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Un nouvel algorithme pour trouver des mots de poids
minimum dans un code linéaire : application aux
codes BCH primitifs au sens strict de longueur 511

Résumé : Nous développons un algorithme de recherche de mots de poids minimum dans
un code linéaire. Cet algorithme nous permet notamment de décoder les codes linéaires
aléatoires de parameétres [512,256,57] en 9 heures sur une station DEC alpha. Grace & lui,
nous déterminons la distance minimale de certains codes BCH binaires de longueur 511,
lesquelles étaient jusqu’alors inconnues.

Mots-clé : codes correcteurs d’erreurs, algorithme de décodage, poids minimum, codes
linéaires aléatoires, codes BCH



A new algorithm for finding minimum-weight words in a linear code 3

1 Introduction

In this paper we present a probabilistic algorithm for finding small-weight words in any
linear code. This algorithm could be applied to two important NP-complete problems [2]:
computing the minimum distance of a linear code and decoding. It associates an iterative
procedure stemming from linear programming for reducing the computational cost of many
Gaussian eliminations and a heuristic proposed by Stern. We then give a very precise analysis
of the complexity of our algorithm which enables us to optimize the parameters it depends
from. Hence our algorithm is to our knowledge the best procedure for decoding without
using the structure of the code.

Section 2 describes our algorithm for binary codes but it could be generalized to linear
codes over GF(q) (see [4]). Using Markov chain theory we show in section 3 how to compute
the number of elementary operations it requires; we give then the parameters which minimize
this theoretical running-time and an explicit expression which approximates the number of
operations performed for decoding and for finding a minimum-weight word in a random
[n, k]-binary code. Two applications of our algorithm are then exposed: section 4 presents
experimental results for decoding [256,128]-binary linear codes which validate the previous
theoretical approach; section 5 gives new results for the true minimum distance of some
narrow-sense BCH codes of length 511.

2 Description of the algorithm

As usual wt(z) will denote the Hamming weight of the binary word .
Let C be a linear code over GF(2) of length n and dimension k. We try now to find a
codeword of weight w where w is small.

2.1 The probabilistic method

Enumerating randomly selecting codewords in hope than one of weight w will be found
is obviously not a suitable algorithm because the probability that the weight of a random
codeword will be w is very small. It is then necessary to bias this random selection by only
examining codewords verifying a given property so that their weight will be a prior: small,
for example codewords which vanish on a randomly chosen coordinate subset. The problem
is therefore to find a compromise between the number of operations required by searching
such particular codewords and the success probability, i.e. the probability that the weight
of such a codeword will be w.

All algorithms for finding short codewords use therefore the same method [10], [11], [14]:
they only take in account codewords which are particular linear combinations of a small
number of rows of a systematic generator matrix. The algorithm proposed by Stern [14] and
slightly modified was shown to give the best results [5].
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4 A. Canteaut et F. Chabaud

Let N = {1,---,n} be the set of all coordinates. For any subset I of N, G = (V,W);
denotes the decomposition of matrix G onto I, that means V' = (G;)ier and W = (Gj)jenr,
where G; is the ith column of matrix G.

definition 1 Let [ be a k-element subset of N. I is an information window for code C
iff G = (Idy, Z)1 is a systematic generator matriz for the code. The complementary set,
J = N\1, is called a redundancy window.

From now on we index the rows of Z with I since G = (Idy, Z); is a generator matrix
for the code and we denote by Z* the i-th row of matrix 7.

The idea suggested by Stern is to randomly choose at each iteration an information
window [ which is split into two parts I; and I of same size, and a subset L of J of size £.
We only examine codewords ¢ verifying the following property, where p is a fixed parameter
for the algorithm:

wt(cr,) = wt(cjr,) = p and wt(¢jr) =0 (1)

until we find such a particular codeword whose restriction on J \ L has weight w — 2p.
All codewords which verify condition 1 can easily be constructed as soon as the corres-
ponding systematic generator matrix G = (Idy, Z)r is known:

e randomly split the rows of Z into two subsets Z; et Z5 corresponding to I; and Is.
e for each linear combination Ay of p rows of matrix Z1, compute Ay .
e for each linear combination Ay of p rows of matrix Z3, compute Ay .

o if Ay = Ay, check whether wt((A; + A2)jj\z) = w — 2p.

2.2 The iterative procedure

The previous algorithm therefore explores a set of randomly selected information windows
by performing at each iteration a Gaussian elimination on an (n x k)-generator matrix. In
order to avoid this time-consuming procedure, we here propose to choose at each step the
new information window by modifying only one element of the previous one. This method
is analogous to the one used in the simplex method as suggested in [12] and [15, 3].

definition 2 Two information windows I and I' are close iff:
Ixel, 3pe N\ I, such that I' = (I'\ {A})U{u}

As any two information windows can be joined by a sequence of close information win-
dows, we use this iterative method in order to find one which enables us to discover a
codeword of weight w.

The following proposition shows how choosing A and p such that I’ is still an information
window.

INRIA



A new algorithm for finding minimum-weight words in a linear code 5

proposition 1 Let I be an information window such that G = (Idy,Z); is a generator
matriz for C. Letbe A€ I, p € J and I' = (I\ {A}) U {u}.

I' is an information window iff zx , = 1, where Z = (2; j )ier,jes

Proof. Since G = (Idy, Z)r, we have: G, = zx , G + Zie[\{A} 2 G
As the columns indexed by I are linearly independent, GG, and (Gi)ier\ga} are linearly
independent iff z, , = 1.

O

As the probabilistic method procedure only deals with the redundant part of the syste-
matic generator matrix, we only need a procedure able to obtain the redundant matrix 7’
corresponding to I’ from Z.

proposition 2 Let I and I' be two close information windows such that I' = (IN\{A}HU{u}.
Let (Idy, Z)r and (Idy, Z")p be the corresponding systematic generator matrices. Then 7'
1s obtained from Z by:

[ V_] € J/, Z:hj = ZXj
o Vie I\ (),
—Vie SN F =gtz
- Zzl',,\ = Zi,p
Proof. As I' = (I'\ {A}) U {u}, (Idy, Z')p is obtained by exchanging the A-th and p-th
columns of (Idy, Z);. This can be done by a simple pivoting operation in position (X, p), i.e.

by adding the A-th row of matrix Z to all other rows Z' iff the corresponding element z; ,
is not equal to zero.

2.3 Description of the iterative algorithm
The use of this iterative procedure leads then to the following algorithm:

Initialization:
Randomly choose an information window I and apply a Gaussian elimination in order
to obtain a systematic generator matrix (Idg, Z)r.

Until a codeword of weight w will be found:

e randomly split I in two subsets I; and Iz where |I1| = |[k/2]| and |I2| = [k/2]. The
rows of Z are then split in two parts Z; and Zs.

e randomly select an f-element subset L of J.
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6 A. Canteaut et F. Chabaud

e for each linear combination A; of p rows of matrix Z;, compute Ayz.

for each linear combination Az of p rows of matrix Z3, compute Agz.

if Ay = Ay, check whether wt((A; + A2)jj\z) = w — 2p.

e randomly choose A € T and pu € J. Replace T with (I'\ {A})U{u} by updating matrix
Z according to the preceding proposition.

Remark: This algorithm can also be used for decoding. Let & = c+e€ be a corrupted message
where ¢ is a codeword and e an error-vector of weight w such that w <t = Ld_TlJ where d
is the minimum distance of the code. Matrix

(%)

is a generator matrix of an [n, k + 1,#]-code. Our algorithm then enables us to recover the
minimum-weight word of this new code, which is the error-vector e.

3 Theoretical running-time

We give here an explicit and computable expression for the work factor of this algorithm,
i.e. the average number of elementary operations it requires.
3.1 Average number of operations by iteration

1. There are exactly (k/z) linear combinations of p rows of matrix Z; (resp. Z3); compu-
ting each of them on an /-bit selection requires pf binary additions.

2. The average number of collisions i.e. the average number of pairs (A1, Az) such that

k/2\2
(A1 4 Az)L = 0is equal to ( g,z) . For each collision we must perform 2p — 1 additions

of (n — k — £)-bit words for computing (A; + Az)js\r and a weight-checking.

3. We need K(p(kf) + 2%) more operations to perform the dynamic memory allocation

where K is the size of a computer word (K=32 or 64).

4. For updating matrix Z according to proposition 2 we have to add row Z* to all other
rows Z* when z; , = 1. Assuming that the average weight of column Z, is k/2, the
work factor involved in this procedure is %k(n — k).

Hence the average number of elementary operations performed at each iteration is:

k/2\2
Q0 = 2pt (kf) +2p(n— k- z)% + K(p (k]ﬁ?) Loty w @)

INRIA



A new algorithm for finding minimum-weight words in a linear code 7

3.2 Expected number of iterations

The average number of iterations performed by the algorithm is not the same as the one
performed by the initial Stern’s algorithm since the successive information windows are not
independent anymore. Hence the algorithm must be modeled by a discrete-time stochastic
process.
Let ¢ be the codeword of weight w to recover and supp(c) its support. Let I be the
information window and 77, Is and L the other selections corresponding to the ¢-th iteration.
The i-th iteration can then be associated with the random variable X; whose state space

is€=10,....2p -1} U{(2p)s, 2p)r} U{2p+1,..., w} where

Xi=u ifft  |Insupp(c)|=u, Vue{0,....,2p—1}U{2p+1,...,w}
X; =2p)r iff |INsupp(c)|=2p and (|13 Nsupp(e)| #p

or |Is Nsupp(c)| # p or |L Nsupp(c)| # 0)
X; = (2p)s iff | Nnsupp(c)| = |I2 Nsupp(e)| = p and |L Nsupp(e)| =0

The success space is then § = {(2p)s} and the failure space is F = {0, ...,(2p)F, ..., w}.

proposition 3 The stochastic process {X; }ien associated with the algorithm is an homo-
geneous Markov chain.

Proof. The selections I, I, Is and L corresponding to the i-th iteration only depend on the
previous information window since I1, I3 and L are randomly chosen. Then we have for all
i and for all (ug,u1, -, u;) € E,

PriX;=u;/Xi-1 = ui—1, Xi—o = ui_a,- -, Xo = uo] = Pr[X; = u; /X;_1 = ui_1].

Furthermore this probability does not depend on the iteration. Hence there exists a matrix
P such that :
VieN, V(u,v) € £, PriX; =v/Xi_1 =u]l = Py,

O

{Xi}ien is therefore completely determined by its starting distribution 7o and its tran-
sition matrix P.

proposition 4 The transition matriz P associated with the homogeneous Markov chain
representing the algorithm is given by:

k— —k—(w-— -
Puu = k“x" n_(;f u)—}—%x:_ZforalluEE\{(?p)S,(Qp)F}
—k—(w—
Pyu_1 = E><n—(wu)forallu;zé2p—|—1
’ k n—k
e w— 1
Piuty1 = LY uforallu;ﬁ?p—l

k n—=k
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8 A. Canteaut et F. Chabaud

P,o = 0forallvg {u—1uu+1}

Popye,2p)r = (1—=0) :k_k?P % ”—k;_('u];—QP)+%X U;L—_?kp]
Popiiopyy = (1—=0) :QP]:_ 1 « Pz k— (7';”_—]{7(2}?—}— 1))]
Poyp_1.02p)r = (1=0) k - (QkP -1 v —n(Q_Pk— 1)]
Popyi,(2pys = B :219]:- 1 « Mz k— (7'1“’_—]{7(2}?-1- 1))]
Proosme = [ oo D)
Popyr2p)s = 0 k _kQP x 1= kn__(l;;_ 2p) 2]{7_19 « U;—_Qkp]
Popys,pys = 1

Popysu = 0 for allu # (2p)s

The initial probability vector is

Since the single success state is an absorbing state, {X;};en is a transient chain. The
following theorem can then be applied for computing the excepted number of iterations
performed by the algorithm.

proposition 5 [9] If {X;}ien is a transient chain with transition matriz P, and @ is
the sub-stochastic matriz corresponding to transitions among the transient states, i.e. Q) =

(Puw) uer then (Id — Q) has an inverse R called the fundamental matriz of the chain
v e F

and
o0

R=> Q"=(Id-Q)".
m=0

theorem 1 The expectation N of the number of iterations required until X,, reaches a suc-

cess state is given by:
N =2 mo(w)) Rus
ueF vEF

where R is the corresponding fundamental matriz.

INRIA



A new algorithm for finding minimum-weight words in a linear code 9

Proof.

N = ZnPr[N:n]
n>0

= EPT’[N > n]

n>1
= Y PrlX, €7l

n>0
As the initial probability distribution is vector mg, we have:
N=> ") Pr[X, € F/Xo = ulm(u)
n>0ueF

then we have

PriX; € F/Xo=ul= > (Q)un.

vEF
Thanks to the preceding proposition we finally obtain
N Y ) Y R
ueF veEF

O

proposition 6 Suppose that the number of codewords of weight w is Ay,. The overall work
factor required by the algorithm is:
QN

Wpi = A (3)

where N is given by theorem 1 and Q, ¢ by equation 2.

3.3 Theoretical running-time for the general decoding and mini-
mum-weight problems

Using the implicit formula 3 we now give the optimal parameters p and ¢ for some basic
problems. The following work factors are computed for some [n, k]-random binary codes
whose minimum distance is obtained with the Gilbert-Varshamov’s bound. Comparisons
with other decoding algorithms [10, 11, 14] are made in [4]; the work factor required by the
initial Stern’s algorithm is shown to be at least 4 times higher for the following problems.
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10 A. Canteaut et F. Chabaud

3.3.1 Decoding random linear codes

We here give the optimal parameters and the work factors required for recovering an error-
vector of weight ¢t = [dg—lj We recall that p corresponds to the number of rows of each
part of the generator matrix we use for the linear combinations and that ¢ is the size of
the selection L on which the examined words vanish. Note that the code we consider for
computing the work factor is an [n, k + 1]-code according to the remark in section 2.3.

code [64,32,7] | [128,64,15] | [256,128,29] | [512,256,57] | [768,384,85]
t 3 7 14 28 42
optimal p=1 p=1 p=1 p=1 p=2
parameters =14 £=6 £=17 £=9 £ =17
work factor 915.39 919.36 926.51 940.48 954.55
[1024,512,113] | [1536,768,170] | [2048,1024,226]
56 84 112
p=2 p=2 p=2
968.51 996.87 9125.50

Table 1: Optimal parameters for decoding random [n, n/2] binary codes

We see in figure 1 that, for a fixed rate r = k/n, log,(W) linearly depends on n when
parameters p and ¢ are optimized and that the work factor can be written in the form
Wopt _ 2na(r)+b.

Figure 2 shows how parameters p and £ act on the work factor for decoding a random
[n,n/2] code: if they are not optimized, log, (W) does not linearly depend on n anymore.

Furthermore we see in figure 3 that a(r) is closed to the entropy function Hy(r) multiplied
by a fixed coefficient, where Ha(z) = —z log,(z) — (1 — z) log, (1 — z).

proposition 7 The theoretical work factor required for decoding a random [n, k]-binary code
can be approximated by the following formula:

Wope = 27 2RI+ yhere ¢ = 55111072 and b= 12

3.3.2 Finding minimum-weight codewords

We now give the theoretical complexity of the algorithm for recovering a word of weight
d in a random [n, k] binary code, where d is given by the Gilbert-Varshamov’s bound. We
assume that all these codes contain exactly one word of weight d.

INRIA



A new algorithm for finding minimum-weight words in a linear code 11

code [64,32,7] | [128,64,15] | [256,128,29]
optimal p= p=1 p=1
parameters =4 =5 £=17

work factor 21793 925.55 940.65

[384,192,43] | [512,256,57] | [640,320,71]
p=2 p=2 p=2
£=14 £=15 £=16
25577 270.72 285.78

Table 2: Optimal parameters for finding a minimum-weight word in random [n, n/2]-binary
codes

As for the general decoding problem log,(W,p:) linearly depends on n for a fixed rate
r = k/n (see figure 4).

If this work factor is written in the form Wop; = 2”6(”)”“"1, figure 5 shows that ¢(r) is
closed to the translated entropy function eHa(r + rp).

proposition 8 The theoretical work factor required for finding a minimum-weight word in
a random [n, k]-binary code can be approximated by the following formula:

Wope = 27204700+ yyhere ¢ = 0.12, d = 10 and ro = 3.125 1072

4 Experimental results for decoding random [256, 128]-
binary codes

In order to check the correctness of our optimization we have made a great number of
simulations for a small problem: decoding a random [256,128,29]-binary code, i.e. recovering
an error-vector of weight 14. For each set of parameters 1000 computations have been made
on a DEC alpha computer running at 175 MHz. The results given in table 3 confirm the
validity of the previous theory. We see that decoding a random [256,128,29]-code requires
around 2 seconds. Thus decoding a [512,256,57]-one requires around 9 hours on our computer.

5 True minimum distance of primitive binary narrow-
sense BCH codes of length 511

Let ¢ = 2™ and n = 2™ — 1. Let « be a primitive n-th root of unity in GF(q).

RR n 2685



12 A. Canteaut et F. Chabaud
theoretical | theoretical | experimental average | corrected
parameters | work factor average average deviation | CPU CPU
log, (W) iteration iteration % time time
number number (s) (s)
p=1,¢=5 27.37 3961 4072 +2.80 2.76 2.68
p=1,0=6 26.80 4045 3985 -1.48 2.11 2.14
p=1,¢4=T7 26.51 4139 4190 +1.23 2.07 2.04
p=14¢=28 26.56 4244 4338 +2.21 2.13 2.09
p=1,¢=9 26.95 4362 4417 +1.26 2.90 2.87
p=2,¢=10 29.80 432 433 +0.35 13.84 13.79
p=2,£=11 29.04 442 470 +6.51 13.00 12.21
p=2,(=12 28.51 454 446 -1.76 12.13 12.35
p=2,0=13 28.37 466 487 +4.51 17.70 16.91
p=2£=14 28.68 480 508 +5.83 29.40 27.72

Table 3: Decoding random [256, 128, 29]-binary codes

definition 3 The primitive binary narrow-sense BCH code of length n = 2™ — 1 and de-
signed distance 6, denoted by B(n,§), is the largest binary cyclic code of length n having
zeros

2, Ceey aft

The minimum distance d of B(n, §) satisfies the BCH bound: d > 4.

There is no general method for finding the true minimum distance of a BCH code al-
though several infinite classes are known to have minimum distance equal to their designed
distance [13, 7, 1]. The true minimum distance has been determined for all narrow-sense
BCH codes of length less than 511. For the length 511 the true minimum distance of 12
of them is still unknown [1]. Using the previously presented algorithm we show that the
designed distance is reached for 5 of these codes.

It is well-known that the automorphism group of an extended primitive BCH code
contains the affine group on GF(2™); then we have the following proposition:

proposition 9 If B(2™ —1,6) contains ¢ word of even weight w then it contains a word of
weight w— 1.
Thus we obtain:

theorem 2 B(511,29), B(511,37), B(511,41), B(511,43) and B(511,87) have minimum

distance equal to their designed distance.

Proof. Let us define GF(2°) by a® +a*+1 = 0. For each of these B(511,§) a word of weight
6 + 1 was found. We here list all the corresponding exponents.

INRIA
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o 6 =29:
(26, 31, 38, 51, 64, 72, 112, 126, 139, 142, 157, 188, 222, 227 , 265, 270, 301, 306, 307,
317, 347, 354, 368, 369, 412, 415, 423, 431, 494, 498)

o §=3T:
(4,13, 27, 48, 56, 94, 102, 103, 115, 118, 132, 149, 152, 159, 197, 202, 215, 232, 240,
249, 250, 251, 290, 324, 327, 349, 359 , 360, 367, 383, 396, 423, 461, 493, 494, 499, 504,
509)

o 5 =41:
(9, 20, 30, 37, 38, 42, 43, 53, 66, 68, 83, 93, 95, 106, 108, 110, 111, 175, 185, 202, 234,
250, 262, 270, 321, 342, 362, 363 , 379, 382, 385, 401, 402, 410, 426, 436, 462, 467, 478,
482, 499, 507)

o 5 =43:
(0, 16, 35, 38, 56, 57, 58, 80, 82, 87, 115, 134, 147, 148, 156 , 165, 167, 190, 196, 206,
229, 240, 242, 258, 269, 284, 295, 296, 309, 317, 321, 322, 324, 325, 326, 361, 375, 394,
405, 418 , 429, 444, 460, 492)

e 6 =8T:
(18, 19, 23, 25, 27, 43, 50, 51, 64, 70, 73, 77, 81, 88, 96, 101 , 102, 116, 117, 143, 1486,
152, 158, 163, 165, 166, 173, 179, 192, 193, 195, 197, 199, 203, 210, 212, 225, 230, 240,
244,252 | 263, 272, 283, 287, 290, 292, 293, 295, 297, 301, 306, 320, 323, 327, 330, 339,
353, 361, 382, 385, 392, 394, 400, 411, 414 , 417, 421, 432, 436, 446, 453, 459, 461, 466,
474, 475, 476, 480, 481, 483, 487, 489, 492, 503, 504, 505, 510)

Table 4 gives the list of all narrow-sense BCH codes of length 511, their minimum distance
and the way they were found.

Acknowledgements: We wish to thank Hervé Chabanne who initiated this work.
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Figure 1: Evolution of the theoretical work factor with optimized parameters for decoding
random [n, nr]-binary codes
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Figure 2: Influence of parameters p and £ on the work factor for decoding [n,n/2] random
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n k 6 d argument  in n k 6 d argument  in
511 502 3 3 RM(7) [7] 511 241 73 73 PS(7,1) [13]
493 5 5 RM(7) [7] 238 75 > 175 _ _
484 7 7 RM(6) [7] 229 77 > 77 _ _
475 9 9 ES [1] 220 79 79 1D [1]
466 11 11 RM(6) [7] 211 83 83 1D [1]
457 13 13 S [6] 202 85 > 85 _ _
448 15 15 RM(15) [7] 193 87 87 *%k *k
439 17 17 ES [1] 184 91 91 1D [1]
430 19 19 1D [1] 175 93 95 # 4-DI [8]
421 21 21 PS(73,3) [13] 166 95 95 RM(3) [7]
412 23 23 RM(5) [7] 157 103 103 1D [1]
403 25 25 S [6] 148 107 > 107 _ _
394 27 27 RM(5) [7] 139 109 111 7# 4-DI (8]
385 29 29 K%k *x 130 111 111 RM(3) [7]
376 31 31 RM(4) [7] 121 117 119 7# 4-DI (8]
367 35 35 PS(73,5) [13] 112 119 119 RM(3) [7]
358 37 37 *k *x 103 123 127 3 NI [1]
349 39 39 1D [1] 94 125 127 # 4-DI [8]
340 41 41 *k *k 85 127 127 RM(2) [7]
331 43 43 *% *k 76 171 171 ES [1]
322 45 45 1D [1] 67 175 175 ES [1]
313 47 47 RM(4) [7] 58 183 183 ES [1]
304 51 >51 _ _ 49 187 187 ES [1]
295 53 53 NI [1] 40 191 191 RM(2) [7]
286  5b 55 RM(4) [7] 31 219 219 PS(7,3) [13]
277 b7 57 1D [1] 28 223 223 RM(2) [7]
268 59 >59 _ _ 19 239 239 RM(2) [7]
259 61 >61 _ _ 10 255 255 RM(1) [7]
250 63 63 RM(3) [7]
# d=6+2
4 d=6+4
*% new result
ES exhaustive search
1D idempotent
NI Newton’s identities
RM(s) intersection with the shortened sth-order Reed-Muller code
S code shortening

PS(ns, 87) product subcode: n = nyny and § = ny1éy
where BCH(ng, é2) has minimum distance equal to 6,
4-DI 4-divisibility of RM(4)
since B(511,6) is included in the punctured Reed-Muller code of order 4 for all § > 85

INRIA
Table 4: BCH codes of length 511
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