhibit another serie whose definition is close to the one of Fermat numbers and which exhibit similar properties. This problem will lead us to the sets of covering congruences for numbers $2h.3^n+1$ as similarly Fermat numbers lead to Sierpinski's problem.
Type de document :
[Research Report] RR-2728, INRIA. 1995
Liste complète des métadonnées

Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:11:30
Dernière modification le : mercredi 16 mai 2018 - 11:23:02
Document(s) archivé(s) le : lundi 5 avril 2010 - 00:02:45



  • HAL Id : inria-00073966, version 1


Yannick Saouter. A Fermat-Like Sequence and Primes of the Form $2h.3^n+1$. [Research Report] RR-2728, INRIA. 1995. 〈inria-00073966〉



Consultations de la notice


Téléchargements de fichiers