Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting

Zhengyou Zhang 1
1 ROBOTVIS - Computer Vision and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear least-squares (pseudo-inverse and eigen analysis); orthogonal least-squares; gradient-weighted least-squares; bias-corrected renormalization; Kalman filtering; and robust techniques (clustering, regression diagnostics, M-estimators, least median of squares). Particular attention has been devoted to discussions about the choice of appropriate minimization criteria and the robustness of the different techniques. Their application to conic fitting is described.
Type de document :
Rapport
[Research Report] RR-2676, INRIA. 1995
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00074015
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : vendredi 8 juin 2012 - 16:47:11
Dernière modification le : samedi 27 janvier 2018 - 01:31:27
Document(s) archivé(s) le : lundi 5 avril 2010 - 00:03:29

Fichiers

RR-2676.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00074015, version 1

Collections

Citation

Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting. [Research Report] RR-2676, INRIA. 1995. 〈inria-00074015〉

Partager

Métriques

Consultations de la notice

402

Téléchargements de fichiers

2154