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Abstract: In this paper we study the limitations of current verification strategies in object
recognition and suggest how they may be enhanced. On the whole object topology is exploited
little during verification. In practice, understanding the connectivity relationships between
features in the image, or on the object, can lead to significantly more accurate evaluations
of recognition hypotheses.

Usually adjacent features on an object should be party to mutual visibility constraints.
This is to say that when a model is hypothesized in a scene, two features which are adjacent
within the model of an object should either both be visible in an image of the object, or both
occluded. If not, then we can broadly say that an occlusion event should exist between the
two features. In the case that this event fails to be measurable, we can start to infer that the
model hypothesis is incorrect. Similar reasoning can be used to exploit image topology and
the uniqueness of sets of model-image correspondences. Generally, such a line of thinking
departs from traditional approaches in which topological interactions between features are
not exploited fully.

Testing out our algorithms for topology and occlusion analysis has involved the imple-
mentation of a complete object recognition system. The system we have built measures
planar algebraic invariants in real images and uses these to index into a model base. The
result of the indexing step is a list of hypotheses. These hypotheses are evaluated both using
traditional verification algorithms, and also using our more detailed methods.
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De I'importance de ’analyse des occultations pour la
vérification d’hypothéses en reconnaissance d’objets

Résumé : Dauns ce rapport, nous étudions les limitations des stratégies actuelles de vérifi-
cation en reconnaissance d’objets et suggérons comment celles-ci pourraient étre améliorées.
Globalement, on peut dire que les propriétés topologiques des objets sont trop peu exploitées
durant ’étape de vérification. En pratique, comprendre les relations de connectivité liant
les primitives de I'image ou du modeéle peut mener & un meilleur traitement des hypothéses.

En général, les primitives adjacentes d’un objet sont liées par des contraintes de visibilité
mutuelle. Cela signifie que si l'on suppose que 'on observe un objet (hypothése) dans une
sceéne, deux primitives adjacentes dans le modéle doivent étre toutes deux soit visibles soit
occultées. Si cela n’est pas le cas, on peut dire qu'un événement d’occultation doit exister
entre les deux primitives. Dans le cas ol cet événement ne peut étre mesuré, on peut faire
la supposition que I’hypotheése était fausse. Un raisonnement similaire peut-étre utilisé pour
exploiter la topologie de 'image et I'unicité des appariements entre primitives images et
modeles. Cette méthode se distingue de la plupart des approches traditionnelles par une
meilleure exploitation des interactions topologiques entre les primitives.

L’évaluation des performances de nos algorithmes pour 'analyse de la topologie et des
occultations a necéssité I'implémentation d’un systéme complet de reconnaissance d’objets.
Celui-ci mesure des invariants algébriques d’objets plans & partir d’'images réelles et utilise
ceux-ci pour indexer une base de données de modeles. Le résultat de 'étape d’indexation
est une liste d’hypotheéses. La qualité de celles-ci est alors évaluée en utilisant & la fois les
algorithmes de vérification traditionnels et nos méthodes plus complétes.

Mots-clé : reconnaissance d’objets, détection de jonctions, analyse des occultations
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2 Charlie ROTHWELL

1 Introduction

The process which tends to be used most to differentiate between different hypotheses in
object recognition is verification. However, verification is only the final step in a long chain
of visual processing events which takes the user from grey level images to the verified hy-
potheses which suggest object identities and poses in images. In this paper we concentrate
on object recognition from single images. Recognition systems which treat single images
tend to start off by extracting features from the image, then they do feature grouping and
model selection (frequently called indexing), and penultimately they include a correspon-
dence stage which pairs together model and image features. In mature systems a verification
step is then included which finally determines the degree of correctness of the model-image
correspondences.

In this paper we study how different verification strategies can affect the quality of the
results returned by a recognition system. Overall, we will show that an adequate under-
standing of model and image topology can lead to enhanced verification strategies, and thus
ultimately towards better system performances. We use the term topology to represent the
connectivity relationships between features. Locally the topological representations we use
convey whether two model features are adjacent and should be seen as such in an image.
More globally we can ask whether a continuous chain of features should be present between
any pair of features, and so define notions of global connectivity.

Topology allows us to make neighbourhood based inferences. The observance of a par-
ticular model feature in an image would most likely indicate that all features adjacent to the
first feature on the model should also be visible. The failure to find the adjacent features
in the image would thus indicate either of two things: perhaps an occlusion is present and
so the features are hidden; or conversely that the hypothesis is wrong and should either
be discarded or at least have its importance diminished. Discrimination between these two
types of incident is achieved via topology and occlusion analysis. There are a number of
variants on this type of reasoning which we pursue throughout this paper.

1.1 Conflation of correspondence and verification

Object recognition strategies have formed a fundamental part of computer vision research.
The large number of different design strategies have thus been recorded extensively in the
literature as a whole, and more particularly have been the subject of a number of review
books and articles. One such review is the relatively recent book by Grimson [10]. This book
is actually more than just a summary of the literature, but is in fact an in-depth study of the
capabilities of a number of different approaches to the correspondence stage of recognition.
From reading this book it quickly becomes apparent that the major differences between the
various recognition systems lies in their approach to tackling the correspondence problem.
Grimson provides a breakdown of recognition into three general phases:

o Selection: what subset of the data corresponds to the object?

e Indexing: which object model corresponds to the data subset?

INRIA



Reasoning about Occlusions 3

e (Correspondence: which individual model features correspond to each data feature?

This decomposition is partly the key to the simplicity of many verification algorithms.
All too frequently a system implementation possesses no explicit verification stage but rather
embeds the final steps of reasoning about a recognition hypothesis within the correspondence
phase. It is this conflation of correspondence and verification which means that verification
methods have to use the same reasoning mechanisms as those employed for correspondence.
Thus they seldom have a marked effect on the resultant recognition hypotheses.

Some of the many systems which develop an emphasis for correspondence are those cre-
ated by Ayache and Faugeras [1], Pollard, et al. [21], Grimson and Lozano-Pérez [11], Bolles
and Horaud [2], Faugeras and Hebert [9], Thompson and Mundy [26], Huttenlocher and Ull-
man [18], Lamdan and Wolfson [19], Stein and Medioni [25], and Califano and Mohan [5].
These examples can be loosely classed into the different categories of interpretation trees,
alignment, and geometric hashing. Of course this list is somewhat modest and excludes
many other examples of recognition systems. However, it is largely representative in the
range of algorithms and the differences in performances which are available. Anyway, the
specifics of the correspondence algorithm are not intended to be the focus of this paper, we
only mention these algorithms to highlight the fact that verification is often little more than
an in-depth correspondence analysis, rather than an independent process.

1.2 The need for hypothesis verification

Commonly the final conclusion of a recognition algorithm is that a set of model features
match a set of image features. The same set of correspondences imply a geometric mapping
from the model to the image (or to a three-dimensional reconstruction of the scene for 3D
sensing techniques). Thirdly, there is also usually a measure of the number of matching
features as a percentage of the whole. The acceptance of a correspondence hypothesis is
therefore often based on the following three criteria:

1. That a suitably large number of matching model and image primitives should be found.
These primitives might be line segments, corners, certain types of surface patch, etc.

2. That the pose of the object in the scene should be realistic. A conceivable bad pose
would be that the hypothesized object lies somewhere below a known solid ground-
plane.

3. That a suitably large proportion (say two-thirds) of all of the model data can be
explained by observed image features. For three-dimensional objects, a complete model
description might be a set of small surface patches derived via a triangulation of a
CAD-type model, or similarly a set of planar curves for a two-dimensional object.

By way of example, we can see the presence of the first and last of these processes
in the two-dimensional HYPER system of Ayache and Faugeras [1]. In this system an
interpretation tree is used to match a sufficiently large set of coplanar line-segments from the
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4 Charlie ROTHWELL

model to the image. Normally three or four correspondences might be enough to compute the
transformation between the model and image. The matching process continues until a certain
percentage of the model boundary has been explained by image features, or potentially until
the system realizes that enough of the model cannot be recovered due to occlusion or some
other reason (in which case the hypothesis can be rejected).

Good examples of the use of the third criteria can be found in the verification phase of
the system of Thompson and Mundy [26] which relies on the computation of the distance
transform with Chamfer filters (Borgefors [4]). Another instance is in the matching algorithm
of Huttenlocher, et al. [17], and their use of the Hausdorff distance.

The three simple tests are quite likely to provoke some rather specific problems. One
major concern is expressed in Fig. 1. In the figure we consider the apparently simple task of
trying to match either of two objects in a model base (a rectangle and a square) to an image
of the rectangle occluded by a third object. The image has been produced merely via a plane
Euclidean distortion (more normally we have to cope with far more varied transformations
in computer vision applications). Referring to the figure, if the our matching thresholds are
too generous then we will be able to find a near perfect match in the image for the features of
the square and yet only be able to match a proportion of those for the rectangle. One would
therefore be led to believe that the hypothesis for the square is more likely than that for
the rectangle. Note that this image situation may be considered to be generic as it does not
involve any significant accidental alignments (occlusions of this nature are forever present
in the images we have studied). However, it is worth noting that there is actually enough
information in the image to make is obvious that the square hypothesis is incorrect.

The additional information involves the nature of the topological structure of the models
in the model library: features are joined by well-defined junction types and not related
purely by geometric measures (such as angles and distances). Previously little emphasis has
been placed on model topology. For the purpose of this paper we represent topology at
the lowest level by vertices between which span edges, and chains of edges which are called
one-chains. Closed one-chains form cycles which are called faces. Adjacency of low-level
image features is then tested by reasoning about whether they come from the same edge, or
two edges in the same one-chain, etc.

Along the two occlusion events in Fig. 1 we observe two ‘T’ junctions (in the terminology
of Waltz [27]). In contrast, had the square hypothesis been correct we would have expected
to find ‘L’ junctions in the same area of the image. The lack of the ‘L’ junctions immediately
suggests that the square hypothesis is incorrect. Moreover, the observation of ‘T’ junctions
in general implies occlusion and so provides an immediate explanation of why the rectangle
model failed to receive image support. It thus strengthens the presence of a rectangle
hypothesis and suggests that basing verification scores purely on the degree of model-image
alignment is inadequate.

The need for this type of reasoning was first remarked on a long time ago. For instance,
Guzman [12] showed how junction analysis would not only improve recognition performance,
but could be used as a basis of in-depth scene reasoning. However, more recent approaches
to recognition have paid little heed to explaining the unexplained in images, and are usually
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model rectangle model square

<— occluding object

test object

mapping of the square

Figure 1: If our recognition system has a model base of a rectangle and a square, we will find
that the square is more likely to score higher for the occluded test object than the rectangle
which is really the correct match.
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6 Charlie ROTHWELL

content to interpret only positional evidence. Once topological information has been intro-
duced one can begin to include in-depth reasoning about negative evidence of hypotheses
rather than working purely with positive evidence.

1.3 The requirement for an implemented recognition system

Our work is based on a re-implementation of the LEWIS recognition system of Rothwell [24].
It derives object hypotheses via invariant-indexing based on planar algebraic invariants. We
summarize the processing steps later in Section 2. We are not really interested in the
way that recognition hypotheses are derived, and so we do not go into detail about how
the system works (in fact we could equally have used any of a number of other different
recognition systems). The importance of working with an actual system is that recognition
hypotheses are recovered from images with realistic measures of confidence and error. Thus
we can examine the limits of the verification procedures more thoroughly.

LEWIS behaves in a way typical of recognition systems in that it does not derive perfect
recognition results. Depending on the choice of a set of parameters, one can vary the number
of false positives and false negatives returned. However, due to the desire to recognize
occluded objects in fairly complex scenes one is unlikely to produce only correct hypotheses.
Therefore, it is sufficient to say that although a correspondence stage manages to rule out
most of the false hypotheses, there are still likely to be incorrect interpretations left after the
completion of the processing of the image. In [24] it is reported that roughly as many false
positives were recorded as correct evaluations for moderately complex scenes with occlusions
and a relatively large model base.

This level of failure could be construed as being somewhat worrying, though we believe
that the depth of scene analysis provided by LEWIS was insufficient and that far more can
be done. Principally, hypotheses were accepted if a sufficient amount of positive evidence
for model features was found in an image. In practice this criterion was satisfied by the
recovery of fifty percent image support for a hypothesis. Certain other hypotheses could
be ruled out through pose considerations (the hypotheses would indicate that the objects
would need to be too distant in the scene to be observed clearly in the image, or similarly
have too high a slant in the world for reliable feature extraction to be performed). However,
at no stage were the following considerations evaluated:

e The presence of negative evidence must be explained. Primarily we should be able to
locate occlusion events which justify the lack of measurement of a scene-model match.
Failure to find occlusion events reduces the likelihood of a hypothesis being correct.

e Some notion of object topology must be preserved, unless there is positive evidence
of occlusion. Therefore two image features should not be marked as coming from
adjacent features on an object’s boundary unless they are either connected in the
image, or unless there exists an occlusion event between them.

e Under generic viewing conditions there must be uniqueness of solution. A single feature
cannot belong to more than one object. Multiple partitioning of image data was
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Reasoning about Occlusions 7

previously allowed due to a lack of confidence in the existent verification procedures.
With improved verification we can perhaps move towards deriving absolute conclusions
about scene hypotheses.

This last point requires development. The nature of the results given by different recog-
nition systems varies dramatically depending on the application. Often the recognition
problem is posed (perhaps implicitly) as the task of finding a specific object in a scene, then
once the object has been found processing is terminated. This problem is significantly differ-
ent from (and simpler than) that of attempting to identify all objects in a scene which might
correspond to any of a number of objects in a model base. In this situation a single mistake
can lead to catastrophic failures in interpretation because any decision is considered as final
and affects all subsequent processing. It is perhaps therefore wiser to be conservative and
to allow multiple interpretations so that no truly correct hypothesis is discarded. However,
most applications might be expected to provide unique and accurate scene interpretations.
We are therefore interested in moving towards the notion of single feature interpretations
whilst still working in relatively unstructured and unknown environments.

1.3.1 Outline

Prior to discussing a number of new verification methods we discuss our implementation
of the LEWIS recognition system in Section 2, and provide some examples of the system
working in Section 3. Then, the different verification methods are discussed in Section 4
along with examples which demonstrate how the methods work in images.

2 The recognition architecture

We now briefly describe the main aspects of our implementation of the LEWIS planar
object recognition system described in [24]. Overall our system is very close to the original
implementation, and so full explanations are omitted. The reader is advised to refer to [24]
for complete details, though in many ways the precise working of the system is not so
important, but rather the fact that it represents an implemented system which derives
recognition hypotheses. The main functional difference between our new implementation
and the original version lies in our more developed verification algorithms. The mechanisms
and effects of these algorithms are the main contribution of this paper.

The application of the system lies in the recognition of planar algebraic feature sets
(namely lines and ellipses), and so all important model aspects are restricted to being two-
dimensional. However, the model descriptions, which are invariant measures, are projective
and so the positions and orientations of the objects to be recognized in three-dimensional
space can be almost arbitrary. The recognition system is principally built around a pipeline
architecture which computes indexes from scene features that form model-image feature
hypotheses. The main steps are briefly:
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8 Charlie ROTHWELL

1. Edge detection: edges are detected in the image using our implementation of the
Canny [6] edge detector. Full details of the filter are given in [23]. The main difference
between our edge detector and previous versions is that much better image topology
is recovered from the scene (using adaptive thresholding). As is standard, edgel chains
are extracted from the edge image with sub-pixel accuracy.

2. Feature fitting: lines and ellipses are fitted to the edgel chains. This is done using
incremental algorithms based on orthogonal regression for straight line segments and
a modification of the Bookstein [3] algorithm for ellipses.

3. Grouping: lines are grouped by connectivity into feature groups and conics by prox-
imity. The goal of the grouping process is to derive sets of invariant feature groups
of the following three forms: groups of five lines; three lines and a conic; and pairs of
conics. Each of these feature groups possess a number of projective invariants which
are suitable invariant descriptions for the sets of plane algebraic features.

4. Indexing: the invariants for each of the feature groups are used to indez into indexes
spaces. The index spaces (one for each type of invariant) are represented as hash
tables. Should the invariants for an image feature group match those for a model, then
a hypothesis is constructed which expresses the model-image correspondence formally.

5. Formation of extended hypotheses: The invariant feature groups provide only
local descriptions of objects, and do not encompass all of the features of a model. The
distribution of such feature groups around the boundary of an object frequently leads
to the formation of a number of hypotheses for a single object in a scene. Compatible
hypotheses from different feature groups should be merged together prior to verification
to form extended hypotheses.

6. Verification: the model-to-image transformation is computed using the correspond-
ing model and image features in the extended hypotheses. A projective transformation
must be found which maps all of the model algebraic features sufficiently closely to the
image features (lines and ellipses), otherwise the hypothesis is rejected out-of-hand.
The entire set of model features can then be projected into the image and compared
to the image data. The model features are represented by edgel sets recovered from
an acquisition image of the model object. An extended hypothesis is accepted if more
than fifty percent of the model features are found to project to within five pixels of
image edge data of the right orientation (the orientations must differ by no more than
fifteen degrees).

Lewis also included additional stages of verification based on pose computation. We have
not yet included them in our implementation as it appears that a more complete analysis of
the quality of the hypotheses can be achieved prior to resorting to pose-based computations.

INRIA



Reasoning about Occlusions 9

a b c

Figure 2: The bracket is recognized despite being occluded by the spanner. Completion of
the original verification process is demonstrated in (b) by the back-projection of the bracket
model (which is a set of edge data) into the scene. The white data from the model represents
all of the model points which found matching image edge data within five pizels and having
a matching orientation difference of less than fifteen degrees. In all 70.5% of the bracket
model finds support in the image. The grey parts of the outline represent model features
which find image edgels within five pizels of their projections, but which have an incorrect
orientation. The black segments of the model outline are those which find no matching
image data. Neither of these last two classes traditionally count towards the verification
score. Recognition of a spanner is shown (c) with a 77.8% level of image edge support for
its model.

3 Recognition examples

We now discuss some recognition examples to see how the system performs and to provide
an idea of the sort of environments in which it works. The images are courtesy of [24], though
the processing has been done in our re-implemented system. Using the same the examples
provides a direct comparison of the effectiveness of our reasoning against the tests reported
for the original implementation. It thus demonstrates where the verification analysis breaks
down and suggests where we can look to improve performance.

The first recognition example is shown in Fig. 2 where both a bracket and a spanner
are recognized in the presence of mutual occlusion and clutter. The verification scores used
involve estimating the proportion of projected model data which is supported by image
edge data of the right orientation (within fifteen degrees) and which is sufficiently close (no
more than five pixels away). The bracket received 70.5% image support and the spanner
77.8%; both of scores exceed fifty percent and are thus accepted as correct hypotheses (the
requirement for visibility of fifty percent of the object outline is the same as the original
verification criterion).

As we shall see, just marking model features as good or bad is an insufficient match
criterion. In Fig. 2 we have also shown which model edgels lie within five pixels of image
edge data but fail the orientation test (marked in grey), and also those edgels which fail
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10 Charlie ROTHWELL

a b

Figure 3: A model from the model base which has a five-line configuration similar to that of
the bracket is hypothesized in the image as corresponding to a view of the bracket (on the
strength of the single five-line invariant matching). Back projection of the model recovers
55.0% level image support, which is sufficient under the verification criteria to be marked as
accepted.

both the distance and orientation tests (in black). We shall see that it is those edgels which
lie in the second category (black) that provide the first clues of a potential breakdown in
the construction of a hypothesis, and hence image regions around these edgels need to be
examined in more detail than has been done previously.

A very characteristic example of the failure of recognition is shown in Fig. 3. Here a
model has been incorrectly hypothesized via indexing and is given further support by the fact
that an apparently correct model-to-image transformation can be computed. A 55.0% level
of image support is found via edge matching and so the hypothesis is marked as accepted.
Obviously there is an error as a similar object from the model base contains a local feature
group with similarity to that of the bracket, though using the original verification measures
it cannot be ruled out.

A different type of failure mechanism is shown in Fig. 4. This is where a false positive
is created due to the presence of spurious scene features which result from the existence
of a linear texture. (Coincidentally the correct model was chosen from the model base,
but its pose was incorrectly calculated. We also managed to create a hypothesis with the
correct pose, but as we do not use any higher-level processing at this stage, we are unable
to arbitrate between the correct and the false hypotheses.) The problem arises because
unconnected image features provide support for the model hypothesis in areas away from
the feature group which initialized the index. In this case 55.2% of the model edges found
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Reasoning about Occlusions 11

Figure 4: In this case an invariant configuration causes the estimation of the incorrect pose
for an object. This is due to the symmetry of the model (the correct pose is also recovered by
another hypothesis). Under verification, and due to the presence of significant linear tezture,
the poor-pose hypothesis is accepted with 55.2% image support.

matches in the scene even though only a few of them actually projected onto the features
used for indexing.

4 Enhanced verification methods

The examples in Figs 3 and 4 highlight two areas where verification fails due to the insuffi-
ciency of current reasoning methods. The fundamental problem is that the approaches used
up until the present time treat each individual model element separately, and so make no
use of the concept that a model is really an integrated topological structure. Advances can
be made quite rapidly when we start to diffuse the local acceptance or rejection of a hypoth-
esis around an object boundary. In short, in considering the acceptance of any one model
element, we must analyse the outcome of the verification procedure for its neighbouring
elements.

The two driving notions in verification thus become topology and the understanding of
occlusion. The topology of the image features which are assigned correspondences to model
features must match the topology of the model features exactly. Exception to this can only
be permitted due to occlusion, or when we are faced with the time-old problem of extracting
reliable segmentations from images. We thus need to develop algorithms for analyzing the
topology (connectivity) of features and for estimating the presence of occlusions.
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12 Charlie ROTHWELL

The existence of recognition hypotheses does however help to resolve one of the hardest
problems which is faced in image analysis. The extraction of low-level features such as
occlusion events is very difficult without e priori information (which is normally the case).
However, a hypothesis suggests where each of a specific type of the low level features that
we need to examine is located, and so we are able to employ what is really just an extreme
model-based approach for their evaluation. Consequently, we can use top-down processing
to provide low-level information for topology reasoning, or we can simply re-use bottom-
up information that we recovered previously. In fact, both types of data are used during
detailed verification.

Incidentally, the exact way in which a hypothesis is considered is very important with
relation to the algorithms that can be used in verification. We believe very firmly that
a hypothesis should be presumed to be true until proved otherwise to be false rather than
a more aggressive approach which tries to maintain as few hypothesis as possible at any
one time and so prunes associations quickly. Proceeding along the more conservative route
ensures that any hypothesis corresponding to a correct interpretation is unlikely to become
discarded. In contrast, the second approach is very good in situations where a single object
might be in a scene, and where that object has little similarity to other objects in the model
base, but it can often be forced into making incorrect decisions.

4.1 Occlusion reasoning

The first step towards better verification involves reasoning about the presence and nature
of occlusion events. In cluttered scenes we are very seldom able to recover image support
for the entire boundary of the projection of a model hypothesized through indexing. Often
the objects are occluded in scenes, or perhaps they may cause partial self-occlusions if they
actually have their own three-dimensional structure. The key issue is that the projection of
the model into the image indicates where occlusions appear to be arising (due to the loss of
image support) and so we should be able to find independent evidence for the occlusions.
If we cannot, then it is likely that the original recognition hypothesis is incorrect and so we
might do better by considering a different interpretation.

Occlusion events are typically marked by the presence of ‘T’ junctions in the image edge
structure. The understanding of the nature of different types of junction was originally stud-
ied in the line-labeling programs of Guzman [12], Clowes [7], Huffman [16], Mackworth [20]
and Waltz [27]. Principally an object feature which undergoes occlusion should be cut and
terminated by a locally straight transverse line segment. Thus when occlusions are suggested
by the sudden loss of image support for the projection of the model we should try and look
for “T” junctions.

In fact we have to be a little more careful in deciding where occlusions might be. Just
following along projected model features until we first fail to find a match leads to a sig-
nificant over estimation of occlusions. This is because small sets of projected model edgels
frequently fail to find correctly oriented image edgels even though edges of roughly the right
type of structure can be found very close to the projected model. Normally this is due to
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Reasoning about Occlusions 13

the edge orientations computed by the edge detector becoming erroneous near corners and
junctions (and hence towards the ends of object features).

We were thus led towards using a three-level classification for the projected model data,
that is: strongly matching features; those with close image support but where the edgels are
of the wrong orientation; and thirdly those features which find no image support nearby. The
third category indicates very markedly the presence of an occlusion, though the locations
of transitions into this class tend to be some distance from the real occlusion events (often
about five pixels). However, the transition into the second class (when caused by a real
occlusion) is usually located within a pixel of the actual occlusion event, and so we need to
employ the accuracy of the transitions into the second class along with the robustness of the
membership of the third class.

The hypothesizing of occlusions is consequently derived from a two step process:

1. Find all of the projected model edgels which have no image support. These form
connected sub-sets. Go to the boundaries of these sets (to where image support is first
totally lost).

2. If these boundaries are adjacent to projected model edgels which have full image
support (distance and orientation), we are potentially at an occlusion event; therefore
store the current location. Otherwise, track along the projected model curve until
we first find a model edgel with full support; mark this location as the position of a
possible occlusion.

Once the sites of potential occlusions have been hypothesized we may evaluated their
likelihoods in two different ways. The first makes direct use of the edge detector information
which was computed as the initial step of image processing. Initially we recover all of the
junctions in the original edge image which have an order greater or equal to three. Junctions
of order three are those where three edgel chain curves meet at a single point, and may be
classed as either ‘Y’, arrow, or ‘T’ junctions. As we are only interested in the latter class,
there is no need to draw a distinction between the arrow and ‘Y’ junctions. We declare
the presence of a ‘T’ junction when the angle between any pair of the edges meeting at
a junction are within twenty degrees of 180 degrees. The large tolerance reflects the fact
that edge contours are frequently displaced by significant amounts near junctions, and it
also allows for occlusion by curved objects. If the ‘T’ junction lies sufficiently close (a small
number of pixels, such as five) to where the recognition hypothesis deduced that there should
be an occlusion event, then we can add confidence to the hypothesis.

We also accept higher order junctions such as when four edge contours meet at a point.
Although these events are particularly rare, they might reasonably be interpreted as occlusion
events so long a similar angle constraint to that used above is satisfied.

This first level of processing does not resolve all of the occlusion events we find in an
image. This is because most edge detectors are notoriously poor at recovering meaningful
connectivity at junctions. Although the edge detector we use [23] provides better topology
than a filter such as the Canny [6], it still fails to recover all of the ‘T’ junctions in the
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image. We therefore resort to a second test which examines the overall structure of the
image intensity data near to the location of a potential occlusion. This is done by parametric
model fitting to junctions such as suggested in the approaches of Hueckel [15], Rohr [22], or
Deriche and Blaszka [8]. In fact we use the algorithm of [8] in our tests.

The type of parametric model fitted assumes that the surface is composed of a number
of constant intensity plateaux which meet at the junction and are separated by straight
edges. Each plateau represents an image region and smoothing is accounted for between
the image regions through an approximate parametrization of Gaussian smoothing. The
algorithm of [8] fits such a model over a specific window size at a given location in the image
(where we suspect that there is an occlusion), and returns a number of different parameters
which represent the interpretation of the intensity surface. The key measures which are
returned are a fitting cost, the grey level values of the plateaux, and the angles at which
the edges come into the junction. We can then estimate whether the junction is a real ‘T’
junction by looking at the angles between the edges and by making sure that the plateaux
have sufficiently different grey levels (they should be spaced out by at least ten grey levels;
we are using 256 grey level images).

4.1.1 Examples - edge contour junctions

At this stage it is educational to analyse some examples which demonstrate how the two
methods work on the images which are of interest. Given this knowledge we can then
proceed to see how the different ‘T’ junction reasoning processes can be used to enhance
or detract from the different object recognition hypotheses as they are produced by the
indexing system.

First, in Fig. 5 we show how a set of edgel data from the edge detector hypothesizes the
presence of ‘T’ junctions near to where occlusion events should be found on the strength of a
specific recognition hypothesis. This is an example of positive support for an object hypoth-
esis, with the measurement of the low-level junction description enhancing the acceptance
of a hypothesis. In Fig. 6 we demonstrate an example of negative evidence which renders a
hypothesis unlikely (or perhaps may even cause it to be rejected outright). The projected
model curves are shown initially following a contour in the image, but at one stage (due to
an incorrect model being hypothesized), the projected model curve parts quite clearly from
the image curve. The edge detector fails to find any junctions near the point of departure
and so one can start to doubt whether the original hypothesis is correct.

This type of reasoning appears very attractive on the weight of the two examples given.
However, most edge detectors are notoriously poor at recovering correct edgel contour con-
nectivity near junctions. This means that failure to record the presence of a ‘T’ junction
can be taken as only partial evidence against a hypothesis, and should not be used too
strongly. Conversely, if we are able to find a ‘T’ junction where predicted by a recognition
hypothesis then we can add considerable weight to the hypothesis. The progress we make
in marking ‘T’ junctions is apparent as some of the projected edge data from the model of
the hypothesis originally failed to gain image support and was treated neutrally, now the
lack of image support for those edgels can now be treated as positive support.
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d f

Figure 5: In (a) we show part of an image which includes an object from the model base.
The edges found by the edge detector are shown in (b), and the (correct) projection of the
matched model in (c). The recognition hypothesis suggests the presence of occlusions at the
transition zomes from white to grey of the projected model; this is shown in more detail by
the arrows in (d) for two of the occlusion regions. Near to these occlusion poinis are triple
junctions in the edge description which have the form of a ‘T’. This is shown in (f) which
is a close-up of (b), and so the hypothesis appears to be correct.
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d f

Figure 6: For the image section in (a) we have computed the edgels shown in (b). From
these and a subsequent fitting process we compute invariants to form the incorrect hypothesis
shown in (c). The features used to compute the hypothesis are not shown. The indexing has
incorrectly hypothesized a match to a model which finds significant image support. Near the
white-grey transition of the projected outline in (d), which is a close-up of (¢), we would hope
to find a junction in the edge description, (that is if the hypothesis were correct). However,
as shown in (f), the failure of the edge detector to record a junction in the right place suggests
that the hypothesis is false.
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a b

Figure 7: In (a) the close-up of the correct hypothesis shown in Fig. 5d is depicted, and
the output of the Deriche-Blaszka junction detector is shown in (b). The left-most junction
possesses an angle of 179.3 degrees between the straight part of the ‘T’ and the right-hand
junction 175.8 degrees. Both of these are sufficiently close to 180 degrees, and so can be
accepted as ‘T’ junctions. What is more, the differences between the closest grey levels for
both junctions are just over 55 grey levels, and so the different plateauz are clearly distinct.

S

a b
Figure 8: The Deriche-Blaszka filter also fails to find a suitable ‘T’ junction near the potential
occlusion event already discussed in Fig. 6. Instead it finds an ‘L’ junction which is shown

in (b). Such a feature has no relation to an occlusion event, and so the original hypothesis
1s likely to be false.

4.1.2 Examples - parametric junction models

The susceptibility of the approach based of finding edge contour junctions to poor segmen-
tation actually led us to examine the effectiveness of parametric junction model fitting. In
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Figs 7 and 8 we show similar examples to those for the edge junction reasoning, but this time
the presence of ‘T’ junctions is evaluated using the Deriche-Blaszka operator [8]. In the first
case a pair of suitable ‘T’ junctions are found and shown superimposed in the figure, and in
the second case no such fit could be found and so the hypothesis is marked as being unlikely.
Thus we see that parametric model fitting can enhance the understanding of recognition
hypotheses when directed by prior topological reasoning.

Again, these two examples of the use of the parametric junction model approach do not
describe the whole truth. Over repeated trials with a considerable number of images we
have found that the Deriche-Blaszka model does not actually represent the image intensity
surface correctly. Certainly the constant grey level modelis correct for image areas where the
global intensity gradient is small (though not the local intensity gradients which represent
edges), where the objects are very much polyhedral or polygonal, and where the overall
complexity of the scene is low. The examples we have shown so far all satisfy these image
conditions. More typically the differences in grey levels between the different regions of the
image are very slight near junctions, and the grey levels are better represented by sloping
surfaces rather than constant grey levels. Thus the simple parametric model fitting approach
fails. One could of course try to use a more sophisticated junction model which allows the
grey levels in a region to vary linearly, or by some other model. However, it is likely that
such a model would have too many parameters, so the process of fitting instances to the
image surface would be likely to be unstable and so not to yield reliable or accurate results.
We would certainly be interested in employing such a parametric fitting model having a
stable performance, but to our knowledge no such feature detector exists. Nevertheless, as
development of the system continues we shall investigate a number of other features detectors
such as those of Heitger and von der Heydt [14] and Forstner [13].

Consequently, it is reasonable to consider the use of junction-model fitting to be similar
to that of the edge contour junctions: accept a ‘T’ junction if it is hypothesized in the image,
but failure to record an instance does not mean that such a feature does not really exist.
Overall, we have found that the Deriche-Blaszka model provides much better confidence
of the presence of a ‘T’ junction than the edge based approach for controlled images, but
the fewer assumptions made during edge detection about the shape of the intensity surface
means that an edge detector often outperforms the more complex approach in marginal
cases. One such example of this is shown in Fig. 9, were the Deriche-Blaszka model fails
completely to find a suitable fit for a triple-junction model, but the edge detector (when
using exactly the same parameters as for recognition) succeeds in finding a junction of the
right nature.

4.1.3 Summary

So far we have demonstrated how occlusion events can be hypothesized by studying the
model topology information contained in hypotheses produced by a typical recognition sys-
tem. Hypothesized occlusions can be evaluated in a number of different ways. We have
demonstrated two such methods: the first using bottom-up information recovered from the
original output of an edge filter; and the second derives top-down data resulting from the
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Figure 9: Again we consider the image in Fig. 6, but this time we are interested in a correct
hypothesis. The edge detector output is given in (b) and the projection of the model is in
(¢). When we consider the edges around a real occlusion event as shown in (f) we find a
triple-junction which bears resemblance to a ‘T’ junction. However, due to the similarity in
the grey values around this part of the image, and also as a result of specularities on the
occluding object, the Deriche-Blaszka filter fails to find fit a suitable junction model.
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a b

Figure 10: The original level of verification for the bracket produced only a 70.5% score for
the hypothesis shown in (b). However, after the prediction and verification of the various ‘T’
junctions bounding the invisible part of the hypothesized object, we increase the verification
score 93.6%. Edgels which were previously unmatched, but are now marked as positively
occluded, are depicted in white in (b). The overall verification score is incremented by the
number of edgels in the positively identified occluded regions.

application of parametric junction model fitting. For certain cases the second method is
more accurate and more reliable, but in general it relies on making incorrect assumptions
about the shape of the intensity surface.

Nevertheless we can employ both methods with caution. Whenever either approach
suggests the presence of a ‘T’ junction, we can be be fairly confident that it is right, however
they both frequently reject junctions which do actually correspond to occlusion events.

4.2 How to update hypotheses

The two methods described above for evaluating the presence of ‘T’ junctions allow us
to update the scores given to hypotheses during the back projection stage of verification.
Whenever we find an occluded region which is terminated at one end by a verified ‘T’
junction, it is marked as making a positive contribution to the hypothesis. This is to say
that the score of wvisible model edgels used to compute the overall verification score should
be incremented by the number of edgels in the occluded region.

Consequently we can transform a hypothesis such as that shown in Fig. 10 (which is
the same hypothesis as shown in Fig. 2b) from a 70.5% recognition score to a re-evaluated
score of 93.6%, and hence have little doubt that the hypothesis is correct. Ideally we would
hope that the new score would tends towards 100%, but there are always short sections of
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a

Figure 11: The original verification score for the object in (b) was 70.7%. After occlusion
reasoning the confidence level rises to 83.6% which is a clear indication that the hypothesis
18 correct.

projected model curve which project near to image features with the wrong orientation (and
so are not marked as being caused by occlusion). Taking these into account would make
the hypothesis in Fig. 10 take on a score of little less than 100% (in fact 98.2% when we
ignore small section of less than five pixels in length). The dominance of a good hypothesis
such as this one significantly enhances our understanding of the scene. From a number of
experiments we are able to conclude that a final matching score of over 90% leaves little
doubt as to the identity of an object (this score includes occlusion reasoning and the removal
of short unmatched segments of less than five pixels in length).

A second example is shown in Fig. 11 where the score of an occluded object is increased
from 70.7% to 83.6% after occlusion reasoning (and 91.3% after removal of short unmatched
chains). Such a high recognition score usually only occurs when the hypothesis really is
correct, and so we may have a significant degree of confidence in this hypothesis.

4.3 Correctness of image topology

So far in this paper the effects we have been interested in have been dominated by model
topology and cause-and-effect reasoning for connected parts of the model to be either oc-
cluded or visible. It is quite understandable that we can make reciprocal considerations with
regard to image topology, or more properly between the consistency of both of the model
and image descriptions. In an ideal world (where we would of course cease to be frustrated
by problems in segmentation), the image topology should exactly match the projection of
the model topology.

Even with our current segmentation abilities we can develop simple tests which show
some robustness to errors in the extraction of the geometric interpretation of the image,
and which indicate whether the grounds for believing a hypothesis should be reduced. Note
that this approach fits in with the #rue wuntil proved false philosophy in that we try not
to discredit hypotheses totally until the evidence becomes insurmountable. For instance,
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Figure 12: The poorly oriented hypothesis in Fig. 4 required support from a large number
of unconnected image features caused by an underlying texture. These result in an image
topology (many disconnected edge curves) which is inconsistent with the model topology (a few
long curves). As there are no indications of occlusion events at the end of each image curve,
we infer that the correspondences are incorrect. Subsequently we can doubt the hypothesis.

we can start off by seeing which sets of image features have been given a correspondence
with a single model feature. Due to the trivial connectivity constraints which exist on
a lone model feature one would also expect the image features to be connected. There
are a number of different reasons for the images features becoming distinct, though still
remaining topologically linked either directly, or by being in the same one-chain. Perhaps
the segmentation and fitting procedures separated the features at the geometric level by
attributing each one to different algebraic objects, or perhaps the edge detector erroneously
placed a junction between them which provides connectivity with other features. However,
in both of these cases the image topology is consistent with a single model feature, and so
we need not doubt the integrity of a particular hypothesis.

Conversely, out attention should be drawn to instances in which connectivity has been
lost. Of course there might be a perfectly reasonable explanation such as the presence of an
occlusion event, but if not we should add further doubt to the interpretation. Thus, our way
of reasoning is again led back to the detection of occlusion events and hence ‘T’ junctions.

We show an example of the success of this line of reasoning in Fig. 12. Here model
features have been projected into the image and have found sufficient image support along
their lengths. However, the support has actually been provided by sets of unconnected image
features. We thus test for the presence of occlusion events at the ends of the image features,
and if they are not found, we mark the hypothesis as being un-reasonable.
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4.4 Uniqueness of description

By this stage of the proceedings the hypotheses have undergone a fairly detailed level of
topological analysis. Those which have been attributed near perfect scores are very likely
to be correct, whilst those with poorer verification tallies may either be erroneous, or might
just be suffering due to difficulties in segmentation or occlusion event detection.

We now turn to the basic fact that a single feature in an image is almost certainly
caused only by a single scene feature. Therefore, a consequence of recognition should be
that the correspondence between model and image featuresis at most one-to-one. Should two
hypotheses match a single image feature we can be sure that at least one of the hypotheses
is incorrect, and so should try and eliminate the least likely. This process is risky should
the confidence levels in the hypotheses by poorly defined, but as our abilities at verification
improve, we can start to attribute error measures with a reasonable degree of accuracy.

Although we have not yet been able to perform a complete and deep study, it appears
that by the time that the occlusion analysis has been performed we can start to mark
hypotheses more clearly for acceptance or rejection. We therefore proceed by accepting the
single hypothesis which has gained the highest recognition score. Then, all of the image
features which have been given a correspondence to any of the features in this model are
marked as being explained. All other hypotheses which have correspondences with these
image features are marked as being inconsistent, and rejected. We then take the next best
hypothesis, and proceed by examining its image features. In short, this process ensures a
uniqueness of description of the image features. An example of this type of reasoning is
given in Fig. 13 where we are able to rule out the hypothesis in (b) because it shares scene
features with the very highly scored hypothesis in (a).

Currently this process seems to work quite well, though it is possible that the introduction
of such a severe pruning step at this point is premature. It might be that more intermediate
steps should be introduced prior to the enforcement of the uniqueness of description. Some
of these other possible phases are discussed in Section 5, though until we have tested the
system more we cannot be sure about which directions to follow next.

5 Conclusions

In this paper we have demonstrated how reasoning about model and image topology enhances
our verification abilities in object recognition. A typical recognition system such as that of
Thompson and Mundy [26] computes the final match score for any hypothesis by determining
whether a set of independent model features finds support in an image. Rothwell [24]
demonstrated that such a strategy does not produce conclusive recognition results. We
have found that diffusing verification information around connected components of a model
means that a lack of image support can actually be turned into positive evidence. This in
turn means that verification thresholds can perhaps be raised from 50% up to somewhere
in excess of a 90% level of image support.
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Figure 13: In Fig. 11 we were able to find two hypotheses which matched to common scene
features. After all of the topological processing the hypothesis in (a) scored 91.3% and that
in (b) 68.2%. Any score over 90% provides very strong confidence, and so we can eliminate
any other hypotheses which match to the same image features.

The development of our verification algorithm involves reasoning about the discrepan-
cies between the model and image topologies. The differences are used to hypothesize
where occlusion events (“I” junctions) should lie in the image. The presence of such events
strengthens a recognition hypothesis, and the lack of one suggests that a hypothesis might
be false. The detection of the junctions is done via both edge detector output [23], and the
Deriche-Blaszka feature detector [8]. Neither of these detectors function perfectly, though
when either hypothesizes the presence of a ‘T’ junction we can be relatively sure that the
claim is true. Notably, the ease of use of the Deriche-Blaszka detector is enhanced through
the use of top-down processing gained from the use of recognition hypotheses.

Of course our results are not entirely complete. Whilst working within single images,
we need to analyse further the effects of other feature detectors. There are a large number
of other filters which require evaluation in either of the domains of bottom-up or top-down
processing. We also need to test the algorithms on a more varied range of objects of which
a three-dimensional model base is the ultimate goal.

On a different level, we have only made use of the boundary information contained within
the models. Such geometric primitives obviously provide very easy access to object descrip-
tions. However, a full verification scheme should include analysis about surface properties
such as texture, and perhaps even colour. Certainly with the aid of top-down segmentation
based on the recognition hypotheses one would be able to test out other object properties
in conjunction with the more geometric aspects.
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