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SOON CAPTURING AND FREQUENCY
ANALYSIS FOR MESH ADAPTIVE
INTERPOLATION

Bernadette PALMERIO

Alain DERVIEUX

Abstract

Let us call a highly heterogeneous function a function that is
either locally singular or a smooth function but, with too small details
in comparison with domain size. We study the L2 norm of the inter-
polation error Fj, between a function u and Il u its P1 continuous
interpolate: we use four examples of functions, that represent different
cases of highly heterogeneous functions. When a sequence of uni-
form meshes is choosen, if we examine the convergence of F;, as a function
of number of nodes, we observe a convergence of order 2 for a smooth
function and when the number of nodes large enough. Conversely, when
an adaptive mesh sequence is applied, second-order convergence is al-
most always observed. We give some theoretical arguments concerning
this phenomenon.

Following some ideas currently used in spectral methods, we consider
the P1 approximation of u on nested meshes and express the represen-
tation of u as a series with increasing fineness of its terms. The size of
each terms as a function of the corresponding level number is examined.

Keywords: Finite Elements, P1 Interpolation, convergence, mesh
adaptive method, criterion, spring system.



CAPTURE ET ANALYSE FREQUENTIELLE
POUR IL’INTERPOLATION A PARTIR DE
MAILLAGES ADAPTATIFS

Bernadette PALMERIO

Alain DERVIEUX

Résumé

Introduisons la notion de fonction fortement hétérogeéne: c’est
une fonction, soit singuliére, soit réguliere mais avec des zones de rapides
variations par rapport a la taille du domaine. On étudie le comportement
de la norme L? de 'erreur d’interpolation E; d’une fonction fortement
hétérogene et de II,u son interpolée P1l. Cette étude est faite a partir
de quatre fonctions tests fortement hétérogénes. En évaluant le com-
portement de l’erreur F), en fonction du nombre de noeuds, on obtient
une convergence a l’ordre 2, en maillage uniforme et pour une fonction
réguliere, seulement a partir du point ou le nombre de noeuds est suff-
isant, et en maillage adapté beaucoup plus tot. S’inspirant d’une méth-
ode de Papproximation spectrale appliquée a l’interpolation P1 d’une
fonction u sur des maillages gmboftés, on écrit une représentation de uy
sous la forme d’une série composée de termes de finesse décroissante. On
étudie alors la norme de chaque terme en fonction du niveau de maillage.
On déduit de cette " analyse fréquentielle” un critére pour les systémes
de maillages adaptatifs

Mots clefs: Elements finis, interpolation P1, convergence, méthodes
de maillages adaptatifs.



1 Introduction

Mesh adaption is a technique that is more and more frequently studied
and used in Computational Continuum Mechanics. While practical mo-
tivations for adapting the mesh are clear, theoretical formalizations of
the advantage of this technique are yet rare.

The approximation theory aims at predicting the approximation error,
or, at least, its asymptotic behavior when the mesh is made finer and
finer. For example, the linear Galerkin finite element method is analysed
as giving an error four times smaller with a mesh twice finer, as far as
both meshes are fine enough.

This second-order accuracy statement cannot be improved by apply-
ing an adaptive version of this approximation scheme. So where is the
bonus?

In this paper we examine two analyses aiming at characterizing the adap-
tion bonus. They are presented within the most simplified context we
found, dealing with one-dimensional Mesh-Adaptive Interpolation.

What do we call Mesh Adaptive Interpolation (“MAI”) ?

The problem addressed most frequently is the mesh adaptive research of
the solution of a Partial Differential Equation (Mesh Adaptive Approxi-
mation, MAA):

MAA : Au= f; find Il u, discrete, near u (1)

Clearly, it is difficult to find the most efficient mesh to give a good discrete
function representing a continuous one, u which we do not know !
In the case where A = Id, we call this MAI :

MAI : uis known, find a discrete IIyu close to u (2)

In this formulation, II,u has to be described by a bounded set of infor-
mation : one mesh, a set of degrees of freedom.

This second type of problem is an important one : for example , when
numerically solving a PDE, we generally build a mesh that is adapted
to data and geometry. Another important application of MAI is data
compression or function tabulation : the best way to represent a
function with a small storage is likely not the approximation by a step
function on an uniform mesh.

Why not use directly u ? u(z) can be expensive to compute. ITu(z)
is less expensive as far as it easy to store the description of Il,u and



to compute II,u from it; we shall roughly define the cost of Il u as the
number N of degrees of freedom used to represent Il u.

The next question is: in what sense is [I,u observed as “close
to u” ?
In theory, we are able to compute any (bounded) functional norm ||.|| of
the error :

E, = ||Hpu — u|| = small (3)

but to compute it can be too costly, since handling u(z) is expensive.
Thus we wish :

(i) to find Il u, without using too much
(ii) to evaluate |II,u — u| without using too much .

A significant example is the following : each measure or compu-
tation of the lift » of a plane for a given angle of attack = can be as
costly as 1 CRAY-night ; how to proceed in order to observe only a few
z values and to rebuild the corresponding u(z) (“polar”) curve ? How
to evaluate the accuracy of this table ?

Let us now comment the relation between Problems (i) and (ii) : in
Problem (i), we wish the best efficiency, that is, a good I,z from a few
values u(z;) or, more or less equivalently, from a coarse mesh ; one clever
strategy could be to adapt progressively the mesh, from some measures
of its effectiveness. Now, in Problem (ii), we investigate the different
manners to measure the effectiveness of the mesh.

Let us come back to MAA: we consider the solution u of the Partial
Differential Equation (1).

Let us call IT,u the solution of the corresponding discrete system. We
call u a highly heterogeneous solution if it verifies:

(C1) either u is a smooth function, but its variation contains too small
details in comparison with the usual uniform mesh size

(C3) either u is a singular function.
Some results concerning the approximation error
en = Jlun—f (4)

in regular or in heterogeneous case are collected in Table 1



METHOD : (1)REGULAR CASE  (2)HIGHLY HETEROG. CASE

SPECTRAL or £=0(3s), 1 <a < Oscillations (Gibbs)
H. ORD. CENT. DIFFER.
TVD, ENO £ =0(5%) e =0(%)
(TVD: L' error) l<a<

Table 1 : Behavior of the approximation error ¢, = ||lup — u|| when

using several methods for the resolution of the discrete problem : N is
the number of grid nodes. Two cases are considered: (1) regular
function, (2) highly heterogeneous function, assuming that some details
are too small for the mesh.

The contribution of this paper concerns two points.

For Problem (i), we propose a set of convergence properties that
will enlight some typical advantages in using a class of mesh adaptive
algorithms rather than using uniform mesh strategies.

For Problem (ii), we propose heuristics for evaluating whether a dis-
crete solution II,u is a good approximation of a continuous one or not,
and how large may be the deviation Il u — u.

Before this, in order to be more precise, we shall define a simplified
context :

Simplified context : P1-Galerkin, 1D
Let u a function defined on [0, 1], bounded, piecewise continuous, with a
finite number of discontinuities.

Let us consider a subdivision hy :

0=.’I}Q<$1<"'<:L'N_2<ZZIN_1:1 (5)



and the P;-Galerkin interpolation Il;, u of v on this subdivision :

Forz; <z < x4y ¢

Oy, u(z) = au(z;) + (1 — a)u(zis) (6)
where : a = %‘i‘—l

2 Actual Convergence : soon capture prop-
erty |

2.1 Behaviour of the uniform-mesh strategy

The P;-continuous interpolation is known to be a second-order accurate
one for the L? norm. This means that a twice finer mesh gives a four
times smaller norm. Unfortunately, this occurs only when the mesh is fine
enough to capture the smaller detail of the function u to be interpolated,
and only if u is regular enough. We illustrate these remarks by the
following measures :

— A series of uniform meshes My is considered where N is the number
of points.

— The four following functions u are considered.

up = — sign <:c - %) (7)

Uy = 1 — “ZXL‘&I, for z< .5
—-1+e
—2.:11_1
=—-1+¢ .5
up =0, for z=.5
with A = .005
ex —1 .
uz = — ————, with A =.005 (9)
ex —
1 .



Note that u,; is a regularized version of u;. These solutions are
sketched in Figure 1 ; uy and uz are smooth, u; is discontinous, u4 is
continuous with a non bounded derivative.

The behavior of the usual linear interpolation L, error for ||II,u—u|| 2
for uniform meshes as a function of the N nodes used is depicted in
Figures 2, 3, 4, 5 for the three above examples (solid lines) ; we observe
that :

— First-order accuracy is showed initially by the regular cases u; and
uz, and after the “investment” of about 100 nodes, second—order
convergence appears ; if at most 30 nodes are used the scheme
behaves just as a first~order accurate one.

— The two other test cases show first—order accuracy, for any mesh fine-

ness.
1.5 Y T T T
‘ral_uni-soll024’ —
‘ra2_uni-soll024’ —--—
‘ra3_uni-soll024’ ---
‘ra4_uni-soll024’ o
-
—"—’— \
/”’ !
-7 )
- PR
e §
.- 4
.......................................... -4
g
-1.% 1 A 1 A
0 0.2 0.4 0.6 0.8 1

Figure 1 : Functions to be interpolated (—) ui, (. . .) u2,
(- - ) ug(- - - ) ua.
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Figure 2 : Error analysis for u, :
llur — Ipuq||z2(01) as a function of the number of nodes,
(- - -) uniform mesh, (—-) adapted.

Q.001 f

0.0001 t-

le-0%
1 10 100 1000

Figure 3 : Error analysis for u, :
lue — Ipuz||z2(01) @s a function of the number of nodes,
(- - -) uniform mesh, (—) adapted.




0.001 3

0.0001
1 10 100 1000 10000

Figure 4 : Error analysis for ;3 :
lus — Mpusl|L2(01) as a function of the number of nodes,
(—) uniform mesh, (- - -) adapted.

0.1 T v v
0.01 ¢ <4
0.001 P
N
AN
0.0001 A 4 4
1 10 100 1000 10000

Figure 5 : Error analysis for uy :
||ua — Mpug||z2(01) as a function of the number of nodes,
(- - -) uniform mesh, (—) adapted.
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2.2 A theoretical standpoint

We concentrate on the discontinuous case (like u;). We want to prove
that second-order accuracy can be obtained with a mesh adaptive strat-
egy. Let us consider that u, defined on an interval [0, 1], regular in [0, 1]
except in a point I, where it is discontinuous. Given a mesh subdivision
of [0, 1] with N nodes, let us call V' a neighbour of I, V" its complementary
in [0,1]. The following estimates are hold:

iC € R

11
er = |Mau—lg) ~C/N (11)
5;1 = ||Hhu_u||L2(V’) ~ C/N2 (12)

If we use an adequate adaptive strategy, we obtain the following
result:

Lemma 2.1: When multiplying by two the number of mesh subinter-
vals in V' and by four the number of mesh subintervals in V, the L norm
|| 1T, u —.u|.|}{2([0,1]) on the refined mesh and the L? norm |[I,u — u||22([0’1])
on the initial mesh are related by:

IThu - UI|L2 (01 ~ 1/4 {[Mau — u| p2(o,1p- (13)
Thus, asymtotically:
T — w20, = O(1/N?) (14)

This is the statement of the second order accuracy of ||Ilyu — ul|72(0.1))-
extended to the case of an adaptive mesh.

Proof of Lemma 2.1: When the number of nodes in V is multiplied
by four, we note ¢, the L? norm [|TIu — ul|}2(y, on the refined mesh in

V and ¢ the L? norm ||,z — ul|32(y+y on the refined mesh in V' and
equation (12) becomes:

6;; = HHhu—uHLz(v) NC/4N A (15)
e = |Muu—ullgewy ~CJ(2.N)? = C/4.N% (16)
Finally, we obtain:
T UHL? 01]) = “Hh “||22(v)2 + IIH;,.u—UHZz(v:f

~ 15 (en? + en’) (17)

[harRn u”m([ou) ~ (5h + 522) '

= 5 Mhu — UIle(lo 1’

(18)

11



2.3 An example of mesh adaptive method

2.3.1 Definition of the method

Spring analogy in the 1 D context

- We have extended the main idea that was applied by Gnoffo in
[3], in the context of structured meshes to the case of unstructured
meshes( see [6]). Each node is assumed to be connected to each
neighbour (two nodes are said to be neighbours if they have a com-
mon edge) by an attractive strength corresponding to a fictitious
spring: more precisely, the fictitious spring force applied to the
node ¢ and coming from the node j is: '

Fj=kii, kj> 0 (19)

in which k; ; is the spring stiffness, while an opposed force is applied
to the node j: '
Fy = ky 5i

20

kj’,' = ki,j- ( )

k;; depends on the solution properties (for adaption). The un-
knowns are the coordinates z(7) of vertices (i = 1,---,N, N is

the number of vertices). The resulting mesh is the solution of the
equilibrium system, which is written, for each vertex 7 :

Y F,;=0. (21)
j neighbour of 1
In the one dimensional case, each vertex ¢ has only two neighbours
i—1 and 7+ 1. The mesh can be adapted in order to have a better
representation of some sensor 3, that is assumed to be numerically
defined on each vertex i; in short, we can put, for two adjacent
nodes 2,7 :
ki; = %L:.Z.‘%ﬂ (22)
which approximates the directional variation of the sensor S. In
fact, a smoother value of the constant k;; has to be introduced
to take into account values at neighbours of nodes ¢ and j, and
to improve the computation; in the one dimensional case, k; ;i 1s
replaced by the following mean value (see [5]):

A A Aj
|A1] + |Az| + A4 +oe

3 (23)

with

12



Al _ S()-=S(-1)

Ti—Ti—y

A2 — S h.H :S, 1 .

A = S(:'::-+11)—IS'(1'—2) (24)
3 - Ti—1— T2

e=1D-10

¢ is a small constant added to assume the mesh system is well posed.

Mesh adaptive interpolation loop

In the mesh adaptive interpolation loop we choose the sensor S
equal to the exact interpolation of u on each iterated mesh.
The coupling between mesh and exact interpolation is obtained by
converging to a fixed state the following loop:

- interpolate u values on each node 1,

- compute the spring stiffness k; ;,

- solve the mesh system.

We refer to [5], [6], [7], for further details above the extension to
MAA of this MAI algorithm.

2.3.2 Discussion of the O(2) accuracy in a neighbour of a dis-
continuity

An illustration of the above theory is the possibility in discriminating
truly second-order mesh adaptive methods; we give now an example.
Let us consider an 1-D spring mesh system: the locations z; of the nodes
are solutions of the following spring equilibrium system:

i1 — wi
T+ C)(Tip1 — ;) = K, 25
|$i+1 _ xila )( + ) ( )
where C is a small constant avoiding vanishing spring strength and K is a
constant independant of 7. We apply this system to a Heaviside function
changing its value at z = 0.5 (function u; of Section 2); we denote by
AZjymp the size of the interval {z;._;,2;.] which contains two different

values of the Heaviside function:

Uge 41 — U= = [u]jump # 0. (26)

13



We can write (26) for the jump and for the other intervals:

(——LM*— + C)(Zir 41 — Tir) = C(Tig1 — 73), Vi # 7, (27)

(Tie g1 — Tie)*

that we write, in short:

(k};% + C)AZjymp = CAZconss.. (28) -
jump

Assuming that

ijump = O(Amconst.),’ (29)
that can be possible if « > 0, we get

Amconst. = O(I/N)7 (30)

the equation (29) gives:

Azconst. = O(I/Nl_:;)) (31)

(for @ > 1 and N large (29) has no solution).
We observe that a necessary and sufficient condition for having a capture
of the discontinuity with n-order accuracy 1s:

1-1/n<a<l. (32)

This result extends to piecewise smooth functions.

2.3.3 Application of the MAA method to the functions (7),
(8), (9), (10)

Applying the above Mesh Adaptive Interpolation algorithm appears to
be able :

—~ to provide second—-order convergence as soon as a very few nodes are
invested (Figures 3, 4),

— to provide second-order convergence even for non regular functions
(Figures 2, 5).

14



3 Second Idea : Frequency Analysis
3.1 Method

We recall a well-known mesh convergence test for spectral methods (see
e.g. [3]) : when we apply a Chebyshev approximation to a given problem,
the coefficient of the polynomials decreases with the polynomial number ;
when the n-th coefficient is at zero machine, it is decided that a maximum
practical acéﬁracy is attained and that no extra polynomial is needed.

In the case of a one-dimensional uniform finite—element mesh, it is
also possible to apply this kind of strategy : we can construct a sequence
of finite—element basis functions with a decreasing mesh size : we con-
struct embedded meshes with N,, N,_1, N,_o,...nodes:

N,=2%+1 (33)

Denoting by Ily, the usual Lagrange P;-interpolation on the mesh with
Np nodes, we can develop the interpolation uy, as follows :

U = Z (HNku - HNk_‘u) N

1<k ‘ (34)
HNO’U =0
= -1
= (Mo =Ty ) (35)
HNOU =0

Note that the condition

My,u=0 (36)

is introduced by convention in the equations (29), (30), to obtain a simple

general expression. The k — th frequential component Dyu of u is defined

as follows: : i
Diu=vuf =Tyu—-Ty_u - (37)

(note the analogy with hierarchical bases in finite elements).
For the sake of simplicity, we note:

Oy, u = Hiu. (38)
Note, by using (28),(29), (30), that:

uy, = Hzu. (39)

15



These components can be measured in L?-norm in function of k.

We present in Figures 7 to 10 a comparison of u* in the case of
a uniform mesh (1025 nodes) and an adapted one (65 nodes), for the
functions u;...u4 introduced in Section 2.

Since the series (28) should be of bounded sum, we have to examine
the way the last terms go to zero.
!
We observe in Figures 7 to 10 that “interpolation convergence” arises
with a much smaller number of nodes in the case of an adapted mesh
; again a phenomenon related to “soon capture” is noted, with a first
erratic phase and then a linear convergence for “high frequencies”.

3.2 Theory
3.2.1 Existence and evaluation of an asymptotic slope

"The observation of an asymptotic slope in frequency curves rises the
question of the value of this slope and whether this slope is given by the
order of interpolation. Some elements of (positive) answer are brought
in the following lemmas, for which the assumption of embedded meshes
(27) is essential.

Lemma 3.1: If
IM—uflze = O(1/2%), & = 2, (40)
(respectively
M-l = 0(1/2), a = 2,) (41)

then, asymptotically,

| Drullz= = O(1/2%%). (42)
(respectively
IDullze = O(1/2%).) (43)
Lemma 3.2: If
|Oew — ul[pe = O(1/2%), a = 2, (44)

16



(respectively
IMew —ullzz = O(1/2*), & = 2,) (45)
and
| Drullpe = O(1/2%), (46)

(and respectively
|Drullzz = 0O(1/2),) (47)

then B = a.

Remark that Lemmas 3.1 and 3.2 indicate that || Dyu|| and || Hzu—ul|
have the same asymptotic behaviour. The proof of Lemma 3.1 is the
following:

|Dku[ = |Hku——Hk_1u| (48)
|Dru] < |Hgu —Tu| + [TTu — g_yul (49)
So,
|Diulle < C/2Fx 4+ C /201
— 50/2Im (50)
then
| Deullze = O(1/2%). (51)

Using L? norms, we easily obtain from (37) the required upper bound on
|| Drue]| 2

1Deullz: < |ilsw —TluffZ; + [T - TgulZ, 5
< C'[2ke (52)

Let us now turn to the proof of Lemma 3.2 in the case of L* norms:
The assumption 3 < « is in contradiction with the Lemma 3.1; with the
assumption § > «, we obtain:

Iy —ullze < 8 ||Diwflgee < C(1/2+D8 41720425 1 )
1>k+1

< C/20HB(1 4+ 1/28 + )
< C'J2ks,

So, we obtain,

IMew - ullze = O(1/2%), (54)

17



that is in contradiction with (34).
With L2 norm, we obtain:

Mew—u| < Y |Dil (55)
>k+1
Then
Mew -l < 23 |Du|?. >C"/2% (56)
I>k+1

that is in contradiction with (28)

3.2.2 Evaluation of bounds for the L? interpolation error

A rather pleasant output of this analysis is that the behaviour and the
size of the error can be estimated as far as we assume that the right part
of the curve has the asymptotic behaviour:

Lemma 3.3 If u is a concave function (respectively a convez function)
that verifies:
| Dullz: ~ C /2%,

with a=2 (57)

when the L? interpolation error ||Ilyu — u||;. lies asymptotically in the
following interval:

[ 1/4 IDeulize, 1/3 || Deulire ] (58)

Remark: the assumption (51) on ||Dyul|;: is verified with the functions
introduced in Section 2.

Proof of Lemma 3.3 in the case of a concave function u, upper bound:

Mu—ul = | Y Dul< > |Dul (59)
12k+1 12k+1

From Lemma 3.1, it becomes:

S |Dw| < |Diprul(1+1/4+ 1/42 + ..) (60)
I>k+1
< [Di4ruf1/(1—1/4) (61)
> |Dw| <4/3.1/4 |Di| =1/3 |Dyl (62)
I>k+1
So

18



and

IMew — ul|2. < 1/3 || Drullz. (64)

The proof of Lemma 3.3, upper bound does not use the assumption on
u (concave or convex), so it is verified also if u is a convex function.

Proof of Lemma 3.3 in the case of a concave function u , lower bound:
If u is a concave function (see Figure 6), we obtain asymptotically:

Dku = Hku - Hk_lu Z 0 (65)
Z D,u Z Dk+1u = le-}-lul ) (66)
1>k+1
| > Dw|= 3. D2 |Dinv (67)
I1>k+1 I>k+1
ku — uf > |Dyyruf (68)
Then
ITMew — wllz2 > || Diyrul|ze. (69)
Moreover,
[ Di+1llzz ~ 1/4 || Diul| gz (70)
So, asymptotically,
Ik — ul|p > 1/4 ||Dyul|re. (71)

Proof of Lemma 3.3 in the case of a convex function u , lower bound:
Remarking that:

1 Dull = | - Diul| (72)
and that if u is a convex function, -u is a concave function, we a.pply the
previous proof to the function -u.

Note that the concavity of u is only used for the lower bound estimate.

3.2.3 Extension to general functions .

Let us recall (0, 1) the interval of integration for the L? norms. Let us
call (%) the following assumption on u:

(*): u is a function that is either concave either convez, except in a
finite number points p1, pa ,.., pm of (0,1).

We note Conc (resp. Conv) the part of (0,1) on what u is concave
(resp. convex) and Iy, Ia,..., I,, small intervalls containing py, D2y «evy Pm.

19



So we have:

(0,1) =ConcUConv U, UL U..UI,.

(73)

Lemma 3.5 Lemma 3.3 holds also if u is a function verifiing assump-

tion (*).

Proof of the lower bound:
2 b 2
Meu — u|| 2" = / Z Dyu“dz.
¢ I>k+1
2 ¥ Duldz=[g,, ¥ Duldz+ fo,,. ¥ Dwuldz+
I>k+1 I>k+1

I>k+1
2
: fflulzu...ul,,. Du‘dz.

[|Hku—ul|L2 Z/ Z D1u2dz2 +/ Z D1u2da:.
: C C

onv lzk'fl onc le+1

From Lemmas 3.4, 3.5, we deduce:

/. Z D1u2d:c > 1/16 Dkuzdx,
Conv I>k+1 Conv

/ Z Dptdz > 1/16 Dyu?dz.
Conc I>k+1

Conv

Finally, we obtain:

IMhw — ul|2: > 1/16||Deul|2” — 1/16 3" Duldz

LULU...Ul, I>k+1

2dx = Duldzr <
" ul, x Dwfdz = [ ipo oo, x X Dwufde <
1WhU.Uln | 54, 1M ™ >kl

W=l > Dwull3.,
I>k+1

where ¥ is the characteristic function of

LULU..UI,.

/ > DiPdz < 1/16]|x||%|| DeullZ:
LULU..Ul, I>k+1
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llx|lzz can be choosed as small as we want. So, for all ¢ > 0 and for k

> ko, there exist I, I, I,, such that:
Idlze < 3¢/l Dl -
Then, for k> kg
IMeu = ul[Z > 1/16]| Drul|zz — €
So, asymptotically,

IMeu — ullze > 1/4)| Diul| 2

Figure 6 : Nested P1 Galerkin interpolation,

(83)

(84)

(85)

in the case of concave function u, (——) Iy, (..) Mi_1u, (—o—) Diu.
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0.001

0.0001
2

Figure 7 : _Frequency analysis for u;:
L, norm of u; as a function of the level p of the mesh, N, =27 +1; -
(- - -) uniform 1025 nodes
(—) adapted, 65 nodes

Q.001

0.0001 - 4. L 4 A It n
2

Figure 8 : Frequency analysis for us:
- Ly norm of u, as a function of the level p of the mesh, N, =2F 4+ 1:
(- - -) uniform 1025 nodes
(—) adapted, 65 nodes
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0.0001
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Figure 9 : Frequency analysis for us:
L, norm of uz as a function of the level p of the mesh, N, = 2 +1;
(- - -) uniform 1025 nodes
(—)  adapted, 65 nodes

0.001

0.000: A 4 A A 2 A
2

Figure 10 : _Frequency analysis for uq:
L, norm of uy4 as a function of the level p of the mesh, N, = 2P + 1 ;
(- --) uniform 1025 nodes
(—)  adapted, 65 nodes
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3.3 N umerical illustration

We use the above functions for illustrating the accuracy of this estimate,
the results are depicted in Table 2.

CASE IDvullrz 1/4 ||Deullrz ||Mew — ullzz 1/3 ||Drullz2
Case 2: uniform 1.9 107* 4.710™ 49107 6.5 10~
Case 2: adaptive 6.7 1074 1.67 1074 1.7 107* 2.2107*
Case 3: adaptive 11 10~* 2.7107* 3.210* 3.6 1071
Case 4: uniform 2.59 1073 6.5 1074 6.9 10~* 8.71074

Case 4: adaptive 5.94 10~* 1.48 1074 1.53 1074 1.98 1074

Table 2 : Numerical illustration of the accuracy in the a priori error
interval (columns 2 and 4), to be compared with the measured error,
column 3. ‘

4 Some Concluding remarks

We have proposed a deeper examination of the convergence behaviour of
interpolations towards a function when non uniform meshes are applied.
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The phenomenon called “soon capturing” is observed (and in some cases
theoretically predicted) in the two contexts of adaptive mesh convergence
and frequency analysis; in particular, the estimation of the lower and
upper bounds of the L? error seems of particular interest.

The 1-D results are encouraging, and could already be applied to
practical problems like turbulent boundary layers, see [2].

In the near future, we shall examine the extension to 2-D case of the
two above analyses.

Extension to multidimensional unstructured case needs new ideas for
building a intelligent coarsening in the case of non-structured meshes,
a very challenging theme for mesh adaption purpose; we refer to [1] for
advances in this field.

Yet, the correlation between mesh adaptive interpolation and mesh
adaptive PDE approximation remains to be well understood.
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