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1994-1995

Bruno Salvy
(Editor)

Abstract

These seminar notes represent the proceedings of a seminar devoted to the analysis
of algorithms and related topics. The subjects covered include combinatorics, symbolic
computation, asymptotic analysis, average-case analysis of algorithms and data structures,
and computational number theory.

SEMINAIRE ALGORITHMES,

1994-1995

Abstract

Ces notes de séminaires représentent les actes, pour la plupart en anglais, d’un séminaire
consacré a ’analyse d’algorithmes et aux domaines connexes. Les thémes abordés compren-
nent : combinatoire, calcul formel, analyse asymptotique, analyse en moyenne d’algorithmes
et de structures de données, ainsi que de la théorie algorithmique des nombres.






ALGORITHMS SEMINAR
1994-1995

Bruno Salvy!
(Editor)

Abstract
These seminar notes represent the proceedings of a seminar devoted to the analysis
of algorithms and related topics. The subjects covered include combinatorics, symbolic
computation, asymptotic analysis, average-case analysis of algorithms and data structures,
and computational number theory.

This is the fourth of our series of seminar proceedings. The previous ones have appeared as INRIA
Research Reports numbers 1779, 2130 and 2381. The content of these proceedings consists of
summaries of the talks, usually written by a reporter from the audience.

The primary goal of this seminar is to cover the major methods of the average-case analysis of
algorithms and data structures. Neighbouring topics of study are combinatorics, symbolic compu-
tation and asymptotic analysis.

Several articles deal with combinatorial objects—their description or their random generation—
that are useful for simulations and empirical studies.

Computer algebra plays an increasingly important réle in this area. It provides a collection of
tools that permit to attack complex models of combinatorics and of the analysis of algorithms; at
the same time, it inspires the quest for developing ever more systematic solutions to the analysis of
well characterized classes of problems. In this vein, the notes contain several recent developments
regarding the automatic manipulation of differential and recurrence equations.

Asymptotic methods have been covered extensively in the previous volumes of this seminar.
These proceedings include approaches to divide-and-conquer recurrences and to some probabilistic
functions with applications to several algorithms.

The 31 articles included in this book represent snapshots of current research in these areas. A
tentative organization of their contents is given below.

PART I. COMBINATORICS

In addition to its own traditions rooted in mathematics, the study of combinatorial models arises
naturally in the process of analyzing algorithms that often involve classical combinatorial structures
like strings, trees, graphs, permutations.

In [1], an algorithm for random generation of sets of (i.e. without repetition) of various com-
binatorial objects is described. Aspects of the study of RNA are the subject of [2]. Automatic
sequences and their complexity are discussed in [3]. Some double sequences and their asymptotic
properties are studied in [4]. Finally, [5] gives an arithmetic interpretation to simple operations
on binary trees.

1This work was supported in part by the ESPRIT III Basic Research Action Programme of the E.C.
under contract ALCOM 1T (#7141).



[1] Uniform Random Generation for the Powerset Construction. Paul Zimmermann
[2] An Efficient Parser Well Suited to RNA Folding. Fabrice Lefebvre

[3] Pascal’s Triangle, Automata, and Music. Jean-Paul Allouche

[4] Riordan Arrays and their Applications. Donatella Merlini

[5] Structured Numbers. Vincent Blondel

PART II. SYMBOLIC COMPUTATION

Most exactly solvable models of combinatorics and analysis of algorithms rest on a suitable
algebra of generating functions. Once this has been recognized, an important goal is to find decision
procedures for classes of generating functions. Computer algebra systems provide a way of testing
and implementing the methods, and the problem of optimizing the corresponding procedures often
represents a non-trivial problem of symbolic computation.

An important class of generating functions is formed by solutions of linear differential equations.
Alternatively, the coeflicients of these generating functions can be given by a linear recurrence. Any
kind of solution to these equations can be used to help the analysis. Polynomial solutions of very
general linear equations can be found algorithmically [7]. Divergent series often occur as solutions
to linear differential equations, but several algorithms make it possible to deal with them [8]. A
general framework for the manipulation of linear operators and proof of combinatorial identities
is the subject of [9]. In [10], a remark about the use of such techniques for ¢-identities yields
short proofs of some of the Rogers-Ramanujan identities. Series defined by systems of non-linear
differential equations can be manipulated effectively, and in particular their equivalence problem
is solvable [11]. A framework for asymptotic expansions by computer algebra is given in [12].
Other computer algebra topics are the determination of the sign of determinants with single-
precision arithmetic [6], fast computation on matrices over a finite field [13], factorization over
finite fields [14], efficient computations with algebraic curves [15], and integration of hyperelliptic
functions [16].

[6] Evaluating Signs of Determinants. Jean-Daniel Boissonnat
[7] Polynomial Solutions of Linear Operator Equations. Marko Petkovsek
[8] Symbolic and Numerical Manipulations of Divergent Power Series. Jean Thomann
[9] Holonomic Systems and Automatic Proofs of Identities. Frédéric Chyzak
[10] Short and Easy Computer Proofs of Partition and ¢-Identities. Peter Paule
[11] Effective Identity Testing in Extensions of Differential Fields. Ariane Péladan-Germa
[12] Automatic Asymptotics. Joris van der Hoeven
[13] Normal Bases and Canonical Rational Form (Over Finite Fields). Daniel Augot
[14] Factoring Polynomials Over Finite Fields. Daniel Panario
[15] The Integral Basis of an Algebraic Function Field. Mark van Hoeij
[16] Symbolic Computation of Hyperelliptic Integrals. Laurent Bertrand

PART III. ASYMPTOTIC ANALYSIS

Asymptotic analysis is an essential ingredient in the interpretation of quantitative results supplied
by the resolution of combinatorial models.

An important class of problems involves recovering the asymptotic form of the coefficients of a
function from asymptotic properties of the function itself. This approach is taken in [17] to analyze
some divide-and-conquer recurrences and in [19] to study statistics related to some probabilistic
algorithms. The asymptotic behaviour of solutions to some non-linear differential equations is
described in [18]. In [20], structural limitations of some classes of asymptotic expansions are
pointed out.
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[17] Asymptotics of Mahler Recurrences. Philippe Dumas

[18] Oscillating Rivers. Franck Michel

[19] Analytical Approach to Some Problems Involving Order Statistics. Wojciech Szpankowski
[20] The Solution to a Conjecture of Hardy. John Shackell

PART IV. ANALYSIS OF ALGORITHMS AND DATA STRUCTURES

This part deals with the analysis of algorithms and data structures.

While functional analysis is the main tool of [21] in the analysis of the Gauss reduction algorithm,
singularity analysis is applied in [22] to algorithms that generalize symbolic differentiation, and
properties of the Mellin transform are exploited in [24] to analyze communication protocols. An
algorithm for random generation is analyzed in [23]. Another algorithm for solving a problem that
arises in automatic differentiation is given in [26], and the last two notes describe problems related
to computational genetics.

[21] The Gauss Reduction Algorithm. Brigitte Vallée

[22] Average Case Analysis of Tree Rewriting Systems. Cyril Chabaud

[23] Interval Algorithm for Random Number Generation. Mamoru Hoshi

[24] Algorithmic Problems in Non-Cabled Networks. Philippe Jacquet

[25] Minimal 2-dimensional Periodicities and Maximal Space Coverings. Mireille Régnier
[26] Reversing a Finite Sequence. Loic Pottier

[27] A Computer Support for Genotyping by Multiplex PCR. Pierre Nicodéme

[28] Genomic Sequence Comparison. Pavel Pevzner

PART V. MISCELLANY

This part contains an introduction to complex multiplication [29], an introduction to simu-
lated annealing [30] and an algebraic framework for computation with multivariate rational func-
tions [31].

[29] Introduction to Complex Multiplication. Frangois Morain

[30] Introduction to Simulated Annealing and Boltzmann’s Machine. Marcin Skubiszewski

[31] An Algebraic Approach to Residues in Several Variables. Bernard Mourrain
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some English texts, and Frédéric Chyzak. Thanks are due also to the speakers and to the authors
of summaries. Many of them have come from far away to attend one seminar and nicely accepted
to write the summary.

We are also greatly indebted to Virginie Collette for making all the organization work smoothly.

The Editor
B. Sarvy
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Uniform Random Generation for the Powerset Construction

Paul Zimmermann

Inria Lorraine
December 12, 1994

[summary by Eithne Murray]

Abstract

An algorithm for the uniform random generation of the powerset construction is pre-
sented. Given a combinatorial class I, together with a counting procedure and an unranking
procedure (or simply a random generation procedure) for I, this algorithm provides counting
and unranking (or random generation) procedures for P = powerset(/). For most combi-
natorial structures, each random powerset of size n is produced in O(nlogn) arithmetic
operations in the worst case, after @(n?) coefficients have been computed. This work is an
extension of the algorithms developed in [1, 2], that have been implemented in the Gaia
(now combstruct) Maple package [4].

1. Introduction

Given a combinatorial class I of unlabelled objects such that for each integer n the number I[n]
of objects of size n is finite (and, for convenience, I[0] = 0), the problem is to generate uniformly at
random an object of size n from powerset(/), where powerset(/) means the class of sets without
repetition made from objects in I.

Associate with each combinatorial class I two procedures — a counting procedure countI, such
that countI(n) gives the number I(n) of objects of size n, and an unranking procedure unrankI
which implements a bijection between [0, (n) — 1] and the set of objects of size n from I. Thus
unrankI(n, k) returns the object of size n whose rank is k.

Given these two procedures, the algorithm constructs similar functions countP and unrankP to
count and generate at random the objects from P = powerset([]).

The article [5] this seminar is based on is available from http://www.loria.fr/~zimmerma/gaia.
It contains implementation details, proofs, examples and experimental results.

2. The Counting Problem

The generating functions P(z) and I(z) satisfy this identity due to Pdlya: P(z) = exp({(z) —
SI1(2%)+ 51(2%) — 2I(2*) +-- - ). Using this identity and the operator © = zd/dz (see [1]), it is easy
to obtain equations to compute the coefficients P[k] = [2*]P(z) for k = 1,...,nin O(n?) operations.

3. An Unranking Algorithm

To generate a random object of size n from a powerset, consider the problem in two steps. First,
generate the shape the generated object will have, that is, how many objects of each size will be
present in the set. Second, for each size of object in the set, generate the objects of that size.
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3.1. Shape Generation. To generate a powerset of size n, the algorithm chooses non-negative
integers (y,...,%;) such that n = 4, + 25 + --- + ki;. It must ensure that the shape is generated
with a probability based on the number of powersets having the shape (4, ...,7;). This probability
depends only on the numbers I[{], for £ between 1 and n. Thus, only the procedure countI is
needed to solve the shape generation problem. This algorithm is based on the decomposition
Py, = Prod(Ps om, Prym2m), Where Py, is the set of objects of size £ + Am, where A is a non-
negative integer, m is a power of 2, 1 < £ < m, and Prod denotes the cartesian product. It involves
calculating O(n?) sizes of P, ,.

3.2. Equal Size Generation. The equal size generation problem is equivalent to the problem
of selecting £ distinct elements ay, ..., a; from 1,2, ..., n (called “selection sampling” by Knuth [3]).
There appears to be no known algorithm to do unranking for this problem in O(k) time and space.
P. Zimmermann proposes an unranking algorithm for the selection sampling problem that has
O(klogn) worst case complexity.

A method of unranking powersets is then obtained by using this selection sampling algorithm.
By replacing the unranking procedure for I in the unranking algorithm by a random generation
procedure, a random generation procedure for P is also formed. The complexity analysis for
the unranking algorithm depends on a condition of standard growth on the combinatorial class,
while the analysis for the random generation algorithm holds for all combinatorial classes. Most
combinatorial classes satisfy this condition, but otherwise, such as for a recursive structure where
I depends on P, there is little information about the algorithm’s efficiency.

DEFINITION 1. A combinatorial class I is of standard growth if their exists a constant A such
that the number I[n] of structures of size n satisfies I[n] < n4" for n sufficiently large.

THEOREM 1. If I is any combinatorial class, and randomI(n) has average cost O(nlogn), then
randomP(n, k) also has average cost O(nlogn). If I is a combinatorial class of standard growth and
unrankI(n, k) has worst case O(nlogn), then unrankP(n, k) also has worst case cost O(nlogn).

4. Conclusion and Open Questions

Given any combinatorial class I, a counting procedure for I, and a procedure for unranking
(random generation) for I, there is an algorithm to do unranking and random generation for
P = powerset(]). Some questions remain. Is there an O(k) algorithm for unranking k-samples
in an n-set? And what is the worst case complexity of this algorithm when I has a recursive
specification? Also, the pre-processing time of this algorithm is rather high (O(n?) operations and
about O(n*) time). This pre-processing cost should be reduced.
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An Efficient Parser Well Suited to RNA Folding

Fabrice Lefebvre
LIX, Ecole polytechnique

26 Juin 1995

[summary by Fabrice Lefebvre]

1. Introduction

In RNA, interactions between nucleotides form base pairs and, seen at a higher level, character-
istic secondary structure motifs such as helices, loops and bulges. These motifs are of great interest
to biologists. Though the secondary structure of RNA is much simpler than its tertiary structure,
it remains diflicult to compute because the number of secondary structures of an RNA of n bases
grows exponentially with n [9]. Several methods have been established for folding RNAs, that
is predicting RNA secondary structure. The first method is phylogenetic analysis of homologous
RNA molecules. It relies on conservation of structural features during evolution. Some people are
trying to apply a grammar formalism to this method [3]. The second method uses a simplified ther-
modynamic model of RNA secondary structure to find the structure with the lowest free energy.
The third method has been recently introduced by Haussler et al. [6] and it relies on stochastic
context-free grammars (SCFGs) to model common secondary structures of a given family of RNAs.
Our parser has been designed to express easily the latest two methods.

2. Folding and S-attribute grammars

It is well known that secondary structures without pseudo-knots of an RNA may be seen as
derivation trees of this RNA for a suitably defined context-free grammar (CFG) [7]. We might for
instance use the following grammar with terminals A,C, G, U:

E—¢|AE|CE|GE|UE | AEUE |UEAE |GECE|GEUE | CEGE | UEGE
We shall use the following classic definition of context-free grammars (CFGs).

DeriNiTION 1. A CFG G = (T, N, P, 5) consists of finite sets of terminals 7', nonterminals N,
productions (rewriting rules) P and of a start symbol 5 € N. Let V = NUT denote the vocabulary
of the grammar. Each production in P has the form A — a, where A € N and a € V*. A is the
left-hand side of the production and « its right-hand side.

In our work, we assumed that the grammar is proper (no useless rules or symbols, non-circular,
epsilon-free). Grammars whose derivation trees describe secondary structures will always be am-
biguous because a given RNA always has many different secondary structures.

CFGs allow us to give a synthetic description of a set of secondary structures, but they do not
allow us to choose one structure among this set. S-attribute CFGs (5-ACFGs) [4] are an extension
of CFGs allowing the assignment of a value (called attribute) to every vertex of a derivation tree.
With attributes, we may now select derivation trees with a simple criterion. If the attribute of a

5



vertex is an energy or a probability, the criterion may be the selection of the derivation tree with
the lowest energy or the highest probability at the root. But attributes are not restricted to simple
real values and may be more complex. Our context of utilization of S-ACFGs has led us to the
following definition for those grammars.

DErFINITION 2. An S-ACFG is denoted by G = (T, N, P, S, A, S4, Fp). This is an extension of
the proper CFG G = (T, N, P, 5), where an attribute z € A is attached to each symbol X € V|,
and a string of attributes A € A* to each string a € V*. S, is a function from 7 to A assigning
attributes to terminals. Fp is a set of functions from A* to A. A function f4_, isin Fp iff A — «
is in P.

The attribute A of a string « is the concatenation of the attributes of the symbols in o. When
a function f4_, is applied to the attribute A of a string o derived from A, it returns the attribute
x of A. Thus, functions of Fp are responsible for the computation, in a bottom-up way, of the
attributes of nonterminals A in derivations A3 —* u, where u must belong to T* in order that
the attribute of A may be computable.

3. Two known parsing algorithms

With our application of parsing to RNAs, we will have to find one derivation tree among a
potentially exponential number of derivation trees. Hence tabular algorithms are a good way to
deal with this parse forest since they output a compacted representation of the parse forest in
polynomial time O(n?®) and space O(n?).

The simplest algorithm is the one of Cocke-Younger-Kasami [1]:

Let G be a proper CFG in Chomsky normal form. The algorithm builds a table (7};):<;<, such
that 7} contains the item [A,¢] iff A — a;41 .. .4q;.

For j between 1 and n, perform the following steps

(1) Add [A,5 — 1] to T} if A — ay;
(2) Add [A,7] to T} if 3k < j such that [B,¢] € T} and [C, k] € T; and A — BC};
(3) Repeat the previous step while there remains items to be added to 7.

The string a; .. .a, belongs to L(G) iff [5,0] € T,.

CYK’s algorithm needs grammars in Chomsky normal form, and it does not avoid many useless
derivation subtrees. A much better algorithm is Earley’s algorithm [1, 2]:

Let G be a proper CFG. Objects of the form [A — X, ... Xy - Xpy1... X, 1], where A — X, ... X,
and 0 < ¢ < n, are called items. The algorithm builds a table (7})i<;<, such that 7; contains an
item [A — « - (3,1] iff there exists v such that

S—="a...0;Ay — ay...q;aBy =" ar...q; By

At the beginning, [S — -a,0] € T, for all § — a. Then, if [A — -Bj3,0] € Ty, add [B — -v,0] to T}
for all B — ~. For 5 between 1 and n, perform the following steps

(1) For all [B — a-af,i] € T;j_; such that a = q;, add [B — aa- 3,i] to T};

(2) If [A— v-,4 € T}, then for all [B — a - AB,k] € T;, add [B — aA - 3, k] to T};

(3) f[A— a-Bp,i] €T}, add [B — y,j] to T} for all B — 7;

(4) Repeat the two previous steps while there remains items to be added to 7j.
The string a; ...a, belongs to L(G) iff [$ — a-,0] € T,,.

All items generated by Farley’s algorithm are useful in the context of left to right parse of the

input string.



4. Our parsing algorithm

Our parsing algorithm outputs items which are in fact a factorization of Earley’s items sharing
the same right part before the dot: it will replace a set of items [A — a3, i] having the same string
a by a single item [A — a,t] if a # ¢, or by nothing if @ = € [8, 5]. A is the set of non-terminals
which were at the left-hand side of replaced items.

The algorithm replaces the search performed in step 4 of Earley’s algorithm by an extraction in
a priority queue @ holding pairs (X,7) of symbols and integers. We say that a pair (X,7) has a
greater priority than a pair (Y,7)if ¢ > jorifi =j and Y —* X. The function used to return and
remove the set of maximum pairs of ¢} is denoted by Fztract.

Let G be a proper CFG. Our algorithm builds a table (7})i<j<, such that 7; contains an item
[A — a,i] iff @ # ¢ and for all A € A there exists § and v such that

S—="a...0;A7y = ay...q;0B87 =" ar...q; 37

Every time an item [A — «,i] is added to T}, perform @ := QU {(A4,i) | A€ AANA — a}. At the
beginning, all 7; are empty. Let Ag = {A € N | 33,5 — AB}. For j between 1 and n perform the
following steps

(1) @ = {(a;,j — D}

(2) (X,1):= Eatract(Q);

(3) T =T, U{[A = X,i] [A={A€ A |38,A— XB}#0};

(4) T; =T, U{[A — oX,h] | I[A" = a,h] € T;, A= {A e A'|33,A — aX B} # 0};

(5) Repeat steps 2 to 5 while @ is not empty;

(6) Compute Aj := Ua_aijer,{D € N [IA — aBB,37,A€ ANB =" Dy}
Then a; ...a, € L(G) iff there exists [A — «,0] € T,, such that S € A and 5 — a.

In the general case, the complexity of our algorithm is O(n®) in time and O(n?) in space. As with
Earley’s algorithm, these orders might be improved for grammars having some special properties
which are of no interest in our case (RNA folding).

Now that we have an algorithm which may use CFG, we may transform it to use S-ACFG:

— Items are [A — a, i, A], where A is the string of attributes attached to a;
— Pairs (X, ) added to @ are triplets (X,4,a), where z is the attribute attached to X;
— Functions f4_., are taken into account at the time of reduction of items;
— The combinatorial explosion of the number of items is avoided with constraints C,, associ-
ated with non-terminals A, which replace a set of triplets (A,,z) with fixed A and ¢ by a
single triplet (A, ¢, y) whose attribute y is deduced from attributes in the replaced set.
Let G be a S-ACFG. Every time an item [A — a,2,A] is added to 7}, perform @ := Q U
{(A,7, fama(X)) | A € ANA — a}. At the beginning, all T; are empty. Let Ay = {4 € N |
33,5 — ApB}. For 1 < j < n perform the following steps
(1) @ = {(a;,5 = 1, 5a(a;))};
(2) (X,i,2):=Cx(Eatract(Q));
(3) T; =T, U{[A = X,i,a] [A ={A € A;|33,A = X3} # 0};
(4) T; :=T; U{[A — aX,h,Az] | A — a,h, A€ T;,A={A e A'|3B,A — aXB} # 0};
(5) Repeat steps 2 to 5 while @ is not empty;
(6) Compute Aj := Ua_o;ner, AP € N | IA — aBB,3y,A€ ANB =" Dv}.
Then @, ...a, € L(G) iff there exists [A — «,0,A] € T}, such that S € A and 5 — a.

Let r > 1 be the maximum number of nonterminals appearing at the right-hand side of any pro-

duction of G. Then the space complexity is O(n") and the time complexity is O(n"*!). Grammars

7



used in practice usually verifly r = 2 or may be turned into a grammar verifying r = 2. Hence our
algorithm has the complexity of the dynamic programming algorithm used by Zuker [10] to find a
secondary structure of minimal energy with the thermodynamic model.

The main advantage of our algorithm over a simpler Earley algorithm is that, with the factor-
ization provided by our items, many different items may now be replaced by a single item. This
feature is interesting with SCFGs we used with our algorithm.

5. Results

We have retrieved by ftp the Vienna package. This package is a set of C source files which
implements the old style dynamic programming relations popularized by Zuker to find the mini-
mum energy secondary structure of an RNA for the well known thermodynamic model. We then
converted the thermodynamic model embedded in this package into a suitable S-ACFG, and then
into a C source parser by a YACC-like tool which we wrote. Because they use the same model, our
generated parser and the Vienna package will return the same secondary structure from the same
input, thus we may compare dynamic programming and parsing. On 1667 bases of RNA on a DEC-
server 2100-500MP, the Vienna package requires 350 s. and 19 Mbytes, while our program needs
266 s. and 50 Mbytes. Thus our parsing algorithm is faster than standard dynamic programming,
and it uses less than three times as much memory. Yet, the description of the thermodynamic model
with S-ACFG is much simpler and much more flexible in the expression of structural constraints
than dynamic programming relations.

Our parsing algorithm may also be readily applied to SCFGs since probabilities of derivations
trees may easily be interpreted as attributes of derivation trees. The first results are encouraging
because we are 3 times faster on tRNAs than the CYK-like parser used by Haussler’s team.
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Pascal’s Triangle, Automata, and Music

Jean-Paul Allouche

Université de Marseille
December 5, 1994

[summary by Philippe Dumas]

The reduction of Pascal’s triangle modulo a prime number p, or a power of a prime number,
has been intensively studied. It is known that the reduction produces a phenomenon called auto-
similarity; natural homotheties with contraction ratio 1/p* appear, and a limit set in the sense of the
Hausdorff metric exists; moreover the limit set has fractal dimension log (*1')/log p. The reduction
modulo a composite number does not produce this phenomenon of auto-similarity; however it is still
possible to make a limit set come out [7]. This talk shows a way to describe the complexity of such a
double sequence. The basic tool is the concept of a double automatic sequence. First we introduce
automatic sequences and complexity of sequences over a finite set; as an illustration it is shown
that there are about (m + n)? distinct rectangular blocks with m rows and n columns in Pascal’s
triangle reduced modulo a prime number [1]. Next we give a statement about the automaticity of
some linear cellular automaton, and specifically of Pascal’s triangle reduced modulo an integer [2].
Finally an application to musical composition is mentioned [3, 5].

1. Automatic sequences

Formal language theory provides a way to define infinite words as fixed points of morphisms. As
an example, take the alphabet {0,1} and the recurrence

Wo = 07 Wpp1 = WpWhy,

where the bar means exchange 0 and 1; the first few terms of the sequence are the following words,

Wy = 0
wy; = 01,
Wy = 0110,

wz = 01101001,
wy = 0110100110010110,
ws = 01101001100101101001011001101001.

Ultimately an infinite word appears. This word is the Thue-Morse word, which is a fixed point of
the substitution [6]

o(0)=01,  o(1)=10.

Another example is defined as follows. Two letters, a left brace { and a right brace } are the
elements of the alphabet. The sequence of words A, is defined by the rules

Ao=1{},  Any={4...A,}.

9



The limit sequence is a fixed point of

MO ={ A =1

and provides the sequence of natural integers, as defined by Bourbaki.

Ficure 1. Pascal’s triangle reduced modulo 2 (top) or modulo 6 (bottom); the
size of a dot is proportional to the value of the residue it represents. In the first case
the picture is auto-similar, but not in the second one. Nevertheless, in both cases,
a limit set exists in the Hausdorfl metric.

All these sequences are 2-automatic. (The 2 refers to the fact that the alphabet has two letters.)
The definition may be adapted to double sequences. For instance the morphism

s0=(y 9).  s0=(; 1)

10



applied to the starting point 1 gives Pascal’s triangle reduced modulo 2,

100 00000
1100 0000
101 00000
11110000
100 01000
11001100
10101010
11111111

2. Complexity

The complexity of a sequence over a finite alphabet is defined as another sequence p(n), where
p(n) is the number of distinct factors with length n in the given sequence. Obviously the complexity
satisfies

1< p(n) < q",

if the alphabet is of size ¢. The complexity reflects how intricate the sequence is. For instance, if
for any n the inequality p(n) < n is satisfied, the sequence is ultimately periodic. In the case of the
Thue-Morse sequence, the sequence of differences p(n + 1) — p(n) is 2-automatic. Cobham showed
that every automatic sequence has complexity O(n) [4].

For double sequences, the shape of block to use in the definition of complexity is rather arbitrary.
A natural choice is to consider rectangular blocks. Then, the complexity is a double sequence
P(m,n) where P(m,n) is the number of distinct rectangular blocks with m rows and n columns
occurring in the given double sequence.

For Pascal’s triangle reduced modulo 2, it is readily noticed that the complexity satisfies

Py(m,n) = Py(1,m+n-1).
Moreover the relation
(1 _I_ x)2t — (1 _I_ x2)t
shows that row ¢ determines rows 2t and 2t + 1; as a consequence the formula

Py(1,n)=n*—n+2

is satisfied. More generally, Pascal’s triangle reduced modulo a prime p has complexity order n?.
The proof relies on the fact that differences of order 2 of P,(1,n) form a p-automatic sequence. If
the modulus is not a prime but is square-free, for example if the modulus equals 6, the Chinese
remainder theorem shows that

Ps(1,n) < Py(1,n)P5(1,n).

Actually, the quantities are equal, since the residues modulo 2 and modulo 3 may be considered as
independent. More generally, the complexity P,(1,n) of Pascal’s triangle reduced modulo a square
free number ¢ is shown to be of order n?*(9), where w(q) is the number of prime factors of ¢. The case
)p = (1 —|— $‘n)pa_1
mod p®. This result gives a mathematical meaning to the feeling that Pascal’s triangle reduced
modulo m is more and more complex as the number of prime factors of m increases.

a—1

of prime powers may be tackled by a formula due to Kummer, namely ((1 +z)?
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3. Automaticity of linear cellular automata

Pascal’s triangle is an example of a linear cellular automaton. There is an initial state, here
g(z) =1, and arule r(z) = 1+ 2. At time ¢, the state of the automaton is g(z)r(z)’. To recover a
more classical definition from this one, it suffices to consider that coefficients of the state at time ¢
are the contents of cells arranged along the infinite line of integers Z. Moreover the set of states of
a cell is finite if the ring of coeflicients is finite; here the ring is the ring of integers modulo m. In
other words, the double sequence of binomial coefficients reduced modulo m shows the evolution
of a classical linear cellular automaton.

It is shown that, when reduced modulo a prime power p¢, a linear cellular automaton provides a
p-automatic double sequence. The proof needs an additional concept: a polynomial r(z) is said to
have the m-Fermat property if it satisfies

r(z™) =r(z)".

The Kummer formula above gives an example with m = p a prime number. When the rule r(z)
has the m-Fermat property, then the associated double sequence is m-automatic.

As a consequence Pascal’s triangle reduced modulo m is m-automatic if m is a prime power.
Moreover the converse is true, and its proof relies on Cobham’s theorem which asserts that a se-
quence both p-automatic and g-automatic, p and ¢ being prime and distinct, is ultimately periodic.
Here the sequence used is the sequence of central binomials (2:) This result gives a precise formu-
lation of the fact that Pascal’s triangle reduced modulo a composite number is more complex than
when reduced modulo a prime power.

4. Musical composition

Some composers have used finite automata to produce musical motifs. For instance Tom Johnson
has used the morphism defined on a two-letter alphabet {+,—} by

W) =4 p) =+

A + codes a melodic ascent, and a — codes a melodic descent. In the same vein, he has used
Pascal’s triangle reduced modulo 7. The interest of such a composition is that automatic sequences
are at the frontier between periodicity and chaos. But as Tom Johnson himself says, this can only
be a tool and certainly not a way of composing music in a purely automatic fashion.
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Riordan Arrays and their Applications

Donatella Merlini
University of Firenze, Italy

October 10, 1994

[summary by Daniele Gardy]

Abstract

A Riordan array is a doubly indexed sequence of coefficients of a bivariate generating
function. This talk presents some of their properties, then shows how they can be useful in
combinatorial problems.

1. Riordan arrays

The term Riordan array was introduced recently to denote a concept familiar in combinatorics;
it is a doubly indexed sequence {d, y;n,k € N}, defined for two formal series d(¢) and h(t) by

1) dos = PO, or Zdt:%

We use the notation (d,h) := {d, ;}. A Riordan array is proper when d, ,, # 0 for all n, i.e. when
h(0) # 0.

ProPERTY 1. The d, j satisfy a recurrence relation
(2) i1 k41 = Golp o + ardy fy1 + - -

The a;’s define a series A(z) = Y, a;2" and the series h satisfies the equation A(t) = A(th(t)).

If the recurrence relation (2) holds for some sequence d,, i, then this sequence is a proper Riordan
array, with d(¢) the generating function of the sequence {d,o}: d(t) = Y, d, ol", and h(¢) the
(unique) solution of the equation Y = A(tY).

THEOREM 1. Let f(z) =3, fi2"; then
Zdn efe = ["]d(0) F(2R(2))}-
ExaMPLE. The binomial numbers (}) are defined by d(t) = h(t) = 1/(1 —1):

()~ ) -t}

The generating function of the associated sequence {a;} is simply A(¢) = 1+ ¢, and the so-called
Euler transform is derived from Theorem 1:

3 (1) r=m{tr ()}
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2. Combinatorial sums

THEOREM 2. The Fuler transform generalizes as

n+ ak . tm th-a
Zk:(m—l-bk)fk:[t ]{(1—t)m+1f((1—t)b)} (6> a),
=["HA O (L)} (b<0).

Theorem 2 applies to sums involving the Catalan numbers C} = (Zkk)/(k + 1); for example

S (raore=(600)

It does not apply directly to Stirling numbers of the first and second kind [}] and {7} }; however
the simple identities

1

Z;[k]t =log" —; X {k}t = (' = 1)

n!
allow us to use a modified form of it. For example, Theorem 2 after some algebra gives

Sl ()
k P E+1 m+1 P m-ptly

k

where B,, is a Bernoulli number.

3. Inversion formulse

The product of two Riordan arrays D = (d(t),h(t)) = {d, x} and F = (f(t),9(t)) = {far} is the
double sequence {g, ; = > dnjfin}

PropPERTY 2. The product of two Riordan arrays is a Riordan array:
D - F = (d(t) f(th(1)), h(t)g(th(1)))-
The identity element is [ = (1,1).
PROPERTY 3. A proper Riordan array D = (d(t),h(t)) has an inverse d=* = {d, 1} = (d(t), h(t)).

As a consequence, we obtain an inversion formula for sums:

k k

Such formule date back a long time; see for example Riordan’s book [9]. The inversion formulae
in this book were recently revisited by Sprugnoli [11], who proved them again using the theory of
Riordan arrays; see also [10].
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4. Coloured walks

We consider three types of steps on a square lattice: North (N), East (E) and North-East (NE).
An underdiagonal walk is entirely below or on the main diagonal z = y. A weakly underdiagonal
walk is a walk such that its final point is on or below the diagonal. Let p, ; and g, ; be respectively
the number of underdiagonal walks and the number of weakly underdiagonal walks, with n steps
and ending at a distance k from the diagonal; the distance k can be either along the z-axis or along
the y-axis.

If there is only one kind of step of each type, then we have a Motzkin walk, corresponding to
Motzkin words. A generalization allows for different kinds of horizontal (E), vertical (N) or diagonal
(NE) steps [7]. Let @, b and ¢ be the number of different steps in the East, North-East and North
directions; then we have the following result.

THEOREM 3. The {p, s} and {q, } are Riordan arrays such that the associaled A function is
A(t) = a+ bt + ct?, and, with A =1 — 2bt + (b* — 4ac)t?,

1—bt—VA 1-bt—VA
{pn,k}:( );

2act? ’ 2ct?

(1 1-bt-VA
{Qn,k} = \/Z’ PE )

Symmetric walks. When there is the same number of colours for East and North steps (¢ = ¢),
then it is possible to derive some interesting identities. For example, let {f;} be the periodic
sequence {1,0,—-1,0,1,0,—1,...}; then )", p, » fr = b". The algebraic proof of this equality is easy;
there also exists a combinatorial interpretation: There is a bijection between the underdiagonal
walks ending at distance k£, whose last non-NE step is N, and the walks ending at a distance k 4+ 2
whose last non-NE step is E.

5. Asymptotics for convolution matrices

The reference for this section is [8]. Let F' be an analytic function s.t. F(0) = 1, and define
F,(z)=[2"|{F(z)"}. This is a polynomial function of degree n, satisfying a convolution property:

Fa(oty) = iFn_k(x)Fk(y).

The f,r = [¢F]{n!F,(2)} = [zF2"[{n!F(2)"} define an infinite convolution matriz [1, 6]. Let

dn,k = %fn,lﬂ then
=Y (1) (&) (5)
mk Eylkolks! - \ 1! 2! 31)

which shows that {d, ;} is a Riordan array: {d,;} = (1,(InF(2))/2). In other terms, f,, =
(n!/ED[z"] {(In F(2))*}.

For a fized ratio p = n/k, we have an asymptotic equivalent of d, j, or equivalently of f, j:

Define m = n — k and
In F(z) =) In F(z) g
¢,(2) = — =\7= )
then d, , = [2"]{®,(2)™}. As long as p is fixed, we can define C(u) = >, [z"[{®,(2)"}u™. A

form of the function C'(u) can be computed as follows. There exists a unique analytical function
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w(z) s.t. w(0) = 0 and w(z) = 2®,(w(2)). Define a function G' by G'(u) = 1/®,(u); then, by the
Lagrange Inversion Formula,

UG} = [0 {6 @)@y} = ] (@, ()}
Applying this formula backwards to [2™]{®,(2)™} gives

uw' (u) 1

g = [ HO)} - with - Clu) = =0 = Ty

When the function @, is well-behaved, an asymptotic equivalent of d,, ; can be obtained by singu-
larity analysis. For example, assume that the radius of convergence of w(z) is finite, and that w
has a single singularity r on its circle of convergence, defined as the solution of smallest modulus of
the equation z@é(w(z)) = 1. Let s = w(r); as s = r®,(s), we get that s®,(s) = ®,(s). This leads
finally to the asymptotic formula

® (s ® (s)™ (2
(3) do i ~ p(*) P(m) ( m)
J20,(s)®u(s) 4 m
If desired, this equivalent can be expanded into an asymptotic expansion to any order.

ExaMPLE. Asymptotic estimates for Stirling numbers of the second kind have been obtained
by several authors (see for example [12] for a survey of results and for uniform expansions); some
estimates can also be derived from (3): For f,; = {}%}, we have d,; = (k!/n)){}} and ®,(z) =
h(2)®=1) with h(z) = (¢* — 1)/z. The equation defining s simplifies into e* = p/(p — s). Then
®,(s)=1/(p—s)t/m™, q);(s) = ®,(s)/s and @;(5) =®,(s)(p(s—p+1))/(s*(p—1)). The asymptotic
equivalent (3) gives after some computation

n nt | ®,(s) [2n—2k\ [P, (s)\"
{k}N EY\ 2s2@ (s)\ n—k ( 4s )
n! k(n — k) 2n — 2k k*
TE\ 2n(ks —n+ k)\ n—Fk ) (4s)"—F(n — sk)F’

Numerical results for Stirling numbers of the second kind are then presented for given n and k,
and hence p; the conditions of application of the formula (3) are not satisfied (the formula holds
for constant p and n — +00) but the approximations computed are very close to the actual values,
which suggests that the range of application of (3) is much wider than indicated, and that some
kind of uniformity result should hold.

Indeed, for a fixed ratio p = n/k, the asymptotic expansion given by (3) can also be obtained by
a saddle-point approximation. We give here the computation for the first term of the expansion;
the full asymptotic expansion can probably be obtained in a similar way. For n — k = m — 400,

we have to compute [27']®7*(z). The saddle-point pg is defined by the equation zq);(z)/q)p(z) =1;
the uniqueness of the solution on ]0, +oo[ shows that py = s. Then

@ R~ A i ot (%Z(S)_ & “”E&)-
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As q);(s)/q)lp(s) = 1/s here, 0% is simply 52<I>;(5)/<I>p(3). Injecting this into Equation (4), and with
®,(s) = s®,(s), we get

I

o (s)mtt
)}~ = :
\/27rm<1>p(s)<1>; (s)

which is exactly (3) if we use Stirling’s approximation for the factorial: (**)4=™ ~ 1/\/Tm.

Thus, the approach presented in this talk can be seen as an alternative to the saddle-point
approach; instead of solving the equation sq);(s) = ®,(s), it leads to solving the equation w(r) =
r®,(w(r)), which may be simpler in some cases.

To show how we can obtain asymptotic expansions for a large range of n and k, we write

log
rer(2)} = Fr{f(z)f} with  f(z) = gi()
Now f*(z) = ®,(z)™ and the saddle-point approximation gives

m1f rk f(Pl)k
(5) [Z"{f"(2)} ~ W7

for p; the (unique) real positive solution of the equation zf(2)/f(z) = m/k and

o = P/ 1)pr) = (2 1)) + (] (o) /o1 S (1)
Now f/f = (m/k:)(q);/q)p) and the saddle-point is still p; = s; also 0? = (m/k)pf(q);/q)p)(pl);
hence the equation (5) is simply another way of writing (3) or (4). However, in this last form, it
is easy to understand why the approximation (3) holds for n/k no longer fixed: The equivalent
approximation (5) has been proved for m = (k) [2, 5] or for m = o(k) [3, 4]. This indicates that
the asymptotic expansion (3) is valid without restriction on p = n/k, as long as n = k+ O(k), and
m=n—k — 4+o0.

[z" {7 (=

Bibliography

[1] Carlitz (L.). — A special class of triangular arrays. Collectanea Mathematica, vol. 27, 1976, pp. 23-58.
[2] Daniels (H. E.). — Saddlepoint approximations in statistics. Annals of Mathematical Statistics, vol. 25,
1954, pp. 631-650.

[3] Drmota (M.). — A bivariate asymptotic expansion of coefficients of powers of generating functions.
FEuropean Journal of Combinatorics, vol. 15, 1994, pp. 139-152.
[4] Gardy (D.). — Some results on the asymptotic behaviour of coefficients of large powers of functions.

Discrete Mathematics, 1995.
[5] Good (I.J.). - Saddle-point methods for the multinomial distribution. Annals of Mathematical Statistics,
vol. 28, 1957, pp. 861-881.
[6] Knuth (D. E.). — Convolution polynomials. The Mathematica Journal, vol. 2, 1992, pp. 67-78.
[7] Merlini (D.), Sprugnoli (R.), and Verri (M. C.). — Algebraic and combinatorial properties of simple,
coloured walks. In CAAP, Lecture Notes in Computer Science, vol. 787, pp. 218-233. — 1994.
[8] Merlini (D.), Sprugnoli (R.), and Verri (M. C.). — Asymptotics for two-dimensional arrays: convolution
matrices. — June 1994.
[9] Riordan (J.). — Combinatorial identities. — Wiley, New York, 1968.
[10] Sprugnoli (R.). — Riordan arrays and combinatorial sums. Discrete Mathematics, 1994.
[11] Sprugnoli (R.). — A unitary approach to combinatorial inversions. — June 1994.
[12] Temme (N. M.). — Asymptotic estimates of Stirling numbers. Studies in Applied Mathematics,
vol. LXXXIX, n°3, 1993, pp. 233244

17






Structured Numbers

Vincent Blondel
INRIA Rocquencourt

April 10, 1995

[summary by Philippe Flajolet]

Abstract

The talk describes a “lifting” of the system of unary representations of numbers into a
system of tree-like representations. Alternatively, this can be seen as an arithmetic descrip-
tion of certain combinatorial properties of trees. In particular, addition, multiplication, and
exponentiation of trees can be defined in a natural way.

This talk is based on [1]. We start with the family of complete binary trees [3], where each node
has either 0 or 2 successors. The trees considered are rooted and embedded in the plane, so that
left and right are distinguished. Nodes without successors are the external nodes, sometimes called
leaves. The weight or size of a tree t is taken to be the number of its external nodes and is denoted
by [t]. It has been well-known for over a century (bracketing problems, see [2]) that the number of
trees of size n is given by the Catalan number,

1{2n -2
) I, - _( )
n\n-—1
One may well view a tree of size n as a tree-like representation of integer n, and try to generalize
the usual operations of addition, multiplication, and so on, of the integers. In other words, we also

regard trees as extending the unary representation of integers with some supplementary structure
superimposed, hence the name of “structured numbers” in the title.

1. Operations

First, addilion is the basic operation defined as associating to two trees, v and v, the tree
u+tv:i=(u-v)

obtained by taking a root node and appending w and v to it, as left and right subtrees respectively.
Given that weight is defined by number of external nodes, one has [{| = |u| + |v|, so we do capture
in a way the usual addition of integers. On the other hand, it is clear that addition of structured
numbers is not in general commutative.

Multiplication should be defined as a suitable iteration of addition, exponentiation as an iter-
ation of multiplication, etc. Such a process is taking its inspiration from what has been done for
corresponding integer operations; in that case, a denumerable collection of operations result that
lead to the classical Ackermann function of recursive function theory. The talk and the paper [1]
both propose to examine what survives of properties of integers in this context.
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A whole hierarchy of binary operations on trees is introduced recursively as follows:
a'b=a+b, a1 =(a-*by)-" (a-Fby),

where by, b, are the left and right root subtrees of b. We thus have by definition @ -! b = a + b, and
we define multiplication and exponentiation by

axb=a-*b, a® =a?b.
Note that the multiplication in @ X b can be viewed as the process of grafting copies of a at each
leaf of b, that is to say, as the substitution b[a].
THEOREM 1 (WEIGHT THEOREM). With a and b arbitrary trees, one has
|a+8] = |al + 6], [axb|=lal-|b], |d'|=lal".
For higher-order operations, the weight of the result is no longer independent of the shape of the
operands.
THEOREM 2 (DISTRIBUTIVITY). With a,b,c arbitrary trees, one has
afb+ec)y=(a*b) 1 are), ar(bxec)=(a-"b)Fec
For instance, we have the natural generalizations
ax(b+ec)=axb+axec, ax(bxec)=(axb)xec,
al*o) = @8 x o, a¥%¢ = (ab)c‘

These two theorems are representative of the results of [1]. Other properties include right sim-
plifiability of +, x (the property stops at level 3 of the hierarchy!).

2. Prime trees

It is clear from the interpretation of multiplication as substitution that a tree is composite or
non-prime (is non-trivially decomposable under multiplication) if and only if one of its “fringes”
consists of identical trees. Each tree then factors uniquely into primes [1]. From there, it is natural
to ask whether there is some sort of a prime density theorem for structured numbers. The answer
was obtained jointly by the speaker and the author of this summary. We briefly explain it here.

The number 7, of all trees of size n is known and given by (1). Let I,, be the number of those that
are primes; clearly, we must adopt I; = 0 (1 is not a prime!). Let T'(2), I(z) be the corresponding
generating functions:

T(Z):ZTnZn:Z_|_22_|_223_|_5Z4_|_1425+4226+.”’

n>1
I(z) = ZInZn =22 4222+ 42 + 142° +382° 4+ ...
n>1
Combinatorial classics [2] teach us that
1—+/1—-4z
5 .

Now decomposing trees according to their prime “trailers” yields a relation defining I(z) implicitly:

T(z) =

(2) T(Z) =z+ ZTkI(Zk)v Tn = 6n,1 + Z Tn/dId-
k=2 dln,d>2
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We recognize here a product of (formal) Dirichlet series. Setting

0 1} =) ]ﬁ

T(s) = s us) = Z_: —

we have the relation matching (2):
T(s)=14+7(s)(s) or us)=1-
Thus expanding 1/7(s) as (1 4+ v(s))~! yields
Li=T,— > TaTo,+ > ToTyTe—--.

dydy=n dydodz=n
a;>2 aj>2

In particular T, — I, is equal to 0 if n is prime (as it should), is equal to (7,)* if n = p* is the
square of a prime, and is otherwise approximated by 27,7, /, if p is the smallest prime divisor of
n. Here are a few initial values.

n 1 2 3 4 5 6 7 8 9 10 11 12

T, 1 1 2 5 14 42 132 429 1430 4862 16796 58782
L, 01 2 4 14 38 132 420 1426 4834 16796 58688

Note that the asymptotic form of 7,, results from Stirling’s formula:
4n—1

\/7rn3.

T, ~

Clearly, almost trees are irreducible: the asymptotic density of primes is thus 1 and further char-
acterized by the remarks above.
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Evaluating Signs of Determinants Using Single-Precision Arithmetic

Jean-Daniel Boissonnat
INRIA Sophia-Antipolis

May 15, 1995

[summary by Brigitte Vallée, Université de Caen]

Abstract

Most decisions in geometric algorithms are based on signs of determinants. For example,
deciding if a point belongs to a given half-space or a given ball reduces to evaluating the sign
of a determinant. It is therefore crucial to have reliable answers to such tests and to produce
robust algorithms. There exist basically two categories of approaches to this objective:

— rounded computations, followed by a proof of the topological correctness of the result;

— exact integer computations that use nf bits for the computation of an n x n determi-

nant with ¢-bit integers as inputs.

Here, the second approach is followed, the goal being to use as few bits as possible to evaluate
signs of determinants. For dimensions n = 2 and n = 3, the algorithms proposed require
respectively ¢ and £ + 1 bits arithmetic, and run in polynomial time in £: they perform in
the worst case respectively O(¢) and O(£3) elementary operations —additions, subtractions,
comparisons, and Euclidean divisions— on integers of £ or £+ 1 bits. Extensive simulations
have shown that the algorithms perform well in practice so that the average-case complexity
appears to be much better than the worst-case complexity. This observation can be proved
in the two-dimensional case [6]. Under heuristic hypotheses, the proof can be extended to
the three-dimensional case [5].

This talk is based on a joint paper of Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers,
Franco P. Preparata, and Mariette Yvinec [1]. The author of the summary has interpreted some
ideas of the original lecture and has proven a conjecture stated there [5, 6].

1. Two-dimensional case.

The aim is to evaluate the sign of a 2 X 2 nontrivial determinant,

D = det (xl yl) ,
L2 Yo
with nonzero integer entries of at most £ bits. By dividing the first column by z; and the second
column by ¥, one can write D = z,y, D’ with

D’:det<1 ;):y—x,

x

where y = y,/y; and © = x5/x;. Evaluating the sign of a 2 x 2 determinant thus reduces to
evaluating the sign of the difference between two rationals z and y. We consider the set J, of
rationals in the interval ]0,1/2] whose numerator and denominator have at most £ bits.
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The main idea is to expand both rationals z and y into continued fractions: the comparison
between both expansions (under lexicographic order) suffices to compare the rationals themselves.
The outline of the algorithm is thus very simple:

Aslong as z and y have matching continued fractions expansions, continue expand-
ing; stop as soon as the expansions differ.

There are two variants of the algorithm, which depend on the kind of continued fraction that
is used: The Standard-Sign algorithm is based on standard continued fractions that are built with
the usual Euclidean division a = bg + r with 0 < r < b while the Centered-Sign algorithm is based
on centered continued fractions that are built with the centered Euclidean division a = bg + r with
|r| < b/2. The worst-case of these algorithms arises when z and y are equal and the analysis uses
well-known results of Lamé (1845) [4] and Dupré (1846) [3] relative to the standard and centered ged
algorithm respectively. The average number of iterations is quite different from the worst case since
it is asymptotically constant (i.e., independent of the number £ of bits of the input) [6]. Not too
surprisingly similar constants show up in the average-case analysis of lattice reduction algorithms
in the two-dimensional case [2].

THEOREM 1. On rationals z and y of J,, the algorithms perform a number of ilerations L at
mosl

log(1+\/2) ?

(los2 for the Standard-Sign algorithm.

{KJ—IO 2. for the Centered-Sign algorithm,
log ¢’

(Here, ¢ is the golden ratio equal to ¢ = (1 ++/5)/2). If the entries x and y are taken in the
square Jy x J, with a density F(x,y) proportional to |z — y|” (with r > —1), the average number
of iterations E[L] of the Centered-Sign algorithm is asymptotic to

,_
—

2
1

r {— o0,
SURNCES” ; e ‘32“

and the average number of iterations E[L] of the Standard-Sign algorithm is asymptotic to

4 =1 1
a(r) = C(4 _I_ 27,) E d2+r Z C2+r7 K — 0.

d=1 d<c<2d

In particular, when the density F is uniform, the average numbers of iterations are respectively
asymptotic to

d¢?

B:=p(0) = idi > %:1.08922...,
=[d

,_
—

SIS

o= a(0) = 7p i > %:1.20226....

d=1 %" g<e<na ©

In Fig. 1, the domains [L = k] relative to the Standard-Sign algorithm are represented alterna-
tively in black (for odd values of k) and white (for even values of k).
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F1Gurg 1. The domains [L = k] relative to the Standard-Sign algorithm.

2. Three-dimensional case.

Let D denote a 3 x 3 determinant with Vi, V5, V3 as row vectors. The components z;,y;, z; of
vector V; are assumed to be f-bit integers. The vertical components of the input vectors play a
special role in the algorithm: all the projections performed are projections parallel to E, where F,
denotes the last vector of the canonical basis of R3. Using properties of the determinant, one can
assume without loss of generality that the vertical components z; are positive and in increasing
order.

The sign of D depends on which side vector Vj lies with respect to the plane P := (V}, V) and
this sign is more difficult to evaluate if vector V3 is very “close” to plane P. We thus define a
neighbourhood V of the plane P that satisfies the following two properties:

(a) If V3 does not belong to V, then it is easy to determine on which side vector V3 lies with
respect to the plane P, the problem reducing to evaluating the sign of a 2 X 2 determinant;

(b) If V5 belongs to V, then there exists a vector W3 obtained by translating V3 parallely to P
whose last component zj satisfies |2}| < z3/2; the algorithm then continues with the new
vector system (Vi, Vy, Ws).

The vector V3 decomposes as Va = A Vi + A Vo + pFE,, with rational components Ay, Ay, p. The
numerators and denominators of these rationals may have 2¢ bits, so that we cannot directly operate
with them. The determinant D satisfies

D :=det(Vy, Vy, Vi) = pdet(Vy, Vs, E,) = pdet(vy, vq),

where v; is the projection of V; on the horizontal plane z = 0. If we evaluate the sign of the
rational p —without explicitly computing it— the problem reduces to evaluating the sign of the
determinant det(v;, v,), which is of order 2.

Let R be the lattice generated by the vectors V; and V5. The fundamental centered parallelogram
F of lattice R is defined as the set F := {V = Vi + poVo; ;| < 1/2}. The parallelogram F
divides into four sub-parallelograms F; that correspond to the four quadrants determined by the
four possible signs of (pq, ft2).

Let V be the vector of lattice R for which V3 — V' is projected inside the fundamental centered
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FicurEe 2. The sub-box B5;.

parallelogram F. The integer vector V' decomposes as V := |A;]V] 4+ |A2| V> where |A] denotes the
integer nearest to rational A. The integer vector V3 := V3 — V is Vi = p, Vi + po Vo + pE,. Here,
the components p; are rationals with absolute value less than 1/2 and the integer 2z denotes the
vertical component of V3. The vector p; V] + po V5 is thus a vector of plane P with rational vertical
component 2’ := p1z; + pazs. Since p = 25 — 2’, the sign of p is easy to evaluate provided that we
can evaluate the sign of the difference between the integer 25 and the rational z’. This is the case
when the vector V; does not belong to the box B which is defined as follows: The elementary box
B is the union of the four sub-boxes B;; the sub-box B; is a cylinder of direction F,, of basis F;,
which is delimited by two horizontal planes, whose equations are:

z=0 and z=(z+29)/2, fori=1;
z=—2z/2 and z=z/2, for i = 2;
z=—(21+42)/2 and 2z=0, for ¢ = 3;
z=—29/2 and z=z/2, for ¢ = 4.

Thus, each sub-box has an height equal to (2, 4+ 2z5)/2; the sub-box B; is represented in Fig 2.
The neighborood V of plane P is defined as the union of all boxes of the lattice /R obtained by
translation of B by a vector of lattice R.

If the vector V5 belongs to the neighbourhood V, the vector V; belongs to the box B and different
cases are to be considered:

— If the vector Vj is projected inside F; for ¢ = 2 or ¢ = 4, we let W3 := VJ; the absolute value
of the last component zj of vector Wj is less than z,/2, and the other components of vector
W; have always at most £ bits; the algorithm continues with the system (Vi, Vs, W3).

— If the vector V3 is projected inside F; for ¢ = 1 or ¢ = 3, two sub-cases are to be considered:
lp1| < |p2| and |p1| > |p2|. The vector Wj is then defined as follows: Wj is the vector among
the two vectors V3 or V, — VJ whose last component has the smaller modulus (in the first
case). Wj is the vector among the two vectors V3 or Vi, — V whose last component has the
smaller modulus (in the second case). In both cases, the last component of vector Wj is
in absolute value less than z,/2 and its other components have always at most £ bits; the
algorithm continues with the system (Vi, Va, W3).

We give now the precise description of the algorithm.
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Preliminary step. Order the vectors Vi, V5, V3 and, if necessary, change some of them
into their opposite, in such a way that the vertical components (zy, 22, z3) are positive
and sorted in increasing order.
While 2, # 0 do
1. Compute the vector V of lattice R. Let VJ := V3 — V.
2. If V3 does not belong to box B
then evaluate the sign of det(v;, v;) and exit;
else compute the vector W3; V3 := W3, Order the vectors Vi, V,, V3 and,
if necessary, change them into their opposite so that their vertical
components are positive and in increasing order.

At each iteration, either the algorithm evaluates the sign of p (if the test in step 2 is positive)
and then terminates by the evaluation of a 2 X 2 determinant, or it continues iteratively on a 3 x 3
determinant where the largest of the last components has been divided by at least two, the other
components remaining unchanged. Thus, the number of iterations of the algorithm is at most equal
to 3.

At each iteration, one computes the nearest integers to rational numbers A; and As,

det <~T3 ?JS) det (wl ?Jl)
L2 Y2 T3 Ys
R SRR
det < 1 3/1) det ( 1 3/1)
Ty Yo Ly Yo
These rational numbers are quotients of two determinants of order 2 having ¢-bit integer entries,

and cannot be computed directly in single precision. The nearest integers |A;] are evaluated, bit
by bit by means of a dichotomic process that uses the signs of determinants

det (xg —kay ys - kyl) or  det <x3 —kay s - kyz) .k =1,2,4,...,2"

T2 Yo Z Y1

Alz

with entries of at most £ 4+ 1 bits. Thus, the computation of vector V uses at most 4¢ evaluations
of signs of 2 X 2 determinants with entries of at most £ 4+ 1 bits.

THEOREM 2. Lelt D be a 3 X3 determinant with £-bil integer entries. The delerminant sign algo-
rithm above performs al most 3( ilerations in the worsl-case, each iteration involving the evaluation
of at most 40 + 9 signs of determinants 2 X 2 with £ + 1-bil inleger entries. In the worst-case, the
algorithm requires 3(*(40+9) elementary steps, each of them involving O(1) additions, comparisons
and Fuclidean divisions on £ + 1-bit integers.

Note that extensive experiments show that the average number of iterations is around one. One
may give a heuristic explanation to this phenomena [5]. Note also that the algorithm can be
generalized to higher dimensions [5].
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Polynomial Solutions of Linear Operator Equations
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[summary by Frédéric Chyzak]

Abstract

The algorithm described here extends the algorithm to find all polynomial solutions of
differential and difference equations that was given in [1, 2] to more general operators. It also

takes a more efficient approach that avoids using undetermined coefficients. This summary
is based on [4].

Let K be a field of characteristic 0 and L : K[z] — K[z] a K-linear endomorphism of K[z]. A
new algorithm is presented in [4] that finds all polynomial solutions of homogeneous equations of the
form Ly = 0, of nonhomogeneous equations of the form Ly = f and of parametric nonhomogeneous
equations of the form Ly = 3", A; f;. The endomorphisms L under consideration in the following
are polynomials in one of the following operators, and with coefficients in K[z]:

— the differential operator D defined by D f(z) = df /dz;

— the difference operator A defined by Af(z) = f(z + 1) — f(z);

— the g¢-dilation operator @ used for ¢-difference equations and defined by Q f(z) = f(qz).
(In this case, ¢ € K, is not zero and not a root of unity.)

The interest of the new algorithm is twofold. First, numerous algorithms need to solve ho-
mogeneous, nonhomogeneous or parametric nonhomogeneous equations in K[z] as subproblems.
Examples are algorithms to find all rational, hyperexponential, geometric or Liouvillian solutions,
to perform indefinite or definite hypergeometric summation, to factorize linear operators, etc. (See
for instance [5, 3, 7, 6].) Second, the algorithm that is described here has lower complexity than
the usual algorithms, that are often based on undetermined coefficients. The approach here is
to find a degree bound on the solutions to be computed, and next find recurrences to compute
the coefficients of the solutions efficiently. The problem with undetermined coefficients arises with
very concise equations having high degree solutions. Although the number of coefficients to be
determined is high, the recurrences that are found by the new algorithm in [4] are of small order.

The idea is to view the space K[z] as a subspace of a unusual space of formal power series, and
to embed the space of polynomial solutions into a space of formal power series solutions.

1. Algebraic setup

Let (Fu(2)),en

(H1) deg P, = n, which makes (P,(z)),y a basis of K[z];
(H2) P, | P, as soon as n < m;

be a sequence of polynomials satisfying the following conditions:
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(H3) there exists (A, B) € Z* A <0, A < B, and polynomials «; € K[n] such that for all n

B
LP, =) aj(n)Pui,
i=A

with a, and ap two non-zero polynomials, and P, = 0 when n < 0.

Let (I,),cy be the dual basis of the K[z]-basis (P,(z)),cy. By definition, [,(Py) = 6,,» and

PPy =Y (P, Py)P;.

keN

As a consequence of (H2), computing modulo P, and considering degrees yields I;(P,P,) = 0
when k£ < n. Similarly, l,(P,P,,) = 0 when k£ < m. It follows that

ly(P,Pn)=0 when k < max(n,m)or n+m < k.

The next step is to consider formal power series: let S(z) =Y.~ ¢, P, () denote a formal series,
and K[[(P.(7)),cy]] the vector space of all such series. Let A, be the linear forms over (P,(z)),cy
such that A,(5) = ¢,. Then K[[(P,(2)),cyl] is a K-algebra for termwise sum and outer product,
and for the following inner product

ST =Y S () AT W(PaPr) | P
k=0 \n,m<k<n+m
Thanks to (H3), the operator L is extended to A on K{[[(P.()),cy]] by the following rule:
0 —A
AS =" ( > asi(n+1) ,\W(S)) P,.
n=0 \i=—B
Now, for any given f € K[[(P,(2)),cnl]ls Ly = f is equivalent to
-4
(1) Z a_i(n+1) Angi(y) = 1(f)
i=—B

for all n € N (with Ay = 0 when k < 0).
The degree bound and the algorithm follow from the following theorems (see [4]).

THEOREM 1. Let Ly = f where y and f are polynomials. Then
degy < N =max{-B — 1,deg f — B,n € Z such that ag(n) = 0}.

THEOREM 2. Lel N be defined as in the previous theorem. Assume N > 0. Then, for any formal
power series y € K[[(Pa()),eyll, the following are equivalent:

(1) the formal power series y is a polynomial solution of Ly = f;
(2) the A\,(y)’s satisfy equation (1) for n < N 4+ B and A\,(y) =0 for n < N.
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2. The algorithm

The goal is to find a basis for the affine space of vectors g € KN~4+B+! that satisfy

—A

(2) > asi(n4) gari(y) = L)

i=—B
Of course, the direction of the affline solution space is given by vectors v that cancel the left hand-
side. The vectors g and v represent polynomials in K[z] denoted by

N—A+B N—A+B
h(g,f) = Z Gn P and s(v) = E v, Py respectively.
n=0 n=0

The set of singularities S = {n € N| a,(n) =0} and the set N = {0,...,A—1} US play an
important role. The algorithm proceeds by iteratively computing the coefficients of the solutions.
Fach time a coefficient is not fully determined by equation (2) or its left hand-side, i.e. for each
integer in A/, a new parameter is added, along with an equation to guarantee consistency between
the elements of the basis under construction.

The algorithm maintains a list of vectors V, a list of indeterminates 7, a list of equations £ and
an additional vector g. The vectors in V almost form a basis of the direction space of the affine
solution set for the homogeneous equation. Indeed, the solutions are linear combinations of them
ruled by the equations in £. The vector g takes the nonhomogeneous part of the equation into
account. The algorithm is the following:

(1) set V, Z, € and ¢ to empty lists or vectors;

(2) for each n from 0 to N — A + B, perform Step 3 when n ¢ N, or Step 4 when n € NV, then
go to Step 5;

(3) (extension step) extend all vectors v € V (resp. g) by using the appropriate instance of
equation (2) or its left hand-side;

(4) (singularity step) extend all vector v € V and g by 0, then add the vector [0,...,0,1] (of
length n 4 1) to V, add the indeterminate ¢, to the list 7, and finally add equation (2) for
the index n — A (when non-negative), where each g; has been replaced by the sum cv; over
all pairs (¢,v) € (Z,V) that have been added in a previous singularity step;

(5) let (cg,vy) be the pairs added into (Z,V) during singularity steps and £(f) denote the final
list of equations computed by the previous process; perform the following action, according
to the type of equation being solved:

— homogeneous: solve the system in the ¢;’s composed of the equations £(f) and the
equations Y . cxl,(s(vp)) = 0, for N < n < N — A4 B, and return the general
polynomial solution y = 3", ¢rs(vg);

— nonhomogeneous: solve the system in the ¢;’s composed of the equations £(f) and
the equations >, cxl,(s(ve)) = —l.(h(g, f)), for N <n < N — A+ B, and return the
general polynomial solution y = Y, exs(vi) + h(g, f);

— parametric nonhomogeneous: solve the system in the ¢;’s and A;’s composed of
the equations £(3°2; A; fi) and the equations Y, ¢l (s(vp)) = =1, (h (g, Xim1 Nifi))s
for N < n < N — A+ B, and return the general polynomial solution y = 3, ¢ps(vp) +
h(g, 32, Aifi)-

3. Choice of the basis (P,(2)), .y

The previous algorithm ends by solving a linear system that consists of at most — A+ B equations
in at most 0 — A (resp. 0 — A 4+ m in the parametric case) variables, where o is the number of
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singularities between —A and N — A 4+ B. Therefore, avoiding singularities lessens the complexity.
Let L =3, _,pr(z) 0", where 0 is either of D, A or ), and let d = max{j | 3k [;(py) # 0}. The
following choices for the P,’s satisfy conditions (H1-H3).
— differential case: P, = (x —a)"/n!, for a such that p,.(a) # 0; with this basis, no singularity
can occur, A =r, B =d, and

a;(n) = Z: (n;r Z) Li(pj-i);

r—a

— difference case: P, = ("), for a > max{n € N| p,(n) = 0}; with this basis, no singularity
can occur, A =r, B =d, and

k=0j=0 J

— g-difference case: P, — x™; with this basis, singularity can occur, but A =0, B = d, and
ai(n) =Y " li(px)-
k=0

4. Formal power series solutions

In conclusion, it should be noted that the algorithm that has been discussed can also be used to
compute (a description of) formal power series solutions in (F,(z)),y- Indeed, let M = max(S).
Then running the loop of the algorithm for n = 0,..., M and computing the s(v) for v € V
yields the set of all polynomials p € K[z] of degree less than or equal to M such that Lp(z) = f
modulo Py4q(z). Iterating infinitely many times the extension step (by using equation (2)) yields
a formal power series that is a solution.
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Abstract

Divergent series arise naturally in many different contexts. This talk describes mixed
symbolic-numerical algorithms to deal with these series when they arise from linear differ-
ential equations.

Introduction

A simple example of a divergent numerical series is obtained when summing a Taylor series
outside its circle of convergence. More violent divergence is encountered when solving a linear
differential equation like the Euler equation

2y +y==a
by an undeterminate coefficient method. The power series one obtains is the FEuler series

E (—=1)*nla"*!,

n>0

which has a radius of convergence equal to 0. This problem also occurs in non-linear differential
equations, singular perturbations, difference equations, or asymptotic analysis (e.g., by the Laplace
method).

The Borel-Ritt theorem states that any power series on any sector of finite opening in the
complex plane is the asymptotic expansion of a function which is analytic in the sector. However,
this analytic function is far from being uniquely determined, which makes numerical evaluation
hopeless. In the context of differential equations the situation is much better because of the
following result.

THEOREM 1. Let G(z,9o,...,yn) be an analytic function of n + 2 variables and f e Cllz]] a
formal power series solution of G(z,y,...,y"™) = 0. Then there exists a real number k > 0 such
that for all open sectors V' with vertex at the origin, opening < w/k and small enough radius, there
exists a function f which is a solution of the differential equation G(z,y,...,y"™) = 0 asymptotic

to fonV.

Thus the main numerical problem is to devise techniques that will sum the divergent series not
to values of any analytic function asymptotic to it, but to values of the actual solution of the
differential equation corresponding to it.
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1. Elementary methods

To compute the sum of a convergent power series ), a,z" outside its circle of convergence, one
first has to define a path connecting the origin to the point where the sum is desired. A basic
subproblem is that of summing along a ray originating at the origin and avoiding singularities of
the function. Lindel6f gave a simple way of doing this by computing this value as the limit of

ag + lim g a,xe inlosn
t—0
n>1

When the series is convergent at z, the result is the sum of the series. This technique was generalized
by Hardy to sum divergent series of the same type as the Euler series, by computing

(1) ag + a1z + asz? + lim g a,x" e tlognloglogn
t—0
n>3

Unfortunately, this technique does not behave very well numerically.

The simplest efficient technique to deal with divergent series of the type of the Euler series is
called summation to the least term. For instance, the values of the successive terms of the Euler
series at = 1/10 are

.100000, —.010000, .002000, —.000600, .000240, —.000120, .000072, —.000050, .000040, —.000036,
.000036, —.000040, .000048, —.000062, .000087, —.000131, .000209, —.000356, .000640, —.001216.

The absolute value of the terms first decrease, then reaches a minimum at 0.000036, and eventually
increase to infinity. By summing these terms up to the smallest one, one gets the numerical
value 0.09154563200, which is very close to the value of the corresponding function solution of
the differential equation, namely 0.09156333394. Using a convergent integral representation for
the Euler series, it is not difficult to show (see [5]) that the error made by truncating this series
at its least term is exponentially small (with respect to 1/z). This property is actually much
more general (see below). The drawback of this good precision is the impossibility of obtaining an
arbitrary precision by this method. This is to be contrasted with the direct summation of convergent
power series, where the terms generally first increase before decreasing to 0, but numerous terms are
necessary to obtain a good precision. As a consequence, many techniques to convert from various
representations of a function to a divergent series have been developed [3].

2. Gevrey asymptotics, Borel transform, k-summability

A good framework to account for the nice behaviour of common divergent series is provided
by Gevrey asymplotics. A Gevrey series is a power series whose coeflicients’ growth is bounded
by C(nh)* A", for some fixed C, A,k > 0. Gevrey asymptotic expansions are Gevrey series for
which the remainder term satisfies the same type of bound. More precisely, we have the following.

DEFINITION 1. Let k be a positive real number and let V be an open sector with vertex 0. Let f
be an analytic function on V. The formal power series f = >0 @nx" is Gevrey asymptotic to f
of order s = 1/k on V if for all compact sub-sectors W of V and for all n € N, there exist Cy > 0
and Ay > 0 such that

n—1

f(z) - E apx?

p=0

|~ < Cy (n)*AR VeeW, z#0

|2
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By Stirling’s formula, truncating a Gevrey asymptotic expansion of order 1/k to the least term
gives an exponentially small error (in 1/z%). This is one of the facets of the interest of Gevrey
asymptotics. Another crucial property, due to Watson, is that there is at most one analytic func-
tion f Gevrey asymptotic of order 1/k to a series f on a sector of opening larger than 7 /k. This
provides the uniqueness necessary for numerical computations based on the series alone.

With the same hypotheses as in Theorem 1, an old theorem of Maillet states that there exists & >
0 such that f is a Gevrey series of order 1/k. This result is useful in conjunction with a counterpart
of Theorem 1 due to Ramis and Sibuya which states that if f is Gevrey of order 1/k then there
exists k' > k such that for any sector V' with vertex 0, opening < 7 /k" and sufficiently small radius,
there exists a function f solution to the differential equation which is Gevrey asymptotic of order k
to f. Combining these two results explains why summing to the least term is a good method for
formal series solutions of differential equations.

If f = > a,z" is a Gevrey series of order 1/k, then its Borel transform of index k is defined as

5 o2 a
Bef)€) =) vt
= I'(14 n/k)
For k£ = 1, this corresponds to dividing the n-th coefficient by n!. Estimates on the coefficients
show that this transform is an analytic function ¢(£). Then if the Laplace transform of index &

f(z) = /fﬂﬁ(f)e—f”“f’“—ldf

converges, it is called the sum of f in the direction d, where d is a straight line from 0 to infinity.
The series f is then said to be k-summable in the direction d. The convergence of this integral is
related to the growth of ¢ at infinity. It is easy to see that the Taylor series of f is precisely f S0
that this process yields a convergent representation for f The sum however depends on the path
of integration d, in the same way an analytic continuation depends on a path. This dependency is
related to the Stokes phenomenon.

Numerically, in the case of convergence, the problem is reduced to finding k£ and computing the
analytic continuation of ¢. In the case of solutions of linear differential equations, this computation
is simplified by noticing that & can be deduced from the slopes of a Newton polygon associated with
the linear differential equation and that ¢ satisfies a linear differential equation derived formally
from that satisfied by f . Therefore its Taylor coefficients satisfy a computable linear recurrence
which can be used to obtain many coefficients efliciently. Besides, the possible singularities of ¢ are
located at the zeroes of the leading coefficient of the linear differential equation it satisfies, so that
it is possible to compute the continuation along a path which avoids singularities, with a knowledge
of the exact radius of convergence of the power series one is computing. This process can also be
applied to the divergent series that occur as part of the asymptotic expansion of solutions of linear
differential equations at an irregular singular point, by first computing a linear differential equation
satisfied by these series.

3. Multisummability

Not all solutions of linear differential equations are k-summable for some k. One reason for this
is that the order of growth of an analytic function at infinity is related to the growth of its Taylor
coeflicients at the origin. Thus by adding a 1-summable and a 2-summable divergent series, one
obtains a series which is Gevrey of order 1, but the growth at infinity of its Borel transform of
level 1 is exponential of order 2. This leads to the consideration of a more general class of divergent
series.
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DEFINITION 2. Let kq,...,k, be real numbers such that k&, > --- > k. > 0 and let d be a line
from 0 to infinity. A formal power series f(x) is (ki,...,k,)-summable in the direction d if there
exists a positive integer m such that f(a:l/m) is a sum of r series fl, .. .,f,, each fl being k;/m
summable in the direction d.

A result of Jurkat is that Hardy’s summation technique (1) will sum any multisummable series
without having to know kq,...,k,.
The following recent theorem due to Braaksma demonstrates the relevance of multisummability.

THEOREM 2. Let G(z,9o,...,yn) be an analytic function of n + 2 variables and f e Cllz]] a
formal power series solution of G(z,y,...,y"™) = 0. Let ky > --- > k. > 0 be the positive slopes

of the associated Newton polygon. Then f is (ki,...,k.) summable in every direction d, except
possibly a finite number of them.

Braaksma’s proof uses Ecalle’s theory of accelero-summability.

In the linear case, a technique due to Balser makes it possible to compute the sum by computing
successive Borel transforms of indices x; related to the k;’s by 1/k; = 1/k1 4+ -+ -4 1/k; and then
recovering the function by computing the corresponding Laplace transforms of order x; in reverse
order. At each step, exact linear differential equations can be computed for the various Taylor
series and exact linear recurrences for their coefficients.

Conclusion

Numerically, the difficulty is that each level of integration is time consuming and induces a
precision loss. At the moment, this process is still largely interactive, notably the choice of paths
of integration at each step.
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Holonomic Systems and Automatic Proofs of Identities

Frédéric Chyzak
INRIA and Ecole Polytechnique

October 3, 1994

[summary by Bruno Salvy]

Abstract

D. Zeilberger has shown how many combinatorial identities involving special functions
can be proved using the theory of holonomic sequences and functions. This work presents a
general algorithmic approach to the multivariate case, together with an implementation.

Introduction

Speaking informally, D. Zeilberger has defined holonomic functions in [10] as those functions
of one or several variables satisfying sufficiently many linear equations (differential equations or
recurrence relations) with polynomial coefficients so that they are completely determined by a finite
number of initial conditions and a finite number of polynomial coefficients. The study of these
functions is motivated by their pervasiveness in combinatorics and special functions theory. The
class of holonomic functions enjoys closure properties that make it possible to construct equations
satisfied by a particular function from equations satisfied by simpler functions. These operators
can be exploited by many algorithms. In particular, series expansions of holonomic function can be
computed efficiently and asymptotic estimates related to them can be derived from the operators.
A very important special class of holonomic functions is formed by algebraic functions, for which
finding a differential operator is the best known algorithm to compute series expansions of large
order.

For the single variable case, the gfun package [6] provides functions that construct recurrence or
differential operators satisfied by holonomic sequences or functions and thus prove formulae. For
instance, Cassini’s identity on the Fibonacci numbers

Fn+2Fn - Fr?-}—l = (_1)”7

is proved by computing a linear recurrence satisfied by the left-hand side, starting from the linear
recurrence satisfied by the Fibonacci numbers. Here is the kind of proof for which gfun provides
tools:

hn: n+2Fn_F5+1:F5+FnFn+1_F2

n+1
hn-}—l = F3+1 -I— Fn+1Fn+2 - F3+2 = F3+1 - Fn+1Fn - Fr? = _hn

It is then sufficient to check that (—1)" also satisfies this recurrence and that a finite number of
initial conditions match.
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Ore operator o(z) 6(z)  Action

differentiation x I flz)~ f'(x)
shift t+1 0  f(z)— f(z+1)
difference z+1 1 flz)= fz+1)- f(2)
g-dilation qz 0 f(z)+~ flqz)
g-differentiation qz 1 flz)—[flgz)— f(2)]/[(qg— 1)z]
Mahlerian operator — a” 0 f(z)w— f(zP)

TaBLE 1. Examples of Ore operators

In one variable, the algorithms for differential equations and recurrence equations are always
very similar and can be profitably expressed using the vocabulary of Ore operators [5]. These are
defined over a field K(z) by a commutation rule

(1) dx =o(z)0+ 6(z),

where o is a ring endomorphism of K(z) and 6 is a vector-space endomorphism of K(z). Table 1
gives a list of important examples.

In several variables, a holonomic function is defined by several operators and most of the closure
properties still hold. In addition, holonomy is often preserved by specialization; by definite and in-
definite summation (for recurrences) or integration (for differential equations). However, making the
corresponding construction of operators explicit is more difficult. Wilf and Zeilberger [9] have given
efficient algorithms for some of these operations in the hypergeometric and the g-hypergeometric
case (linear recurrences or g-recurrences of order 1 on a sequence or on the coefficients of a series).
N. Takayama [7, 8] has used Grébner bases of differential, difference and g-difference operators to
make an explicit construction of operators in the general (non-hypergeometric) case. This is (at
least partly) implemented in his programs Kan and Macaulay for D-modules.

The aim of this work is to attack multivariate holonomy via Ore operators and non-commutative
elimination by Grobner bases or a skew version of the Euclidean algorithm [1, 2]. This is imple-
mented in F. Chyzak’s Mgfun package' written in Maple.

1. Elimination and ideals

Ore algebras in the univariate case are algebras K (z,d) where K is a ring and z and 0 are related
by (1). The multivariate case is obtained as the tensor product K(z;,0,) ® - -- @ K(z,,0,).

The example of Legendre polynomials illustrates a simple use of elimination. Legendre polyno-
mials satisfy the following three dependent relations:

(2) (1-a?) P/ (2) = 20Pl(2) + n(n+ 1) Po(x) = 0,
(3) (14 2)Pasa(z) — (204 3)2 Pasa(x) + (n + 1) Pa(2) = 0,
(4) (1= )Pl 1(2) + (0 + 1) Pgas(2) - (n + 1)Pa(z) = 0.

Any of these relations can be deduced from the other ones. Here is how Mgfun can be used to
prove (3) from (2) and (4). The computation consists in defining a suitable Ore algebra, a proper
term ordering on the variables, and then computing a Grébner basis with respect to this order.

! Available by anonymous ftp on £tp.inria.fr:INRIA/Projects/algo/programs/Mgfun or at the URL
http://www-rocq.inria.fr/Combinatorics-Library/www/programs/Mgfun.
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A:=orealg([x,diff,Dx], [n,shift,Sn]): T:=termorder(A,plex=[Dx,Sn],max):
DE:=(1-x"2)*Dx"2-2*x*Dx+n*(n+1) : RDE:=(1-x"2)*Dx*Sn+(n+1) *x*Sn-(n+1) :
map(collect,gbasis([DE,RDE],T,ratpoly(rational, [n,x])),Sn,factor);

(-n—=1)S,+an— D, +2’D,+z, (-n-2)52+z(2n+3)S, —n—1]

The operator (3) appears at the end of the basis. The same result can be obtained by a skew
FEuclidean algorithm applied to (2) and (4). This is done in Mgfun as follows:

RE:=skewelim(DE,RDE,Dx,A,ratpoly(rational, [n,x])):

Since we are interested in functions or sequences annihilated by operators, it is natural to con-
sider the left ideal generated by these operators. In one variable, the ring K(z)(d) is Euclidean
(therefore principal) [5]. Thus one can work with solutions of univariate Ore operators as one works
with algebraic numbers, using Euclid’s algorithm to compute normal forms in a finite dimensional
vector space generated by 1,0,9% ..., P where P is an operator analogous to the minimal poly-
nomial. These normal forms in turn are used to compute operators annihilating sums or products
of holonomic functions by performing computations in the proper finite dimensional vector space
and determining a linear relation by Gaussian elimination. In several variables, skew polynomial
rings are Noetherian [3] so that a normal form is provided by Grébner bases. The same kind of
algorithms as in the univariate case apply. Elimination between operators consists in finding an
element of the ideal they generate which does not contain the undesirable variable. A recursive
extended ged algorithm can be used to eliminate a @ variable between two operators. The general
case of elimination is obtained by Grébner bases with appropriate orders.

2. Creative telescoping

Holonomic ideals form an important class of ideals of operators. In these ideals, it is possible
to eliminate any of the variables. This elimination is applied by creative telescoping [11] to the
computation of definite integrals or sums. The idea is that if f is annihilated by a holonomic ideal
of K(z,d) and if the 9* f’s (k > 0) vanish at the border 9 of a suitable domain €, then an operator
annihilating 95" f (the definite sum or integral) is obtained by first eliminating z. This yields an
operator which can be rewritten 9A(9) + B such that

[0 A(D)](f) + B(f) = 0.

Then applying 95" (i.e., summing or integrating over the domain) gives A(9)(f)|,q+ 05" B(f) = 0,
where the hypotheses ensures that the first part (the sum or integral at the boundary) is zero.
Since B does not contain z it commutes with d~! and is the desired operator.

As an example, we compute a system of differential equations satisfied by the generating function

of the Legendre polynomials
Flz,z) = Z P,(z)z"

n>0
starting from (2) and (3). The steps to be performed are: (i) creation of the Ore algebra A =
Q(n, S,) @ Q(z,0,;) ® Q(z,0,); (ii) determination of operators annihilating P,(z)z" in A; (iii)
elimination of n; (iv) left division by S, — 1. Here is the corresponding Mgfun session:
Legendre:=[RE,DE,Dz]: z_to_the_n:=[Dx,z*Dz-n,Sn-z]:
A:=orealg([x,diff,Dx], [n,shift,Sn],[z,diff,Dz]):
T1:=termorder(A,tdeg=[Dx,Sn,Dz] ,max):
Legendre_times_zn:=hprod(Legendre,z_to_the_n,2,Tl);

Legendre_times_zn := [Di - x2D§ —2zD,+n? +n, nSf; +25n%+2%n+4 22 —2zanS, — 3za8,,zD, —n]
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T2:=termorder (A,lexdeg=[[n], [Dx,Sn,Dz]] ,max):
gb:=gbasis(Legendre_times_zn,T2,ratpoly(rational, [x,n,z]));

gb:=[D? —2°D? — 22D, + 2°D? + 22D,z — 28, + S’D, — 2225,D, + 2°D,, 2D, — n]
map(collect,subs(Sn=1, [gb[1],gb[2]]), [Dx,Dz]);
[(1- x2)D§ — 22D, + 22D, + Z2D§, (1-2zz + 22)Dz + 2z —z]

This is a system of differential equations satisfied by the generating function of the Legendre
polynomials. The whole computation is performed in 2.1 s. on a Dec Alpha. The system can be
further simplified by another elimination to yield an operator of second order in D, only. From the
above system a symbolic solver of differential equations can be used to find the well-known formula

1
D E) L —
s V1—-2zxz+ 2

Conclusion

This approach is susceptible to numerous applications, extensions and improvements. Applica-
tions to g-computations look promising; Comtet’s algorithm [4] to compute the differential equation
satisfied by an algebraic function can be generalized to some extent; a program handling operators
and initial conditions simultaneously could benefit from the initial conditions to avoid letting the
orders of the operators grow too much and thus could turn into an efficient formule prover; compu-
tation of Grobner bases could be speeded up using a non-commutative analogue of trace lifting or
simple generalizations of the FGLM algorithm, etc. Hopefully, all of this will appear in F. Chyzak’s
thesis.
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[summary by Bruno Salvy]

1. Binomial and hypergeometric identities (¢ = 1)

Binomial identities are identities which involve binomial coefficients like the famous Saalschiitz
identity:

S WEO e
Z (:c-}—y-;z-}—n) (z-]:k) - (z:n) (:c-}—yjl-z-}—n)‘

(1)

k=0
Tables like [3] list several hundred such identities. Since binomial coefficients satisfy many relations,
the expression on the left-hand side may appear under numerous disguises, which makes it difficult
to locate it in such tables (or to implement table lookup in a computer algebra system). However, a
sort of normal form follows from the observation that in many identities with left-hand side }_, f(k),

the function f(k) satisfies
J(k+1)

@ 70

for some suitable field of coefficients F. Thus f is completely determined by f(0) and a rational
function, for which a normal form is available. A function f satisfying this property is called a
hypergeometric term. In a suitable algebraic extension, f(k) can be made explicit:

€ F(k),

110 = G O

where (a), = a(a+1)---(a+ k — 1) denotes the rising factorial. The sum of f (when f(0)=1)is
usually called the hypergeomelric series with the following notation

A1ye ooy o >
an (bla---abn Z) _kzzof(k)

According to G. E. Andrews, “By using hypergeometric series one can reduce 450 of the 577 entries
in Gould’s table to 32 entries.” Thus for instance, the Saalschiitz identity is obtained as

( -z, —y,—n ) (z+24+1)(y+2+1),
3F2 1 - .
z+1l,—z—y—z—-n z+1l(z+y+2z+1),
Given a function F(n,k) hypergeometric in both parameters, plus a technical condition (holon-

omy), D. Zeilberger gave an algorithm to compute a linear recurrence satisfied by the definite sum
with respect to one of the parameters. The technique is based on creative telescoping [11] which
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applies to a larger context of holonomic identities. To compute 3, F},  from a first-order recurrence
like (2) in n and a second one in k, the idea is to determine a recurrence satisfied by F, , where k
does not appear in the coefficients. In the case of the Saalschiitz identity, this gives
(n+34+2)(n+1+z+y+2)sFntsrs1
—(n+l+z+y+z){lz+y+2z+2n+5)(2n+2+5) —2(n+ 2)(n+ 3)] Frt2 k41
+(n+2—y)(n+2—2)Fio1}
(3) +(n+l+z+y+2)n+2)(n+2+c+y+22)n+2+z4+y+2)Fnq e
+(n+ 2)(2712 +6n42nz—a?—azz—yzr+3z—y + 5)Fry1 k)
—(n+D(n+2)n+y+z+)(n+az+2z+1)F,;=0.

In the holonomic universe, such an elimination is always possible. The above identity is then
rewritten

(e+y+tz+n+l)s(ntz+3)Foyss
—(x4+y+z+n+1)x

(2 + 22+ 10z +yz +4nz+ 2y + 14n+ 3y + ny + 17+ nz + 3z + 3n?) Fyo
+(@x+y+z+n+1)(n+2)x

(2zz + 22y + 2nx + 4z + 222 + 92 + 5nz + 3n% + 9+ 10n + 4y + 2yz + 2ny) Frgr k
—(n+2)n+)n+1+z+2)(n+1+y+2)Fr=Gnrt1— Gapr,

Gor=(+y+z+n+2)z+y+z+n+1l)[(z+y+z+n+3)(n+2+3)F 451
(5) — (2 +4nz + 10z + 22+ 2n° + 100 + 5z + 13 4 2nz + 2ny + yz + 5y) Fryar
+(n+2)2242+n+2+y)Fopr il

Now summing with respect to k shows that the left-hand side of (4) is the desired recurrence for
the sum. Using M. Petkovek’s algorithm [7], it is then possible to find the right-hand side of (1).

H. Wilf and D. Zeilberger have designed a fast algorithm (as opposed to general non-commutative
elimination) to compute recurrences of the type (3) for terminating hypergeometric summation and
multi-summation [9]. The analogous of G, ;, in (5) is called a certificate of the computation, since it
makes (4) easy to check by mere rational function manipulations. This algorithm has been at least
partially implemented in Maple by D. Zeilberger [10] and T. Koornwinder [4] and in Mathematica
by P. Paule and M. Schorn [5]. It has the extra advantage that the recurrence it returns instead
of (3) is of order 1.

2. ¢g-identities

A natural generalization of hypergeometric identities is provided by ¢-hypergeometric identities.
In this context, rising factorials are replaced by (a), = (1 — a)(1 — ag)---(1 — ag™™ '), n! be-
comes (¢),/(1 — ¢)" and the binomial coefficients become the g-binomial coefficients or Gaussian
polynomials

{l- i osksn

The classical counterpart of these numbers or identities involving them is obtained by letting ¢ tend
to 1. Like binomial coefficients, the Gaussian polynomials have nice combinatorial interpretations
and properties (see [2]).
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A g-hypergeometric term is a function f(k) such that f(k + 1)/f(k) is a rational function of ¢
and ¢*. The techniques of Wilf and Zeilberger extend to g-hypergeometric identities [9] and a
Mathematica implementation is available [8]. For instance, the following identity is equivalent to
the ¢-binomial theorem:

() > 0 2] = oo,

k=—n

Let the summand be f, ;, which satisfies

Jnksr - q - q" faip (1- q2n+1)(1 _ q2n+2)qk

Jak 1 — guth+t? Jak (65 — (1 — g thtL)

Then it can be found that f, ; also satisfies the following recurrence where £ does not appear in
the coeflicients:

qn+1fn,k+2 + (14 q2n+1)fn,k+1 + 332(]nfn,k — 2 fpq1,641 = 0.

This is then rewritten as

(7) zfupin — (@2 + 2"+ 2+ ") fuk = Gnpt1 — Gnps
with certificate
Gk =T fagie — ¢ ks — 2q( + ¢ 4 1) fa-
From this follows that the left-hand side of (7) gives a recurrence satisfied by the sum. Since this
recurrence is of order 1, solving it is easy and this yields the right-hand side of (6).
It is not difficult to see that lim, . [,7%] = 1/(¢)e. Now, taking the limit in (6), changing ¢
into ¢*> and z into ¢z yields the famous Jacobi triple-product identity:

0 2n+1

(8) i qk22k — H(l _ q2n+2)(1 _I_Zq2n+1)(1 i q

k=—c0 n=0

).

z

3. Partition identities

There is a strong connection between identities about partitions and g¢-calculus. For instance
the ¢-binomial coefficient [¥#M ] is the generating function (in the variable ¢) of the number of
partitions of n into at most M parts, each < N. Probably the most famous partition identities in
this category are the Rogers- Ramanujan identilies, an example of which is

k2 o0 1

q

) P (R o R | ST )
It is easy to see that the right-hand side is the generating function of partitions into parts equal
to 1 or 4 mod 5. It turns out that the left-hand side can be read as the generating function of
partitions into parts with minimal difference 2 (see [2]). This identity states that these numbers are
identical. For instance, the coefficient of ¢'° is 6 on both sides, corresponding to (10), (1,9), (2,8),
(3,7) (4,6), (1,3,6) on the left and (1'%), (1°,4), (1%,4%), (1*,6), (1,9), (4,6) on the right (exponent
denoting repetition).

D. Zeilberger has used his algorithm to prove (9) by proving the following finite version due to
G. Andrews:

k2 (_1)kq(5k2—k)/2

q _
(1) 2

A (Dn-r(Dntr '



Letting n tend to infinity and making use of Jacobi’s identity (8) yields (9). However, as in many
other instances, the WZ-technique (for Wilf & Zeilberger) yields a recurrence whose order is not
minimal (here 5 instead of 2). Not only is it not mathematically aesthetic, but it generally leads
to computations that require much more memory and computer time than necessary.

P. Paule’s key observation [6] is that by taking advantage of the symmetry in the summands
of (10) (and of many other similar identities) the order of the equation obtained by the WZ-
algorithm becomes minimal! Thus for sums with even summand f(k), the idea is to try sum-

ming (f(k) + f(—k))/2 instead. This leads to the following three-line proof of (9).

THEOREM 1. The Rogers-Ramanujan identily

oo k2

= G S

s the limit when n — oo of

qu2 (_1)kq(5k2—k)/2(1_|_ qk)
(11) PRI o |
In addition, both sides of (11) satisfy the recurrence

(1 - qn)un = (1 —I_ q— qn —I_ q2n_1)un—1 ‘I’ qUp_s.

ProoF. The initial conditions uy = 2 and u; = 2(1 4 ¢)/(1 — ¢) are easily seen to hold for both
sides. The proof that both sides satisfy the recurrence relation is easy once given their certificates:

_q2n—1(1 _ qn—k) and q2n+3k(1 _ qn—k)/(l _I_ qk) O
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[summary by Frédéric Chyzak]

Abstract
A. Péladan-Germa deals with extensions of differential rings by solutions of systems of
PDE’s. In the case of ODE’s, the problem of equality testing in the extension ring has been
solved [2, 3]. The author gives an algorithm for the more general case of PDE’s [6]. It is
based on the theory of differential algebra, and in particular on the concept of auto-reduced
coherent sets [5, 8].

1. Outline of the algorithm

Let R be the polynomial ring k[z4,...,z,] endowed with the usual partial derivatives d,,. The
work described here gives an algorithm for effective equality testing in differential extensions of R
by series defined by algebraic partial differential equations. More precisely, let f; € E[[z1, ..., 2,]]
be formal power series defined by equations of the form

(1) Qh (-rlv---vxnv{aafi})zov

for polynomials @) in finitely many derivatives 0, f;. Given these polynomials @, and similar
polynomials P, the problem is to decide whether the f;’s satisfy the equations represented by
the P,’s, and in case they do not, to return one of the P,’s that is not satisfied.

The viewpoint adopted here is to consider the formal power series Py (z1,...,2,,{0.fi}) as
elements of the differential extension of R by the f;’s. However, she requires an assumption on
these power series, namely that they are defined by a complete system. Informally, a complete
system provides with sufficiently many equations and initial conditions so as to be able to compute
any coefficient of any of the power series f; (see Theorem 2 below). The same also applies to all
series Py (21,...,%,,{0,fi}). The algorithm decides whether all coefficients are zero. Moreover,
a complete system makes sure that the algorithm will work for any set of P,’s, even for badly
conditioned ones. Given the set A of all P,’s and all @;,’s, the algorithm is:

(1) Compute an autoreduced coherent set B associated to A and an additional polynomial H,
the product of all initials and separants of the elements of B. (These notions are defined
below.) Informally, the set B defines the same series as A, up to possible singularities
described by H: the algorithm has to decide whether H(f) = 0.

(2) To this end:

— if H(f)(0) # 0 (regular case), then the P,(f) are all zero if and only if 0, B(f)(0) =0
for a computable finite set of derivatives and all B € B;

— otherwise, the algorithm is applied recursively to decide whether all P,(f)’s and H(f)
are zero; then:
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o if H(f)# 0 (semi-regular case), the problem reduces again to testing B(f) = 0;
B(f) continuously depends on the initial conditions defining f, and decision is
done by computing a Groebner basis in an usual non-differential algebra to find
the closure of an appropriate algebraic variety;

o if one of the P,’s, say Py, is not cancelled, return the answer Py(f) # 0;

e otherwise (singular case), return the answer that all P,(f)’s are zero.

Termination of this recursive algorithm is ensured by Theorem 1 below.

2. Differential algebra

A suitable theory to work with equations like (1) is the theory of differential algebra [5, 8].
Polynomials like the P,’s and the @)}’s are called partial differential polynomials, in short pdp’s,
and form the ring of partial differential polynomials R = R[{0,v;}]. Note that this ring is a
commutative ring in infinitely many indeterminates.

Differential algebra theory introduces differential ideals, i.e. ideals closed under all differentia-
tions. Usual ideals are called algebraic ideals. For given polynomials P;, the algebraic ideal of R
is denoted (Py,..., P;), while the differential ideal is denoted [Py, ..., P;]. In fact, the differential
ideal [P,..., P,] is the algebraic ideal generated by all d,F;’s.

The problem of working with (algebraic) ideals in usual non-differential algebras of polynomials
is solved by Groebner bases computations. Similar tools have been developed in the differential
case: first, a process of reduction has been introduced by Ritt [8]; second, the non-differential notion
of reduced base has its counterpart as auto-reduced sets, i.e. sets, where each element is reduced by
all others; third, syzygies (i.e. critical pairs) and corresponding S-polynomials are also defined in
the differential case; last, the analogue of Groebner bases are coherent sels, i.e. sets that reduce all
their S-polynomials to 0.

An auto-reduced coherent set associated to a set L of pdp’s is an auto-reduced coherent set M
such that [M] C [£], and M reduces all pdp’s in £ to 0. Computationally, such an associated
set is obtained by introducing the critical pairs one after the other, while keeping the set under
construction auto-reduced. An algorithm by F. Boulier is given in [1, 2]. Classical noetherianity
arguments used in the commutative case to prove termination of algorithms do not extend to the
differential case. Instead, an order is defined on auto-reduced coherent sets, and the following
theorem ensures the termination of Boulier’s algorithm.

THEOREM 1. There is no infinite decreasing sequence of auto-reduced sets.

As already mentioned, the author’s algorithm is crucially based on the potential cancellation
of a certain polynomial H. The following definitions are needed to explain how this polynomial
is introduced. They also play an important role in the definition of a complete system. Recall
that Ritt’s reduction relies on an order on the indeterminates 0,y;. The leader vp of a pdp P is
the highest indeterminate that occurs in it. This notion is the analogue of head terms in usual,
non-differential Groebner bases theory. Now, the initial Ip of P is the coeflicient in 'vffgp and the
separant Sp of P is the common initial of all derivatives of P. Finally, given a set A of pdp’s,
write 54 and H,4 for the product of the separants of these pdp’s and the product of the initials
and separants of these pdp’s respectively.

3. Differential extensions by formal power series

The author’s crucial assumption is that the f;’s are uniquely defined by systems of PDE’s and
finite sets of initial conditions at the origin.
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FIGUuRrRE 1. To be under a stairs

An indeterminate 0,¥; is under the stairs of a set A of pdp’s if it is the derivative of the leader
of no element of this set. An example in the case when R = C[z,y| and with a single function f is
graphically treated on Figure 1: assume the leaders of the elements of a set A to be 93 f, 8;85’f,
250, f, Qfagf, 3335f, 333;f, 8§a§f, and djf (large framed circles on the figure). The indeter-
minates under the stairs of A are then f,...,05f, 9,f,...,050,f, 0;f,..., 030, f, 0y f,...,0:0:f,

* r-y Y r-y

O fy.o 20, 1,05 f,...,020; f, 0p f (smaller plain circles on the figure).

When the set of derivatives that are under the stairs of a set A of pdp’s is finite, this set is
called a closed set. The idea is that a closed set makes it possible, under some assumptions, to
recursively compute the values at the origin of all derivatives, provided that the values at the origin
of all derivatives under the stairs are given. A complete system consists of a closed auto-reduced
coherent set A together with a finite set IC of initial conditions (the values at the origin of the
derivatives that are under the stairs), with the additional property that for all A € A, A(f)(0)=0
but S4(f)(0) # 0. These conditions make it possible to compute all values at the origin of all

derivatives. This yields the following very old theorem [4, 7].

THEOREM 2. For any given complete system (A, IC), there exists a single m-tuple of formal
power series which are solutions of A and which satisfy the initial conditions IC. This tuple is
computable, i.e. each coefficient of each f; is computable.

More precisely, the coeflicients of an f; are given by a recursive algorithm. Moreover, it is easily
proved that each coefficient continuously depends on the initial condition IC', viewed as element of
a finite dimensional vector space.

4. Justification for the algorithm

Henceforth, the formal power series f; are assumed to be defined by a fixed complete sys-
tem (A, IC'), and the ring R is assumed to be effective. The problem is to test whether P;(f) = 0 for
all P;in a givenset {P,,..., P,} of pdp’s in R\ R. This is equivalent to testing whether f is a solution
of the system {A, Pi,..., P.}. Boulier’s algorithm, which was alluded to before, first reduces the
problem to computing with auto-reduced coherent sets, as will be detailed below. Let B be an auto-
reduced coherent set associated with {A, P;,..., P}, i.e. a set that satisfies [B] C [A, Py, ..., P],
and Q 20 for all Q € {A, P,...,P}.

Return into pseudo-reduction: given a set Q of pdp’s, let Hg be the product of the initials and
separants of the elements of Q and Sg the product of all separants only. Given an ideal 3 which is
not necessarily a differential ideal and a pdp H,let 7 : H* denote the set of all pdp’s P for which
there exists a v € N such that H”P € J. This set is actually an ideal and P20 is equivalent
to P € Q: HZ [2,5]. With this notation, it is clear that

(2) [BlC[A,Py,...,P] C[B]: HY.
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Therefore if Hg(f) # 0, then when f vanishes at all the elements of B it vanishes at all the P;’s,
so that the problem reduces to testing whether B(f) = 0. Otherwise Hg(f) = 0 and the problem
reduces to testing whether fis a solution of the system {A, P,,..., P, Hz}. Provided that the test
for B(f) = 0 is effective, this yields a recursive algorithm that terminates because of Theorem 1.
Two cases have to be considered, according to the value of Hyz(f)(0).

Regular case. This corresponds to the case when Hg(f)(0) # 0. For each B € B, B(f) is a formal
power series, which is zero if and only if d, B(f)(0) = 0 for all derivation d, (including the identity).
A rather technical theorem [6] reduces the problem to considering only finitely many members of
this infinite set. Because of the non-nullity of Hyz(f)(0), the values at the origin of all the 0, B(f)’s
are polynomials in the ds B(f)(0) for 3’s such that vy, p is under the stairs of A, that is for a finite
number of initial conditions. More precisely, B(f) = 0 if and only if all these dzB(f)(0) equal 0.
Since the zero-test in R is assumed to be effective, this solves the problem in the regular case.

Semi-singular case. This corresponds to the case when Hy(f)(0) = 0 while Hz(f) # 0. Once
again, the initial problem on the P;’s reduces to testing B(f) = 0, but the algorithm developed in the
regular case cannot be applied as is. An explicit formula for f in terms of the initial conditions IC'
shows that f depends continuously on /C'. The initial conditions I'C' provide values of the 9, f; for
all a such that d,y; is under the stairs of A. So IC can be viewed as a vector ¢ of a finite dimensional
space. Call R’ the ring of polynomials k[zy, ..., z,,0,y;] where the a’s are such that v,_,, is under
the stairs of A and the 0,y;’s are viewed as indeterminates. Let now W be the variety defined by
the ideal J of R’ generated by the d,B’s such that d,B is under the stairs of B, and W' the variety
defined by Hp = 0. The regular case dealt with the implication ¢ € W\ W = B(f) = 0. In the
current case, the following theorem [6] reduces the problem to computing with algebraic varieties.

THEOREM 3. Let ¢ be initial conditions such that the system (A, 1C') is complete and Hg(f) # 0.
Then B(f) =0<= ce W\ W".

This condition is tested by computing a Groebner bases for the radical of the ideal 3 : H3® using
an algorithm described in [2], and testing if each polynomial of the constructed base vanishes at c.

The previous justification yields the algorithm that was outlined before.
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[summary by Bruno Salvy]

Joris van der Hoeven sets up an ambitious research program of automating the derivation of
asymptotic expansions in various contexts.

The problem has already been solved in several cases. For exp-log functions—functions obtained
from a variable z and the set of rational numbers @Q by closure under field operations and the
application of exp and log—John Shackell gave a procedure in [5] which he extended in [6] to
Liouvillian functions. In [7], he showed how to handle composition and in [4] B. Salvy and J. Shackell
showed how to compute an expansion of y(z) subject to F(y) = « for F' an exp-log function.
Asymptotic expansions for differential algebraic equations were also made effective by J. Shackell
in [8], however the algorithm in this case pays for its generality by an exponential complexity with
respect to the order [9]. Another approach to the exp-log function problem was used by D. Gruntz
to implement the new limit function in Maple [2].

While J. Shackell and several others have based their work on the theory of Hardy fields [3], the
approach followed by J. van der Hoeven is inspired by Ecalle’s theory of transseries [1]. Informally,
there are two main ingredients in this work. The first one consists in computing with asymptotic
scales suitable for exponentiation and logarithm (so-called normal bases, see below). The second
one consists in working simultaneously with expansions in these scales and a handle on the exact
full information related to them. This handle (named algorithmic multiseries) makes it possible
to compute more terms of an expansion whenever necessary and to invoke an oracle for zero-
equivalence of functions in order to prevent indefinite cancellation. More precise definitions are as
follows.

DEFINITION 1. An asymptotic scale is a finite ordered set {g;,...,g,} of positive unbounded
exp-log functions such that logg; = o(log g;1), fori=1,...,n— 1.

DEFINITION 2. Let g be a positive unbounded exp-log function. A multiseries with respect to g

is a formal sum
[=> fag%

a€ES
the coeflicients f, being exp-log functions and the support S C R having finitely generated support:

S=a N+ ayN+- -+ a N+ S,

where the a;’s are strictly positive real numbers and § € R.

DEFINITION 3. A multiseries expansion with respect to {g;,...,¢,}, is a multiseries with re-
spect to g,, where each coefficient can recursively be expressed as a multiseries with respect
to {g1,...,9n_1}, each multiseries with respect to g; having constant coefficients.
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DEFINITION 4. A normal basis is an asymptotic scale {g1,...,¢,} satisfying the following con-
ditions
(1) g1 = log, z (k € N), where log, denotes the logarithm iterated & times (log, z = z);
(2) logg: € R[[g1;--.;9i-1]], for 2 <7 < n.

DEFINITION 5. A multiseries with respect to a normal basis {g1, ..., ¢g,} is said to be algorithmic
when it converges to a function, and for any k£ € N* its first k& coefficients with respect to g, can
be computed and are themselves algorithmic (constants being algorithmic).

The theorem J. van der Hoeven aims at proving in various contexts of asymptotic expansions
is that there always exists a normal basis and (under suitable restrictions) algorithmic multiseries.
He has proved this theorem for exp-log functions [10], where the inversion problem and algebraic
equations have been at least partially treated too. Here is a theorem from [10].

THEOREM 1. Schanuel’s conjecture implies that the field of real algebraic exp-log functions is an
automatic expansion field.

An automatic expansion field is a field where normal bases and multiseries with respect to them
can be computed for any element. Schanuel’s conjecture is related to the zero-equivalence problem
for constants. Algebraic differential equations and the zero-equivalence problem in a general setting
should be treated in [11].
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1. Introduction

Let k = F, be the finite field with ¢ elements (¢ a prime power p”, r any nonnegative integer).
For the basic properties of finite fields, as well as an introduction to normal bases, etc., we urge
the unfamiliar reader to read [3, 4, 5].

Let A be a k-linear operator of k" and call M the associated matrix, that is an element of M, (k).
The aim of this talk is to introduce the so-called Shift-Hessenberg form of M (SHS form for short)
and describe its properties. In particular, it will be shown that there exists a fast algorithm for
computing H.

Having the SHS form of M enables us to solve several problems. First, we can find cyclic vectors
for A and therefore find a normal basis for F,» over F,. We can also find the minimal polynomial of
M. Moreover, if we have the factorisation of the characteristic polynomial of M, we can compute
the characteristic subspaces of A and get the Frobenius form (a.k.a. rational canonical normal
form) of M. Ounly the first of these — the computation of cyclic vectors — will be described in this
summary. Details can be found in [1].

In the sequel, we will restrict to the case where the characteristic polynomial of A is squarefree,
hence equal to the minimal polynomial of A.

2. Cyclic vectors and companion matrices

Let P(X) be a monic polynomial of degree n with coefficients in k:

n—1
P(X)=X"+> pX'.

i=0

It is easy to see that P(X) is the characteristic polynomial of the so-called companion matriz

0 0 - 0 —po
1 0 -~ 0 -p
Cp=|0 1 -+ 0 —p
0 1y

Let A be a linear operator over k and let P4(X ) denote its minimal polynomial.

DErFINITION 1. If v is a vector in k™, the minimal polynomial of A relatively to v is the lowest
degree nonzero polynomial P,(X) such that P,(A)v = 0.
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DEFINITION 2. A vector v is called cyclic if and only if P,(X) = Pa(X).
One has the following;:
THEOREM 1. Fvery linear operator A has a cyclic vector.

In the case where P, is equal to the characteristic polynomial, and if v is a cyclic vector, the
matrix of A in the basis (v, Av,..., A" 'v) is a companion matrix.

Let M be the matrix of A and call C' the companion matrix of its characteristic polynomial. The
problem we want to solve is how to compute a cyclic vector as fast as possible. We will perform
this operation in several steps: the first one is the computation of the Shift-Hessenberg form of M,
noted H, and the second is finding C' from H.

3. The Shift-Hessenberg form

ProposiTION 1. Let M be an n x n matriz of M, (k). There exists a matriz H similar to M of
the form:

oo O = O
o= O oo
o X X X
X X X X X
X X X X X

—_
x
X

X

The matriz H is called the Shift-Hessenberg form of M (SHS for short). Computation of H requires
O(n?®) elementary operations in k.

Proovr. Do as in Gauss reduction, but starting from the sub-diagonal. If there is no non-zero
element in the first column, below the sub-diagonal, then do nothing. Otherwise, assuming that it
is M, 5 (permuting lines if needed), eliminate all non-zero entries of this column. At the end of the
process, we end up with a matrix of the above form.

The cost of this algorithm is very close to that of Gaussian reduction, that is O(n?). O

It is clear, that when we can find a pivoting element for each column, we end up with a companion
matrix. More generally, any SHS matrix can be written as

Hp, B, Hp, B, -+ Hp s,
0 Hp,p, -+ Hg,s,

(1) H= . . .
0 0 Hgp, p,

where m is an integer called the parameter of H and where each Hp, p; is a companion matrix. It
can be shown that the minimal polynomials of the Hpg, p, are pairwise coprime.
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4. From the SHS form to the companion form
The key of the algorithm is the following Lemma [1]

LemMMA 1. Let A be any block-triangular matriz with two blocks:

_ (As, B, A, B,
A= < 0 ABQ,BQ) '

Fori=1,2, let f;(X) be the minimal polynomial of Ap, p,. Assume f; and f, are relatively prime.
Let vg, be a cyclic vector for Ap, p,. Lel hy be such that hy(X)fo(X) = 1 mod f1(X). Then a

<UB )
v =
LBz

ug, = hy(Ap, ,) (fo(A)us,) s, — vs,)-

The computation of v can be done in O(n?) field operations.

where

Now suppose we are given H in the form of (1). If m = 1, H is already a companion matrix. If
m = 2, the preceding Lemma applies. When m > 2, there exist two strategies. The first one is to
compute a cyclic vector for the last two blocks, replacing these blocks by a companion matrix, and
so on, until the whole matrix is companion. The second one is to split H in the form of

Hp, B, Hg, s,
2) < 0 HBQ,BQ)

such that the sizes of Hp, p, and Hpg, p, are kept under control. These can be chosen such that
either Hp, p, is a single companion block of size > 2n/3 or both matrices have size < 2n/3. This
leads to two deterministic algorithms. The first one is iterative and has cost O(n® + n*m?); the
second one is recursive and has cost O(n?). We note that on average, the parameter m is O(logn).

All these algorithms have been implemented in AX10M and give very encouraging running times.

5. Normal bases
DEFINITION 3. Let K be a finite extension of degree n of k. An element o € K is normal if and
only if

n—1

2
C— 7 o1 q
K = Vectp(a,a,a?,...;a" ).
. 2 n—1 . .
If a is normal, then (o, a?,a?,...,a? ) is called a normal basis.

Using a normal basis is particularly useful when computing powers of elements, since this is
readily done via a cyclic shift:

(6107 Ayenny an_l)q = (an_17 ag,y . . .7an_2).

Moreover, it is easy to construct a multiplication table for k£ by precomputing the quantities a x a?'
for all . We can see this as follows. Write

n—1 ) n—1 n—1
c= (Z aiaql) (Z biaql) = (Z ciaql) .
i=0 =0 =0

T

n—1

Then ¢y = Fy(a,b) is a bilinear symmetric form. Using ¢?"~ = ¢ we deduce that

(10 + ara? 4+ - )(bha+ba! + ) =cra+---
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or ¢; = Fy(a”,b”) where o denotes the shift operation. We see that computing all ¢;’s needs only
one matrix operation, followed by conjugation.
It is easy to see that:

ProrosiTION 2. Let w: & — x? denote the Frobenius automorphism. Then a is normal if and
only if a is a cyclic vector for .

Using the results of the preceding sections, and noting that the minimal polynomial of 7 is
X" — 1, that is squarefree for (n,p) = 1, we get

THEOREM 2. We can find a normal element in deterministic time O(n® + n*log q), where the
last term accounts for the computation of a matrix representing .

This result improves upon earlier results by von zur Gathen and Giesbrecht who gave a proba-
bilistic algorithm in O(n?logq) (using fast polynomial multiplication) or O(n?®log¢) without fast
multiplication, and a deterministic algorithm running in time O(n* + n?log q).

It is possible to treat along the same lines the case where n = p*.
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Factoring Polynomials Over Finite Fields

Daniel Panario

University of Toronto
January 23, 1995

[summary by Reynald Lercier]

Let ¢ = p™ where p is a prime and m € N*, let f be a monic univariate polynomial of degree
n in F,[X]; this talk surveys known algorithms to find the complete factorization f = f{*--- f¢"
where the f;’s are monic distinct irreducible polynomials and where ¢; € N* for ¢ € {1,...,r}. This
problem plays an important role in various fields like computer algebra, cryptography, number
theory, coding theory, ...

First, we present the main ideas behind Berlekamp’s algorithm (Section 1). Then, we give a
general factoring algorithm composed of three stages (squarefree, distinct-degree and equal-degree
factorization) which provides a framework for several other algorithms (Section 2). Finally, we
outline best known asymptotic complexity, current bottlenecks and recent results (Section 3).

To compare these algorithms, the unit cost will be multiplication in F,. Moreover, the arithmetic
considered is fast for polynomial algorithms and classical for linear algebra.

NoraTioN. Throughout the summary, we let O~ (n) = O(nlog*(n)) where k is a constant.

1. Berlekamp algorithm

Berlekamp’s ideas [1] lead to an efficient algorithm to factorize a polynomial f with no repeated
factors. Let R be the polynomial ring F,[X]/(f) and R; be the polynomial rings F,[X]/(f;) for
i€ {l,...,r}, then

R~R/ x--+-XR,

by the Chinese Remainder Theorem. We concentrate now on the Frobenius map ® on R given by
®:R— R,
h — h?.

The set of fixed points of ® is
B={h€ R,h?! =h}
and again by the Chinese Remainder Theorem, we have
B~ Fq’"

This means that B is a F, vector space of dimension r, the number of irreducible polynomials f;.
Berlekamp proved the following theorem.

THEOREM 1. Let h € B, then
/=TI ged(f.h = a).

a€ly,
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In fact, we obtain a non trivial factorization of f for degh > 1 (if degh = 0, we obtain f
multiplied by 1). Definition 1 outlines an important property of B.

DEerINITION 1. A set § = {hy,...,h,} is called a separating set for f if for any two distinct
irreducible factors f; and f;, there exists hy € S and a; € F, such that h; — ay is divisible by f;,
but not f;.

Theorem 2 connects Theorem 1 with Definition 1.

THEOREM 2. Let {1,vs,...,v,.} be a polynomial basis of B, then {v,,...,v,} is a separating set

for f.

These results finally lead to the following algorithm whose complexity is O~ (n® + ¢n?).

(1) Form the matrix of the mapping ® — Id with respect to the basis {1, X,..., X"} of R;
(2) Obtain a basis {1,vs,...,v,} of B = ker(® — Id) using Gaussian elimination;
(3) Factor f computing

f: H gcd(f,m—a)

agll,

and refine the partial factorization successively using wvs,..., v, until the complete factor-
ization of f is obtained.

2. A general factoring algorithm

We focus now on a different approach for factoring polynomials over finite fields. It is a general
method that breaks the problem into three subproblems.

Square-free factorization: Find monic square-free pairwise relatively prime polynomials
Gi,--.,¢gn such that

f=9195- 95
Distinct degree factorizalion: Split a square-free polynomial into polynomials the irreducible
factors of which have the same degree.
FEqual degree factorization: Completely factor a polynomial the irreducible polynomial fac-
tors of which have the same degree.

2.1. Square-free factorization. This subproblem is solved easily by more or less computing
the ged of f with its derivative f’. More rigourously, a possible algorithm is the following [3].
i:=1;R:=1;a:= f;b:= f'; ¢c:= ged(a,b); w:= a/c;
while ¢ # 1 do
y:=ged(w,c);z:=w/y; R:i= R*z1:=i+ 1, w:=y; c:=c/y
R:= R+ uw';
return(R)

This method has cost O~ (n).



2.2. Distinct degree factorization. This subproblem is solved by Theorem 3 [4].

THEOREM 3. For every i« € N, the product of all monic irreducible polynomials over F, whose
degrees divide i is equal to X7 — X .

This theorem leads to the following algorithm which returns a n-tuple (gq,...,¢,) where each
polynomial g; contains all the factors of degree ¢ of f.
(1) Set hg = X and fo = f;
(2) Fori=1,...,n,do
— Compute h; = h!_, mod f;
— Compute g; = ged(h; — X, fio1) and f; = fi_1/9s;
(3) Return (g1,...,9xs).

The main cost of this algorithm is the computation of X¢ for i = 1,...,n. By repeated squaring,
this cost is O~ (n?log¢). A better way of computing this quantity consists in using an algorithm
to iterate the Frobenius map. At first we compute X? mod f and then go doubling evaluating
X% mod fin X to obtain X?". So X mod f = X9 X?) mod f, X% mod [ = qu(Xq) mod f,
and so on. The cost of this method is O~ (n? 4+ nlogq)

2.3. Equal degree factorization. The probabilistic algorithm we are going to describe to find
the r irreducible factors fi,..., f, of degree d of a polynomial f of degree n = dr in F, with ¢ odd
is due to Cantor-Zassenhaus [2].

If there exists a polynomial ¢ € F,[X]such that c mod f; = 0and cmod f; #0for 1 <i < j<r,
then ged(e, f) splits f. To take advantage of this idea, we choose at random a polynomial a of
F,[X]/(f). Then the polynomials ¢; = e mod f; for 1 < ¢ < r are independent and uniformly
distributed elements in F,[X]/(f;). So

iy

a,? =41 mod f;

(3

with probability 1/2 each. Consequently, a“* — 1 does not factor f with probability 2(1/2)".
This idea leads to the following algorithm which returns one factor of f or FAIL.

(1) Choose ¢ € F,[X]/(f) at random;

(2) Compute g = ged(a, f). If g # 1, then return g;

(3) Compute b = 0“7 — 1 mod I

(4) Compute g = ged(b, f). If g # 1, then return g else return FAIL.
Its cost is O~ (n*log q).

3. Recent results

New results improve the scheme described in Section 2.

— J. von zur Gathen and V. Shoup [7]: Distinct degree factorization: O~ (n? 4+ nlog¢); equal
degree factorization: O~ (n*7 + nlogq).

— E. Kaltofen and V. Shoup announced in [6]: Distinct degree factorization: O(n'®'%logq)
asymptotically but O(n?*® + nlogq) in practice; equal degree factorization: O(n?logn +
nlog ¢) in practice.

Nevertheless, the main cost remains the computation of X¢ for ¢ = 1,...,n. Furthermore, other
recent results must be cited.
— Evdokimov (1993): A deterministic algorithm, quasi polynomial time (n'°&"log q)o(l).

— Niederreiter [5]: A new deterministic algorithm.
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— Kaltofen-Lobo (1994): Randomized Berlekamp with Wiedemann’s linear solver, in time

O~ (n? + nlogq).
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Computation of the Integral Basis of an Algebraic Function Field and
Application to the Parametrization of Algebraic Curves

Mark van Hoeij
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June 7, 1995

[summary by Laurent Bertrand]

Abstract

A new algorithm [1] for computing an integral basis of an algebraic function field is pre-
sented. This algorithm is then applied to the computation of parametrizations of algebraic
curves of genus zero [2].

1. Computation of the integral basis

Let L be an algebraically closed field of characteristic zero and z be transcendental over L. Let
y be algebraic over L(z) with minimal polynomial f of degree n with respect to y. We suppose
that y is integral over L[z], so f is monic over L[z]. Let C be the algebraic curve defined by the
equation
f(X,Y)=0
and let L(C') be the function field
L(C) = L(z,y) = LX)Y]/(f(X,Y)).

A function of L(C') is called integral if it satisfies a monic irreducible polynomial with coefficients
in L[z]. The integral closure © of L[z] in L(C') is the set of all integral functions. It is also the set
of all functions with no finite pole, and it is a free module of rank n over L[z]|. An integral basis is
then a set {by,...,b,_1} of elements of L(C') such that

The algorithm presented here computes an integral basis with all its elements in K (z,y) where
K is a given subfield of L containing all the coefficients of f.

1.1. Algorithm. The algorithm can be described as follows. We look for an integral basis of
the form {bg,...,b,_1} such that b; is a polynomial of degree i in y with coefficients in K(z).
Moreover by can be chosen equal to 1. The integral basis is computed step by step. Suppose that

{bo, ..., ba_1}
have been computed, then we compute b; such that
Lizlbo+ -+ L[z]bs = {a € O : deg(a) < d}
and deg(by) = d as follows:
(1) let by be yby_1;
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(2) let V ={a € 0O :deg(a) <d}\ L[z]bo + - - - + L[z]bs;
while V # () do
(a) choose a € V such that a = (agby + - - - + agbs)/k with ag,...,as and k in K[z] and
ag = 1;
(b) substitute b; by a.

In order to compute an element a satisfying the conditions of (a), the author applies the result
saying that z — a appears in the denominator £ if and only if C' has a singularity on the line
z = a. After that, for computing the a;’s, Puiseux expansions are used and also bounds for these
expansions and for the degree of the denominator. The issue is the resolution of a linear system.

2. Application to the parametrization of algebraic curves

Here f is supposed to be irreducible of degree n with respect to y. The curve C' is the projective
algebraic curve defined by f. Let F' be the homogenization of f. It means that F(X,Y,7) is the
polynomial of smallest degree such that f = F(X,Y,1). A parameter p is a function generating
L(C), i.e., every function in L(C') can be written as a rational funtion in p. It is in fact a function
with only one pole which is of order 1 on €. A parametrization of C' is a pair (X(t),Y(¢)) of
rational functions such that f(X(¢),Y(¢)) =0 and L (X(¢),Y () = L(1).

Curves allowing parametrizations are called rational curves. They are in fact curves of genus 0.
The aim of this algorithm is to compute when it is possible a parametrization of a given curve,
using the algorithm for computing an integral basis presented before.

2.1. Algorithm. The algorithm for computing a parametrization is the following:

(1) Compute a parameter p;
(2) Express z and y as rational functions in p.

For the computation of a parameter, divide the projective plane in two disjoint parts A and B.
Compute a function P with only one pole of multiplicity 1 in AN C. Then compute a function ¢
with no pole in AN C and such that P 4+ @ has no pole in BN C. (For that, the computation of
an integral basis is used). Then a parameter is P + Q.

The last thing to do is to express z and y as rational functions in p by computing appropriated
resultants.

The computation of integral basis can also be used to compute the genus of a curve or the
Weierstrass normal form of a curve of genus 1, see [1, 3].
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Symbolic Computation of Hyperelliptic Integrals
and Arithmetic in the Jacobian

Laurent Bertrand

Université de Limoges
June 7, 1995

[summary by Gaétan Haché]

1. Introduction

The interest of this talk is the integration of hyperelliptic functions. The technique used for
such integration follows the usual pattern for the integration of algebraic function developed by
R. H. Risch, B. M. Trager, J. H. Davenport and a representation of divisors over hyperelliptic
curves due to D. G. Cantor. For example, we want to compute the integral

(1) /3 325 —z 42 p
x.
2 (22— —z 4+ 1)WVad+a—1

If the exact value of this integral is needed, then one normally computes a primitive. In this case

it is equal to
1 z+Vzd 4z -1
0 .
& z—Vzi+z -1

If we set

(2) vy =2 +z -1,
then one can consider the integral
/ 325 —x 42
dx
(z2—a%—z+ 1)y

over the algebraic function field of the affine curve

C={(a,b)e A*(C) : 6> —a’ —a +1=0}.

2. Integration over function field of curves

The general setup is the following. Let K be a field of characteristic 0, K an algebraic closure
of K and F € K[z,y] an absolutely irreducible polynomial (that is F is irreducible over K). We
consider the function field

K(C) = K(x)[yl/(F)
where C is the curve defined by F(z,y) = 0.

DEFINITION 1. A function H is said to be an elementary primitive of h € K(C) if H' = h and
if H can be written from functions of K(C) using combinations of logarithms, exponentials and
algebraic expressions.
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In the previous example
325 —x 42

h =
(22 —2® —x+ 1)y’

the curve has for equation

v —a2° -2 +1=0

1og<x+y>.
r—Yy

We want to answer the following questions:

and h has for elementary primitive

(1) Does a function h € K(C) have an elementary primitive # = [ hdz over K ?
(2) If so, what is this primitive?

Risch have shown that if H is an elementary primitive over K then

(3) H =1, + Zci log(v;)

i=1

where vy € K(C), ¢; € K and v; € K(C). The algebraic part v, is computed using Hermite’s
algorithm and the logarithmic part is done using Risch’s algorithm.
Following is a short history of integration of algebraic functions.

1833: Liouville’s principle; gives the form of the elementary primitive;

1872: Hermite’s algorithm; allows the computation of the algebraic part;

1970: Risch’s algorithm; allows the computation of the logarithmic part. Needs arithmetic over
divisors of function fields and principality test;

1981-1984: Davenport and Trager algorithms; first implementable algorithms.

3. Special case: hyperelliptic curves

In his thesis, B. Trager gives an algorithm which solves the previous questions in the general
cases. The work of L. Bertrand studies the case where C has genus g > 2 (hyperelliptic) and K(C)
is a quadratic extension of K (z) with z € K(C) transcendental over K. Let L be the function field
of genus g of the curve C defined by the equation

(4) y* = f(2)

where f(z) is square free of degree m. In this case, the computation of the logarithmic part of the
primitive is reduced to the computation of the primitive of the following type

/w where w = Pz) dz

Q(z)y
with P,Q € KJ[z] such that ged(Q’,Q) = ged(P,Q) = ged(f,Q) = 1. To the differential w
is associated some zero degree divisors D, Ds, ..., Dy over the normalized of the affine curve C
defined by (4). A necessary condition for the primitive to be elementary is that all these divisors
are torsion divisors, that is there exist m;, (¢ = 1,...,k), such that m;D; are principal. Then the

functions v; € K(C) such that (v;) = n; D; are candidates to verify (3).
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4. Representation of divisors

For quadratic extensions, L. Bertrand has developed an algorithm which is much more efficient
than Trager’s one. This is because the test of principality is greatly improved by the use of a
simpler representation of divisors over such quadratic extensions. Following is an overview of such
representations. Two cases are considered:

— m = 2¢g+ 1 and C has a unique point at infinity;
— m = 2¢g + 2 and C has exactly two points at infinity.

Case m = 2g+ 1. Any divisor D of degree 0 may be written

k k
(5) D=3 nP,=) nPs.
i=1 i=1

It is represented by two polynomials
[a(z), b()]
where
— a(z) = [z, (z — @)™
— for all ¢, vp(y — b(2)) > ny;
— degb < dega.

Case m = 2g+ 2. Any divisor D of degree 0 may be written

k
D= anR + 'noo+Poo+ + noo—Poo—

i=1
with Ele N + Neot + Noo—- = 0 and the representation of D is given by

[a(2), b(z), 8]

where @ and b are defined in the same manner as in the case m = 2¢g + 1 and where § = ng+ — Neo- .

5. Arithmetic in the Jacobian

To test if a divisor D is a torsion divisor, one computes the order of D in the Jacobian over several
well chosen finite prime fields (note that over finite fields, any zero degree divisor is a torsion divisor
since the Jacobian of the curve is finite). Using the outcome of these order computation, one can
decide if the divisor D is a torsion divisor or not.

The computation of the order of a divisor is done by performing a principality test of [D for
[ =1,2,... until we find [ such that [D is principal. To do so in an efficient way, fast arithmetic
computation over the Jacobian is needed. Following is an overview of how it is done using the
representation of divisors by two polynomials (for more details see [1]). Let D be a divisor repre-
sented by [a,b]. Then —D = [a,—b] — (a). Let D; and D, be two divisors represented by [a;, ;]
and [a,, bs] respectively. Then

ajas hyaiby + hoashy + ha(bibs + f)

(6) Dy + Dy = 7z d

mod a| + (d)

where

d = ged(ay, as, by + by) = hiay + hoas + ha(by + by).
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A notion of reduced divisor is considered and the principality test relies on a theorem stating that
a reduced divisor D is principal if and only if D = [1,0]. Using the arithmetic over the Jacobian,
one can compute for any divisor D an equivalent reduced divisor Dy, that is such that D = Do+ (h)
for some function h € K(C). In the case where m = 2¢g + 2, a similar notion of reduced divisor is
used, and a reduced divisor D is principal if and only if D = [1,0,0].
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Asymptotics of Mahler Recurrences:
Binary Partitions Weighted by the Number of Summands

Philippe Dumas
INRIA, Rocquencourt

December 5, 1994

[summary by Hsien-Kuei Hwang]

Abstract

The asymptotic behaviour of the number of binary partitions (summands being powers
of two) weighted by the number of summands is investigated. The methods of proof relies
on the Mellin-Perron formula.

1. Introduction

Consider the generating function

(1) 1) =Y == (>0

n>0 E>0

which satisfies the functional equation of Mahler type:
(2) J(2)(1 = pz) = f(z7).

The general problem of interest here is the asymptotic behaviour of the sequence a,, as n — +00.
Different values of p give rise to different behaviours of a,,. The simplest case is when p > 1. One
easily deduces from (2)

=T )" +0 ("),  (n—+ox).

When p = 1, a,, represents the number of partitions of n into summands which are powers of
two. Asymptotics of a, were originally studied by C. L. Siegel and by K. Mahler, and later by
N. G. de Bruijn [2]. The principal methods used by De Bruijn are Mellin transform (without
explicit mention) and the saddle-point method. His result is

1 (10 n )2+<1+ 1 _|_10g10g2)1o -
2log 2 glogn 2 log?2 log 2 &

<1 N loglog 2 logn — loglog n) 40 <(log log n)2>
log 2 log 2 logn

log as, = log as,y1 =

)loglogn—l—w<

as n — 400, where w(w) is a periodic function of period 1 whose Fourier expansion is explicited.
Another approach (with weaker error term) to similar problems by Pennington [7] proceeds along
Ingham’s Tauberian theorem.

The problem becomes very complex when p = €', 0 < [t] < 7, t real. A study of the various
behaviours of a,, using elementary methods is contained in van der Hoeven’s DEA memoir.
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This talk is concerned with the case when 0 < p < 1. As individual term are highly irregular,
one considers the summatory function of a,,.

THEOREM 1. Let a, be defined in (1) with 0 < p < 1 and set F,, = > o<k<n @k Then F, satisfies

(3) F, = P(log, m)n® + 0 (n"+72) . (e >0),
as n — oo, where oo = —log(1 — p)/(log2) > 0 and P(u) is a periodic function of u whose mean
value is approximately given by
e—)\/log2 10g L
1 _ p)/Ueg2)=1/2 h \ = k.
2. Proof

To derive (3), one starts from the Mellin-Perron formula:

1 ct+ioo ns-}-l
(4) Y oa=go [ e,

1<j<n —ioo

where ¢ is taken to be larger than the abscissa of absolute convergence of the Dirichlet series
o)1= Y agi
i>1
To apply (4), one requires the analytic continuation of ¢ to a larger half-plane (than its original
domain of analyticity) and the magnitude of growth of the continued function at o + iocc.

The abscissa of convergence of ¢ is determined by the growth order of F,, cf. [8, §9.14]. From
the defining equation (1), one readily obtains the recurrence

(5) { - b

(429 :pan—1+an/27

with the convention that a, = 0 when z ¢ Z. From this, one deduces the following relations for F,,

Fo = 1,
Fn :pFn—1+Fn/2+F(n—1)/27

again with the convention that F, = 0 when 2 ¢€ Z. From this last recurrence, one can verify, by
induction, that
F(n)=0(n%).

Thus, by [8, §9.15], the abscissa of absolute convergence of the Dirichlet series ¢(s) is not greater
than a. A probabilistic argument concerning the distribution of the number of summands in a
binary partition permits to show that the abscissa of absolute convergence of ¢(s) is in fact less
than a.

The analytic continuation of ¢ can be computed by (5) and the technique used in [1]. One thus
obtains

(L=p=27")¢(s) = p+ py(s),
where
3 _
0= o 07 =G0 = 5 (oo
i>1 k1 k

The second expression provides the required analytic continuation of ¢ to the whole s-plane.
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FI1GURE 1. The reduced sequence f,/n* associated to p = 1/2 contrasted with the
mean value of the periodic function P(v).

The remaining analysis follows closely the lines for the number of odd numbers in Pascal triangle
in [4]. The expression for the approximate mean-value of P(u) is obtained by Mellin transform
starting from

tog f(e™) = Y- log - —; ~ ~alog+ pllog 1) + (1),
jo L—rpe
as t — 0%, where p is a 1-periodic function and ¢ is an entire function. The key point is the strong
correspondence (see [5]) between the asymptotic behaviour of a function in the vicinity of 0 and
the singularities of its Mellin transform. This provides a precise estimation for the residues of the
Mellin transform of f(e™*), which is T'(s)g(s). The theorem of residues is then applied, hence the
theorem stated. See Figure 1 for an illustration.

3. Concluding remarks

The number of unrestricted partitions (whose summands are positive integers) weighted by the
number of summands has generating function

Y op(n)z" =11

n>0 E>1

1
1— pzk’

The corresponding asymptotics have been thoroughly studied in the literature. The case p = 1
leads to the famous Hardy-Ramanujan-Rademacher formula, and other cases were completed by
Wright [9].

The methods presented in this talk, adapted from [4], become more or less standard and are
powerful enough to be applicable to other problems, like g-multiplicative functions [6], the Goldberg
problem of determining the asymptotic behaviour of the coeflicients

[ﬂm{zfy

divide-and conquer recurrences, etc.
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Oscillating Rivers
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[summary by Jacques Carette]

Abstract
An oscillating river is an oscillating asymptotic solution of an ordinary differential equa-

tion where there is, at infinity, an exponential concentration of solutions of the differential
equation. The aim of this talk is to present a few cases where such can be proved to occur.

1. Introduction

F. and M. Diener have recently studied some cases of solutions of ordinary differential equations
which are exponentially close to each other at infinity [1, 2, 3]. This new type of attractor was
baptised “fleuve”, or “river” a name suggested by the corresponding phase portraits (see Figure 1).
If one considers a scalar equation

dY n .
ix - ZOJDJ(X)Y]
]:

where the P;(X) are finite sums of rational powers of X with complex coefficients, then there exist
effective methods to ascertain the presence of rivers. The associated solutions are either attractive,
in which case there is an infinity of solutions which share the same asymptotic behaviour, else
they are repulsive, in which case there is a unique asymptotically unstable solution. These rivers
generally possess divergent asymptotic expansions in fractional powers of X, but they are always
Gevrey.

2. The Periodic Model

The results established for the P;(X) in the class defined above, are still valid if these functions
possess a pole at plus infinity, but not if one of them has an essential singularity. As the figures
show, this is not an obstacle for such rivers to occur. However, F. Michel believes that it is the
periodic structure of the functions considered which makes the phenomenon possible. This leads
to the study of the following model:

dy

(1) 5 = D a (X)X ™y ™

iel
where m; € Q,n; € N, I is a finite set, a;(X) € C, where C is the algebra of C* periodic functions
of fixed period 7.

The asymptotic behaviour of these rivers does not follow from those of the previous case (that we
shall refer to as the polynomial case). In fact, there will be three cases, depending on a parameter
¢ which depends on the m; and the n;. The method used to prove the theorems will be to give

73



qualitative results about solutions that bound (above and below) the trajectories of interest. This
is to be contrasted to the methods used for the polynomial case, which were singular perturbations
and non-standard techniques.

)

Ficure 1. Rivers: Y/ =Y? — X and Y/ =Y? — (1 4+ sin X/2)X.

3. Notation

Even though the results are straightforward to state in vague terms, the exact formulation needs
a number of preliminary concepts to be defined.

DEeriNiTION 1. If £(X) € C is a non-zero function and Y (X) is a real function defined on a
neighbourhood of +o00 and r € Q then we say that Y(X) is asymptotic to k(X )X" (which we
denote Y(X) ~ E(X)X7) if

Y(X)= k(X)X +0(X"), X — .

Note that if a function is asymptotic to k(X )X" then the term k(X) is necessarily unique which
makes C an appropriate space for studying the asymptotic behaviour of solutions of our model.

As is usual in dealing with differential equations, crucial information is contained in the Newton
polygon P, the convex hull of the set of horizontal half-lines going left from the points (m;,n;).
A rational number r will be called a co-slope of P if r is the slope of one of the normals to the
segments of P.

Note Q(5, X,Y) =3  a;(5)X™Y" where a;(X) € C and are not identically zero. The number
a; is the average of a; over one period, and @;(X) = a;(X)— a;. We also generalise this notation to
any function of X, by which we mean that a bar indicates an average and a tilde the zero-average
translation.

Let r € Q, then we define po = max(m; + rn;) and ¢ = 1 — r — po. For the slope r, ¢ measures
the attraction (or repulsion) of the associated solution, if it exists. Let ¢ be the smallest positive
integer such that » — n/q for n € N takes on all values of m; + rn; for i € I and the value r — 1.
From these values we can define p = c¢q and u,, = po — n/q. Furthermore, we set

QrS, X, Y)=" > a(S)™y™,  QHX.)Y)= D aa™Y™.
m;+rn;=pnr mi+rn;=pnr
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We will only discuss the various @Q° functions here, but the other functions can be used to
determine the successive terms in the asymptotic expansion. We denote by a’ the derivative of the
above functions with respect to Y. The differential equation

dy
(2) = QX LY)

will be important. Finally, note by (%) an expansion of the form

D ay( X)X

i>0

for a;(X) € C. This is the model used for an asymptotic expansion.

4. Results

Each of the following three theorems has two sub-cases, sub-case (a) corresponds to the attractive
case, and sub-case (b) to the repulsive case.

THEOREM 1. Let r € Q, k(X ) € C, k # 0 be such that

(1) r is a co-slope of P;

(2) e>1;

(3) VX, QUX, 1, K(X)) = 0;

(1) (a) VX, (QI(X,1,K(X)) < 0, or (b) VX, (Q2)(X, 1, k(X)) > 0.

Then there exists a series of the type (%) which is a formal solution of (1) with ag(X) = k(X).
Furthermore, there exists an infinite number of solutions asymptotic to k(X )X" in the attractive

case, and a unique one in the repulsive case. The series () is the asymptotic expansion of those
solutions.

Conditions (3) and (4) express that k(X )X" is the first term in the asymptotic expansion for
a trajectory with constant 0 derivative along that trajectory. The first condition is to insure that
the function @? is not reduced to one term (where only the function k(X ) = 0 would satisfy the
third condition). The cases in Condition (4) indicate whether the branch of the solution we are
considering is attractive or repulsive. The fact that ¢ > 1 indicates that geometrically the nearby
solutions oscillate along with the trajectory considered.

THEOREM 2. Letr € Q, k € R, k # 0 be such that

(1) r is a co-slope of P;

(2) 0<e< 1y

(3) Q.(1,k) = 0;

(4) (@) (QV(1,K) < 0, or (b) (Q2)(1,k) > 0

Then there exists a series of the type (%) which is a formal solution of (1) with ag(X) = k(X).
Furthermore, there exists an infinite number of solutions asymptotic to kX" in the attractive case,
and a unique one in the repulsive case. The series (x) is the asymptotic expansion of those solutions.

Since 0 < ¢ < 1, the rivers do not oscillate starting at the first approximation, and thus it is
necessary to look at the averaged function @? instead, but the meaning of the third and fourth
conditions are essentially the same as in the previous theorem.

THEOREM 3. Let r € Q, k(X ) € C, k(X ) # 0 be such that

(1) r is a co-slope of P;
(2) e=1;
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(3) k(X) is a periodic solution of (2);

(4) () (@)X, L,KX)) < 0, or (b) (QOV(X, L,E(X)) > 0.
Then there exists a series of the type (%) which is a formal solution of (1) with ag(X) = k(X).
Furthermore, there exists an infinite number of solutions asymptotic to k(X )X" in the attractive
case, and a unique one in the repulsive case. The series () is the asymptotic expansion of those
solulions.

The case ¢ = 1 is an intermediate situation: there are oscillations of the type k(X )X", but k(X)
does not correspond exactly to the oscillations of the trajectory. When it exists, we observe that it
is generally out of phase and of smaller amplitude.

We will then call oscillating river the solutions described by each of the preceding theorems.

5. Example

Let us consider the equation Y’ = (Y? — (2 + sin(X)))X . The first condition in all theorems
implies that necessarily » = 0. From this, we can calculate ¢ = 1 + a. Thus, if @ > 0, the first
theorem gives that we have a river asymptotic to +(2 + sin(X))¥2, if 1 < a < 0, the second one
gives rivers asymptotic to £1/2 and if a = 0, the last theorem leads us to search for periodic
solutions of a periodic equation, where one can consult the large literature on this subject.

6. Proof Ideas

To prove that there exists solutions asymptotic to k(X )X", the notion of tunnels is used. If
there exists Xg,v_, vy € R with v_ < v, such the right hand side of (1) is positive for all X > X,
for Y = v_ and negative for Y = v, then the set {(X,Y) | X > Xo,v_ <Y < v;} is called a
tunnel. In the appropriate coordinates, the hypotheses imply easily that such tunnels exist, which
then force the existence of the asymptotic solutions. Technical computations show the existence
of a formal series solution. And finally, a few more arguments with tunnels and leading term
comparisons allow us to conclude that this series is actually an asymptotic series expansions for
the solutions shown previously to exist.

Bibliography

[1] Diener (F.). — Singularités des équations différentielles, Dijon 1985. Astérisque, vol. 150-151, 1987,
pp- 59-66.

[2] Diener (F.). - Propriétés asymptotiques des fleuves. Comptes-Rendus de I’Académie des Sciences, vol. 302,
986, pp. 55—58.

[3] Diener (F.) and Diener (M.). — Fleuves 1-2-3 : mode d’emploi. In Diener (M.) and Wallet (G.) (edi-
tors), Mathématiques finitaires et analyse non standard. pp. 209-216. — Publications Mathématiques de
I"Université de Paris VII, 1989.

[4] Michel (Franck). — Fleuves oscillants. Bulletin of the Belgian Mathematical Society, vol. 2, 1995, pp. 127-
141.

76



Analytical Approach to Some Problems Involving Order Statistics

Wojciech Szpankowski
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[summary by Daniele Gardy]

Abstract

Order statistics, such as the distribution of the maximum of n random variables, are
usually studied from a probabilistic point of view. This talk presents an analytical approach
that can be applied to a sequence of independent random variables, and to dependent vari-
ables. Applications include statistics on digital structures, the analysis of a leader election
algorithm, and an extension of probabilistic counting.

1. Order statistics

Let X, X,,..., X, be asequence of discrete random variables; the order statistics is the sequence
arranged in nondecreasing order: X1y < X(5) < --- < X(,,). The classical theory of order statistics
takes place in a probabilistic frame; see for example [2] or [12].

Assume that the variables X; are ezchangeable: the n! permutations X; ,..., X; have the same
joint distribution [3, p. 228].! Define M,, = max{Xi,..., X,,} as the maximum of the n variables.
By the inclusion-exclusion principle, we have that

(1) Pr{M, >k} = zn:(_l)rﬂ (:) Pr{X; > k,...., X, > r}.

Define
Fi(z) =Y Pr{X, > k,...,X, > k}2%  M,(z) = Y Pr{M, > k}:".

k>0 k>0
Then Equation (1) translates on the generating series as
M, (2) =Y (-1 (“)mz).
r=1

Hence the generating function of M,, (or of the rth-ranked variable of the sequence) is expressed
by an alternating sum, which suggests that a Mellin-Rice approach to the asymptotics might be
successful (see for example [6] for a general introduction to this subject).

! Another definition of exchangeable variables might be: for any subsequence {i;} s.t. 1 <i; < -+ <4, <
n, Pr{X;, <z1,...,X;, <z} =Pr{Xy < 21,..., X, <z} .
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2. The independent case: the probabilistic approach

2.1. Continuous random variables. In the continuous case, the X; are ii.d. and contin-
uous; there exist two sequences of normalization constants {a,} and {b,} and a function H s.t.
lim, 400 Pr{(M, — a,)/b, < x} = H(x); then H is the limiting distribution of the (normalized)
maximum M,,.

The theory of asymptotic distribution of extremes was initiated by Fischer and Tippett in 1928,
and further developed by Gnedenko around 1943; see for example the books by Galambos [7] or
Resnick [12] or the presentation given by Sweeting in [13]. The behaviour of the tail determines
the limiting distribution H(z) (see for example [2, p. 210] or [7, p. 51-52] for complete conditions).
The limiting distribution of the normalized maximum sample has one of the following types: (i)
If Pr(X; > tz)/Pr(X; > ) — 2= (a > 0) for t — 400, then H(z) = exp(—2z~°) for > 0 and
H(z) = 0forz < 0; (ii) If there exists a finite A s.t. Pr(X; < A) =1, and Pr(X; > A—ex)/ Pr(X; >
A—¢) — z® for ¢ — 0, then H(z) = exp(—(—2)*) for z < 0 and H(z) = 1 for z > 0; (i) If
Pr(X; >t+aE(X;, —t|X; > 1))/ Pr(X; >1t) — e * for t — +o00, then H(z) = exp(—e~%) for all z.

The normalization constants a,, and b, might be seen respectively as a shift and a scaling factor.
They are not necessarily unique: see [2, p. 209] or [12, p. 86] for a discussion of this point; Galambos
devotes a whole section of his book to discussing possible choices [7, p. 57-63]. In good cases, a,
and b, correspond to the limiting mean and variance; see [12, p. 84-85] for conditions that ensure
that we can use the mean and variance as scaling factors.

When it is possible to prove conditions on the tail distribution, such as an exponential tail, the
asymptotic mean can be computed as: a, = inf{z : Pr(X; > z) < 1/n}.

2.2. Discrete random variables. In this case, Anderson [1] (see also [7, p. 120, ex. 8]) gave a
necessary condition for the existence of a,, and b, s.t. the normalized random variable (M, —a,)/b,
converges to a non-degenerate limiting distribution: Pr(X; = k)/ Pr(X; > k) — 0, k — oc.

The existence of a limiling distribution is a strong property, which is not always verified; in some
cases we can prove a weaker result on the existence of an asymptotic distribution, which might not
imply a limiting distribution because of fluctuations. An example of this happens when the X;
follow a geometric distribution: Pr(X; = k) = p*(1 — p) for & > 0. Then it is possible to prove
that Pr{M, < |log,,, n+ m]} ~ exp (—pm‘{IOgl/x‘"ﬂLm}) . Because of the fluctuating nature of the

m—1

fractional part {t} = ¢ — [¢], this expression oscillates between e=?" and e~?

3. The independent case: the analytical approach

For i.i.d. variables X;, we have Pr{X; > k,..., X, > k} = (P{X; > k})". Hence F" = X©@, with
XOz) =Y, (Pr{X > k})" 2" standing for r Hadamard products.

When the distribution of the X; is a sum of geometric distributions, their g.f. is X(z) =a/(l -
pz)? for some constants a, p and d. Now, for integer d, the coefficient [27]X(z) is equal to a("ﬁ;l)p"
and we can compute a uniform approximation of F’(Z):

o (dr —r)la” 1
PO = g g (e )

From now on a Mellin-Rice approach can be used, to obtain

THEOREM 1. Let a, =logn + (d — 1)loglog n — log I'(d); then for any integer k

1 kt14{an
Pr(M, < a, + k) = me"’ T 4 oo(1).
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4. Digital structures

4.1. Depth in a trie. Consider a trie built on n independent random uniform binary sequences
Siy1 < i< mn,of 0and 1. Define D, as the average depth of an external node [14]; this quantity
is related to the number of nodes visited during a successful search. The analysis of D,, leads to
considering the length C;; of the longest prefix common to the sequences S; and S5;: D, has the
same distribution as max{C} ,,...,C;,}. Although the C;; are dependent, we still have

n

2) Pr{D, > k} = %Z(—l)’“ (Z)rpr{cm > k,...,Co > k).

r=2

The Bernoulli model. In this model, Pr{Cy, > k,...,C1, > k} = (p" + ¢")*. Define C?n(z) =
> k0 PT{D, > k}2*; the relation (2) on D, translates into an equation on G,,(#), which gives after

some computations
e 1 —3/24i00 n—s—lr(s + 1) 1
(2) 20T J_3/2-i00 1 —2(p7* +q7%) n

In the asymmetric case, D, follows a normal limiting distribution, with asymptotic mean p, ~
(1/h)logn and variance o2 ~ clogn; the constant ¢ is (hy — h?)/h®, with A = —plogp — qloggq
and h, = plog’p + ¢qlog”q. The proof relies on Goncharev’s condition, characterizing a normal
distribution from its g.f.: lim,_ ., e"##/7= G, (e*/7») = ¢**/2, In the symmetric case (p = ¢ = 1/2),
the variance is O(1) (¢ = 0), which suggests that Goncharev’s condition does not hold and that
we cannot expect a normal limiting distribution. Indeed, the asymptotic distribution fluctuates

according to the fractional part of log, n: Pr{D, <log,n + k} ~ exp(—2k+i+{log2n}) /1o 2.

The Markovian case. In the Markovian model, the next symbol depends on the previous one only;
the probability p; ; of obtaining the letter ¢ after the letter j is given by a matrix P. It is possible
to write an equation on the g.f. of the depth D, and a similar analysis [8] shows that D, again
tends to a normal limiting distribution, with a variance of order logn, except for the symmetric
independent model, where the variance is O(1).

4.2. An open problem: height of a trie. The approach outlined in Section 4.1 fails When
one considers the height of a trie, defined as the maximal depth of all leaves: H,, = max{C, ;,1
i < j < mn}. The catch here is that the variables are not exchangeable.

4.3. Depth of a digital search tree. Consider a digital search tree built on n independent
keys in the Bernoulli model; as for a trie, let D, be the average depth of an external node, and

define E B, (k) as the average number of internal nodes at level k. Then Pr{D, =k} = E B,(k)/n.
The generating function B, (u) := Y, E B, (k)u" satisfies the recurrence equation

B —1+uz( )P’Q" '(Bj(u) + Bpoj(u)),

whose solution can be expressed in terms of Q,(u) = Hf;l(l — (PP + ¢/ )u). Again the asymptotic
distribution in the symmetric case fluctuates with n, and a central limit theorem can be proved in
the asymmetric case [10].

The Lempel-Ziv algorithm for data compression can be modelled by a digital search tree built
on independent keys, when the number n of parsed words is known, and its performance can be
expressed in terms of parameters of the tree such as the average depth of an external node. A

79



different model considers that the pertinent information is the length of the sequence to be parsed;
again this can be modelled by a digital search tree, now with dependent keys. It is possible to
prove (see [10]) that the distribution of the length of a random phrase is asymptotically the same
as the limiting distribution of the depth in the first model, with a digital search tree built on
m = |nhlogn| nodes (here again h denotes the entropy of the alphabet: h = —plogp — qlogq).

4.4. A leader election algorithm. The algorithm for the election of a loser, analyzed by
Prodinger in [11], can be dealt with in a similar manner [4]. The principle of the algorithm is
as follows: At the beginning, all players are active; at each step, the active players throw a coin
randomly and independently and the set of active players for the next step is exactly those who
throw tail, or all the former players if all of them throw heads; the algorithm ends when a single
player throws tail. The number of steps required by the algorithm to choose a loser is the height
H,, of the leftmost leaf of a trie. The analysis begins with the study of the Poisson model, where
the number of keys follows a Poisson distribution, then goes on to extract the statistics for the
Bernoulli model by a Depoissonization Lemma.

4.5. Probabilistic counting. This generalization of an algorithm by Flajolet and Martin [5],
using an array of integers instead of a bitmap, is presented in [9].
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The Solution to a Conjecture of Hardy

John Shackell
University of Kent, Canterbury

October 10, 1994

[summary by Joris van der Hoeven]

Abstract

John Shackell proves a conjecture of Hardy, which states that the inverse function of
loglog z logloglog « is not asymptotic to any exp-log function. In order to prove this, he
uses his technique of nested forms.

1. Introduction

Hardy was the first to study systematically the notion of exp-log functions in the context of
asymptotic expansions [3, 4]. These functions are built up from Q or R by the use of field operations,
exponentiation and logarithm. Examples are

exp(z + log(z* + €”)), and log(log(z® + exp(1995z)) + 2).

He established that the sign of any exp-log function is constant in a neighbourhood of infinity. This
property makes exp-log functions extremely useful for doing asymptotics. Although many functions
one encounters in practice are asymptotic to some exp-log function, Hardy conjectured that this
is not the case for the inverse function ®(z) of log, z logs &, where the index denotes iteration. In
other words, ® is defined by

loglog ®(z)logloglog ®(z) = =.

Now it is known since Liouville [5] that the inverse function ¥(z) of zlogz is not an exp-log
function. In his talk Shackell shows how to deduce Hardy’s conjecture from this result.

In order to do this, Shackell uses his technique of nested expansions, which was originally designed
to construct algorithms for doing asymptotics. Although Shackell also spoke about these issues in
his talk, we will only recall the material which is necessary in order to prove Hardy’s conjecture. For
more details about the algorithmic aspects of asymptotics, we refer to [1, 2, 6, 7, 8,9, 10, 11, 12].

2. On nested expansions

We start with some definitions. Let f; and f5 be exp-log functions which tend to zero. We say
that f; and f,; are comparable or of the same asymptotic scale, if there exist positive integers m and
n with fi < f* and f, < f' (recall that the germs of exp-log functions at infinity form a totally
ordered field). The comparability relation is an equivalence relation and we denote the equivalence
class of f by v(f). The equivalence classes can be ordered by v(f1) > ~v(f2), if fi < f5 for all
positive integers n.
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Let us also introduce the concept of z-functions. Such a function is one of the following;:

zexp,(t) =t "(exp(t) = 1 -t —--- = 1" /n!),
Aog, (1) = " (log(1 + 1) — 1 — -+ — (~1)"" 1" ),
zZinv, () = 7" (1/(1+ 1) = 14+t — - — (=1)" 1",
for any integer n > 0. If ¢1,...,t, are exp-log functions which tend to zero, we denote by

Z(ty,...,t,) the set of functions which can be obtained from ¢,,...,%, by using addition, sub-
traction, multiplication and application of z-functions. Shackell proved the following theorem [8].

THEOREM 1. Let f be an exp-log function which tends to infinity. Then there exist exp-log
functions ty,...,ty, with v(t1) > -+ > (1), such that f can be expressed as f = exp,((k + z)L),
where exp, is the r-th iterated exponential, k is a non zero constant, L is a product of real powers
of iterated logarithms, and z belongs to Z(ty,...,t,).

The expression f = exp,((k+2z)L)is called a nested form of f. More generally, one can recursively
compute nested forms for ¢y,...,1,,. Doing this, one obtains so called nested expansions. Shackell
and Salvy have shown how to obtain automatically nested expansions of the functional inverses of
exp-log functions [7], modulo suitable hypotheses on exp-log constants.

3. The solution to Hardy’s conjecture

Denote by ¥ the inverse function of zlogz, and recall that & = exp, ¥ denotes the inverse
function of log, z logy . The following lemma is crucial for the proof of Hardy’s conjecture.

LemMMA 1. There is no exp-log function f such that
|f - \Ijl S 6_6\/57
for all 6 > 0.

PRrOOF. Assume that such a function f exists. It can be shown (using the same notations as in
the above theorem), that one can find z € Z(ty,...,1,,) such that

f=

x

1 .
1ogaf( +2)

Now replace all terms in the Laurent series expansion of z in ¢4, ...,,,, which have equivalence class
superior or equal to 7(e¥") by zero. Let 2 be the series so obtained and denote f = (z/logz)(1+2).
Then it can be shown that f is an exp-log function, so that modulo changing ¢, we may assume
without loss of generality that v(¢;) < --- < 7(t,,) < v(e¥®).

Now it is easily seen that

|[log f —z| = |flog f — Wlog ¥| < e™* V7,

for some suitable ¢’. But flog f and z are both analytic functions in z,logz,log, z,%,,...,%,,, so
that we must have flog f = z. But this is impossible by Liouville’s theorem. Hence, we obtained
the desired contradiction. []

THEOREM 2. There does not exist any exp-log function which is asymptotic to the inverse func-
tion of log, x logs x.
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Proor. Since ¥ = z/logV¥ = z/(logz — log, V), we have

¢ = exp,(z/(logz — log, ®)).

Now let ¢ be asymptotic to @, so that logg —log ® = o(1). Then
logg/log® = 1+ o(log™" @) = 1 + o(exp((c — 1)z/logz)),

for any ¢ > 0. Hence

|log, g — log, ®| < exp~?VZ,
for all 6 > 0. By the lemma, it follows that log, g cannot be an exp-log function. Hence neither is
g. O

This theorem shows that the scale of all exp-log functions is not sufficient to do asymptotic
expansions of functional inverses. This shows that one essentially needs more general asymptotic
scales, or an alternative way to represent asymptotic series. One of the candidates for such an
alternative way of representing series is Shackell’s technique of nested expansions.
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the Example of the Gauss Reduction Algorithm
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[summary by Pierre Nicodeme]

Abstract

The Gaussian algorithm may be viewed as a formal generalization of the Euclidean algo-
rithm: it uses an extension of the real shift operator U used for continued fractions. We study
the random variable “number of iterations” L, when the input data are distributed along
an initial density, and we describe the evolution of the data while processing the algorithm.
The results use spectral properties of a family of Ruelle-Mayer operators H; “inverting” the
shift operator /. The operator family H; defines a unifying framework allowing a common
analysis of both Euclid and Gauss algorithms. This work is a generalization of a common

work with Hervé Daudé and Philippe Flajolet [2].

1. The Euclidean and Gaussian algorithms

Starting from a lattice in dimension 2, £ = Zu @ Zw, with u,v € C not collinear, the Gaussian
algorithm finds a minimal basis (m,n) in the sense that the triangle built on (m,n) has no obtuse
angle. The problem is invariant by similitude « +— Au, with A € C, and therefore the problem on
(u,v) is equivalent to the problem on (1,v/w). The triangle built on (1, z) has no obtuse angles iff
z € B—D, where B={2,0< Rz < 1}, and D is the disk of diameter [0, 1].

Ficure 1. A lattice and two of its bases represented by the parallelogram they
span. The first basis is skew, the second one is minimal (reduced).

The Gaussian algorithm is the composition of a succession of transforms of two types: (i) inver-
sion § with S(z) = 1/z, (ii) translation T~ with T(z) = 2+ 1. With U(z) =1/2— |R(1/z)], the
Gaussian algorithm terminates whenever U¥(z) € B — D. Applying a suitable transform 7-™ with
acute basis, so that ¥(z) > 0, it is readily seen that it suffices to consider cases where z € D.

The Gaussian algorithm for lattice reduction is a generalization of the Fuclidean algorithm for

finding the gcd of two integers in the following way:
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Euclid Gauss

Continued Fractions Lattice Reduction
Algorithm Input: z € [0, 1] input z € D = disc of diameter [0, 1]
while z # 0 while z € D
doz=1/z—|1/z] doz=1/z—[R(1/z)]
Termination terminates on Q terminates on C\ {R\ Q}
when the input is in R when the input is in C

We are investigating a generalization of a problem set by Gauss around 1800 for the Euclidean
algorithm: starting with a density f on [0, 1], what is the density Fj[f] after k iterations of U, with
U(z)=1/z — |1/z]. The possible antecedents of z are of the form 1/(m+ z), with m > 1, and F}
and FJ,; are connected by

(1) Fra[fl(z) = Z ka[][] <m}|—x> .

m>1

Introducing the operator G, defined by

2) G110 = 3 ! ()

many properties of the Fuclidean algorithm can be expressed in terms of spectral quantities related
to the operator G, (with s close to 2): the existence of a limit density F..[f](z) = =5

= 75 CoTTe-
sponds to the dominant eigenvector of G, (with eigenvalue A = 1); the expectation ofgth(: number
K, of iterations of Euclid on p/q verifying 1 < p < ¢ < N is given by E[Ky]| = %‘5—2 log N + O(1),
in tight relationship with X'(2) (with A(s) dominant eigenvalue of G,).

We will derive from the properties of the G operators the “stationary” distribution F,.[f], and the
distribution of the number L of iterations of the Gaussian algorithm along any initial distribution
f.

Like the continued fraction expansion of a number under the Euclidean algorithm, with z; € D,
which implies ®(1/2;) > 1, we have z;4, = 1/2; — m;, with m; > 1, which is equivalent to
zj = 1/(m; + 2 41), and gives the expansion

(3) %0 = i
my —I_ 1
my +
myg ‘|‘ 2k

This expansion terminates as soon as z; € B — D. Then L(z) = k, 20 = hy(2) and h,,(2)
may be expressed in terms of the continuants Q(mq, ma,...,my) and Pi(my,ma,...,mg) =
Qr_1(ma,...,my) as

P+ 2P,
(4) hm(2) = 3——5—

Qr + 2Qr-1

for |h| = k; the continuants are defined by the recurrence equations
Qn('rh Lo,y .- '7xn) = xn@n—l(xlv RS xn—l) + Qn—2(~r17 RS xn)v
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FiGURE 2. The domains Dy \ Dy, Ficure 3. The conditional in-
D1\ Dy, Dy \ D3, D3\ Dy, Dy \ Ds variant density F...

represented alternatively in black

and white. (The largest disk is

Dy = D which is the disk of di-

ameter [0,1].)

with Qo = 1, Q1(z1) = 1. Then, the set of points giving more than k iterations is [L(z) > k+ 1] =
Ujnj=x (D) with h(D) the fundamental disk of diameter h(Z) = [P/ Q, (Pr + Pro1)/(Qr + Qr-1)]-

We have p[h(D)] = [[,py f(z)dzdy = [[5 |W(2)]*f o h(z) dzdy, the measure p being associated
with the density f, and, remarking that the disks h(D) are disjoint, after exchanging the sum and
integral signs,

(5) @ = Pl > k1) = s S5 (D)) = [ (30 WS o (2)) dady.

|h|=k |h|=k

Introducing the operator H5[f][2] = 3= W/ (2)* f o h(%), we have

THEOREM 1. For a densily f, the probability of making more than k ilerations of the Gaussian
algorithm s

_ JIp HE[S(z) dady
P = T 1y dedy
if the density [ is uniform, the probability is
1
== 2 Gt e

my,...,Mg
and the expectation of the number of iterations is

180 1 1
Bll=1+—=> % 2 =
da>1 Y d<ce<ad

W | o

Therefore all the objects we are studying may be expressed with H,[f](z) = 3,5, mf( L)

m+z

and its holomorphic version G,[f](2) = 3,51 (m%)f( miz), the classical Ruelle-Mayer operator
G,. While in the uniform case, the study of G, is sufficient, in general it is necessary to study the

complete family of the H;.
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2. Properties of the Ruelle-Mayer operators and application to the analysis of the
Gaussian algorithm

The Ruelle-Mayer operators G, are defined on the set A, (V') of holomorphic functions on V,
continuous on V, with V = {|z = 1| < 3}, for s with ®(s) > 1. They are nuclear operators of order
0 (very similar to infinite matrices); after transfer in another Hilbert space, they are diagonalisable
with a discrete spectrum; moreover, they are Perron-Frobenius operators for s > 1, having a unique
dominant eigenvalue A(s).

As a consequence, turning back to the uniform case, we have the theorem.

THEOREM 2. The probability w;, has a geomelric behaviour, wy ~ ¢k, with A\, ~ 0.1994 and
c~1.3.

The dynamic density Fi(z) converges to a (conditional) invariant density F.,(z) proportional to
[ (1 = w?)ey(z + iyw) dw, where ¢, is the dominating eigenvector of G,.

In the general case, we have to study generalized Ruelle-Mayer operators [3]

The spectral properties of the operator H, are essentially the same as those of G,; there is a
dominant eigenvalue A(s) and a dominant eigenvector which may be expressed easily in terms of
G,. However, an interesting improvement is possible in case of functions with valuations.

THEOREM 3. For an initial densily of valuation t—f(z,y) = |y|'g9(x,y), with g £ 0 on the real
azis—the asymptotical behaviours of wi[f] and F[f] depend on the dominant spectral objects of
Gago:

(6) @i f] ~ C/\i+2t
and Fy,[f)(2) is proportional to |y|* [*](1 — w?)*gypo(z + iyw) dw.
3. Conclusion

These results lead to two main applications:

from Gauss to Fuclid: then, we have t — 1, Ayy9; — A2 = 1, and ¢440; — g2 = @%ﬂ;

from Gauss to LLL: considering n vectors by, ..., b, uniformly distributed in B,,, the unit ball of
R”, with [; the length of the ¢-th orthogonalized, the initial density has valuation n —¢— 1, and we
can apply our results with use of Gy 4,—4) [1].

We showed how to “inverse” the operator U of the Gaussian algorithm by use of a functional
operator G,. An open question is the generalization of such a method to other algorithms.
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Average Case Analysis of Tree Rewriting Systems
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June 12, 1995

[summary by Xavier Gourdon]

Abstract

A general technique is presented to easily compute the order of the average complexity
of a tree rewriting system from its matrix representation. It can be used for example to
prove that the average cost of the k-th differentiation is of order n!+#/2.

1. Introduction

We aim at studying the order of the average complexity of regular tree rewriting systems. We deal
with simple families of trees 7, in the sense of Meir and Moon [4]. The corresponding generating
function (GF) is defined by T(2) = 2¢(1'(z)) where ¢(y) is a polynomial whose n-th coefficient
is the number of constructors of arity n. For example, the GF of binary trees is defined by

T(z)=2(14T*2)) = 2¢(T(2)) with ¢(y) = 1 + y*

Asymptotics of T(z). We define 7 > 0 as the solution of 7¢/(7) — ¢(7) = 0 and we denote
p=T1/¢(t) =1/¢'(T). Then p is the dominant singularity of T'(z) with the Puiseux expansion

o= B0 e 0

P n>2

From singularity analysis, we deduce the estimate of the n-th coefficient of 7'(2)
o(7) 3
o= [ 0 (2)

An example: differentiation of trees. A typical example of a tree rewriting system is formal
differentiation. We describe the action of the differentiation and copy operators on trees constructed
with a binary constructor * and a variable a

d(a) — a cp(a) — a
d(u*v) — d(u) * cp(v) + d(v) * cp(u) cp(u*v) — cp(u) * cp(v)

If B(z) denotes the GF of binary trees, this translates in terms of cost generating functions in
the form

Cq(2)
Cep(2)

B(z) +22B(2)Ca(2) +22B(2)Cep(2),
B(z) +22B(2)Cep(2).
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Equivalently, we have the matrix representation

(1) Ca(z)\ _ (22B(z) 2zB(2)\ (cCa(2) + B(z)
Cep(2)) 0 22B(2)) \Cep(2) B(z))"

The solution is

BB BOO4B() . BE+B()
“O=aT2Ber - a-Berar e Y ST e+ Be)

Since B(z) = z¢(B(z)) with ¢(w) = 1 4+ w?, 7 and p are easily determined: 7 =1, p = 1/2.

Average complexily. The cost GF C.,(z) writes as F(B(z)), where F(w) is a rational function.
The dominant pole of F(w)is w = 7 and it is simple. An application of transfer lemma of singularity
analysis [2] then leads to the estimate C° ~ ¢;n with ¢; > 0 for the cost of the copy operator over
trees of size n. As for the cost GF C4(2), it writes as a rational functional in B(z) with the double
dominant pole 7, and we deduce an average asymptotic value of the form Cd ~ ¢,n?/2, ¢, > 0.

2. Regular rewriting systems

The matrix representation (1) for the cost GF’s can be generalised for all regular rewriting
systems [1].

THEOREM 1 (MATRIX REPRESENTATION FOR REGULAR REWRITING SYSTEMS). The cost GF’s of

operators fi,..., f, of a reqular system satisfy a system of the form
Cr(2) Cr(2) m(z)

(2) | =METE)) | [+ |
Cr.(2) Cr.(2) m(2)

where the r; are the arities of the f;’s, and where the coefficient of the square matriz M(z,T(z))
are polynomials in z and T(z) with non negative coefficients.

Thus, the expression of each cost GF is

_detfl(1d — M(2,T(2)))
(3) Crlz) = det(Id — M(z,T(z))) ’

where 1A denotes the matrix in which the i-th column of A has been substituted by the rightmost
vector of equation (2). We deduce, since z = T'(2)/¢(1'(2)), that Cy,(2) writes as

Cp() = 2D
Qi(T(2))
where P;(w) and Q;(w) are polynomials. The average complexity of the operator f;, defined by
7 [10()
T (2)’

is determined by the relative position of p with respect to the smallest positive solution pg; of
Qi(T(po,i)) = 0 (see [1]).

THEOREM 2 (AVERAGE COST ESTIMATE). The average cost salisfies

(i) If Q:(T(2)) does not vanish on (0, p], then cf = c(1+0(1/n));
(i) if p = pos, then CI* = can*/?(1+ O(1/v/n));
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(i) if p > pos, then CI* = cs(p/pos) n®™*/2(1 + O(1/ /7)),
with ¢; > 0 and k, q positive integers.

In the case p = pg;, we have k = s+ 1 where s is the multiplicity of the factor (T'(z) — 7) in
Qi(T(2))-
3. Computation of the order of the average cost

It is possible to derive directly from the matrix M(z,7(z)) the order of the average cost of
the operators of a regular system. The substance relies on Frobenius theory of matrices with
nonnegative coefficients (see for instance [5]). The general technique proceeds as follows. First,
decompose M(z,T(z)) into diagonal blocks of irreducible matrices (Definition 1), then work on
each irreducible block.

3.1. Irreducible matrix case.

DEFINITION 1. A square matrix M is irreducible if there does not exist any permutation matrix
P such that P7'MP = (4 %) with A, B and C square matrices.

In other terms, an irreducible matrix is associated to a strongly connected graph. If the matrix
M (z,T(z)) is irreducible, the order of the average complexity of the operators are easily found.

THEOREM 3. Let {f;} be a set of operators of a regular rewriting system represented by an
irreducible matriz M(z,T(z)). Then all the py; are equal to the smallest positive rootl py of the
equation det(ld — M(2,T(z))) = 0 (take po = 400 if there is no positive solution). The relative
position of py with respect to p is determined from the dominant eigenvalue r(p,T) of M(p, 7). We
have

r(p, 7)< Liff po>p,  r(pT)=1iff po=p,  1(p,7)> 1 iff po <p.

When r(p,7) = 1, or equivalently py = p, it is possible to get the exponent of n in the estimate
(ii) of Theorem 1. This is the polynomial case.

THEOREM 4. Let {f;} be a set of operators of a regular rewriting system represented by an
irreducible matriz M(z,1(z)). If the dominant eigenvalue of M(p,T) is 1, then the f;’s have an
average complexily which is linear or of order n®/?.

The case n®/2 occurs only in the degenerate case where M (z,T(z)) does not depend on T(z).

3.2. General case. In the general case, we start by finding a permutation matrix P such that
P~ M P writes as a block diagonal matrix, each block being of the form

Ay 0
B: s
Ay,

where each A; = A;(2,7(z)) is an irreducible square block. We also need the constraint that for
all 7 < j, the submatrix of B whose lines are those of A; and columns are those of A; is not zero.
Considering the graph represented by the matrix M, this task can be achieved thanks to Tarjan
algorithm on strongly connected components (see [3, pp. 441-448] for example).

Now, each block of the form B can be considered independently. Let C},(z) be a cost GF
associated to an irreducible square block A,. Expression (3) together with Theorem 3 show that
the position of pg ; is the smallest positive root of Hle det(Id — A;). Thus, if p; denotes the smallest
positive root of det(Id — A;), for each £, we need to compare p, with min;<;<,_1 p; in order to get
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the order of the average complexity of the operators f;. In fact, Theorem 3 asserts that this task
can be achieved by comparing only the dominant eigenvalues r;(p, 7) of the A;(p,T)’s.

In the polynomial case, the multiplicity of the factor (7'(z) — 7) in the denominator of the cost
GF is obtained by adding the multiplicities of this factor in the determinants det(Id — A;), yielding
the exponent of n in equation (ii) of theorem 2.

3.3. Examples.

Tree shuffle. We consider binary trees B = a + o(88, B) and operators f and g defined on B* by

fla,a) = a f(o(u,v),a)— o(u,v) f(a,o(u,v))— g(u,v)
gla,a) — a g(o(u,v),a)— g(u,v) gla,o(u,v))— g(u,v)
Flolul,v1), o(u2,v2)) — of f(ul, u2), f(v1,02))
glo(ul, v1),o(u2,v2)) — o f(ul,u2), g(v1,v2))
The matrix representation of the shuffle is
_(22°T%(2) 227
M(2,T(z)) = <Z2T2(2‘) Z2T2(2‘) + 222) .
This matrix is irreducible. The eigenvalues of M(p,7) are 1 and 1/4, thus we are in the polynomial
case with a linear average complexity of the operators f and g.

Formal differentiation. The classical formal double differentiation on unary-binary trees 7 with
constructors *, exp and a variable has the matrix representation

z+227(2) 0 0
M(z,T(z)) = ( 221(2)+ 2z  z+221(z) 0 )
2:T(2)+ 22 42T(2)+ 2z 24 22T(z)

The diagonal coefficients of M(p, 7) are only 1’s, thus we are in the polynomial case with three blocks
of irreducible matrices on the diagonal, all giving a contribution to the order of the complexity.
Thus, the average complexity of the double differentiation operator is e¢n?. By induction on &, it
can be proved that the average cost of the k-th differentiation is of order n*/?+!,

Bibliography

[1] Choppy (Christine), Kaplan (Stéphane), and Soria (Michéle). — Complexity analysis of term rewriting
systems. Theoretical Computer Science, vol. 67, 1989, pp. 261-282.

[2] Flajolet (Philippe) and Odlyzko (Andrew M.). — Singularity analysis of generating functions. SIAM
Journal on Discrete Mathematics, vol. 3, n° 2, 1990, pp. 216-240.

[3] Froidevaux (Christine), Gaudel (Marie-Claude), and Soria (Micheéle). — Types de données et algorithmes. -
McGraw—Hill, Paris, 1990.

[4] Meir (A.) and Moon (J. W.). = On the altitude of nodes in random trees. Canadian Journal of Mathe-
matics, vol. 30, 1978, pp. 997-1015.

[5] Minc (Henryk). — Nonnegative matrices. — J. Wiley and sons, New York, 1988, Wiley interscience series
in discrete mathematics and optimization.

94



Interval Algorithm for Random Number Generation

Mamoru Hoshi

Graduate School of Information Systems,
The University of Electro-Communications,
Tokyo, Japan

June 12, 1995

[summary by Vincent Dumas]

1. Introduction

This talk is based on a joint paper with Te Sun Han [1]. It presents an “interval algorithm” that
solves the problem of generating a random number X with distribution q = (¢1,¢2,...,qn) (i.e.
Pr[X = k] = ¢, 1 < k < N) from independent identically distributed tosses with an M-coin of
distribution p = (p1, pa, ..., pa). This problem was set by Roche [2] (variants of this problem were
studied by von Neumann, Elias, Knuth and Yao). The efficiency of the algorithm is measured by
L*, which is the expected number of tosses required to generate X. Roche proved that the optimal
algorithm should satisfy:

Hq) _ . H(d)+ f(p)

H(p) = =  H(p) '
where H is the entropy function (see Appendix) and

f(p) = ln(e/pmin)v Where Pmin = lg]llﬁnM p]

The upper bound is satisfied by a probabilistic algorithm.

Han and Hoshi propose an “interval algorithm” that satisfies the upper bound with

h(pmax)
ma where Pmax = 12’?1(\4 Pis

f(p) = In[2(M - 1)] +

with h(p) = —plnp — (1 — p)In(1 — p). No choice of function f seems to be essentially better than
any other one. The assumed superiority of the interval algorithm is that it is deterministic and
easy to implement.

2. Interval algorithm

Let p be the original distribution. Let us fix a partition of [0, 1) according to p, that is a sequence
ag=0< o) < - <ay =1,

such that a; — a;_; = p; for all j. Now any interval [a,b) may be partitioned into the subintervals
1,([a,0)), 1< j < M, with

Li([a,0)) = [a + (b = a)aj 1, a + (b — a)ay).
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Ficure 1. Example of sequence (K,) (p = (1/2,1/2),q =(1/3,1/3,1/3)).
Let q be the distribution we want to generate. Fix a partition
Po=0<p < <Py=1

of [0,1) according to q (Br — Bk—1 = qx), and set J; = [Be_1, Br).
The interval algorithm is defined as follows:
(1) set n =0 and K, =[0,1);
(2) if K,, C Ji for some k, then stop the algorithm and set X = k;
(3) else flip the M-coin (with probability distribution p). The result is a number M, €
{1,....,M}. Set K, 1 = Iy, (K,)and go to (2).

This procedure is illustrated in Figure 1.

With probability one this algorithm terminates in finite time, and generates a random number
X, which is a deterministic function of Y = K. Let Y be the set of all possible values of Y. By
construction, Y is a partition of [0,1), and any y € Y may be obtained with probability |y| (where
|y| denotes the length of interval y). In consequence, we fall in J, with probability |J;| = ¢x, which
means that X has distribution q as expected.

Now denote by L the number of tosses necessary to get X. From basic results on entropy in tree
algorithms, we get that

=) = 1)
H(p)

Moreover, since X is a (deterministic) function of Y, then H(Y) > H(X)= H(q), which yields

. H(aq)
I zm.

3. Upper bound

In order to get an upper bound on H(Y') (and then on L*), the authors introduce a new variable

W, such that

(1) W is a function of Y;
(2) W has 2(M — 1) possible values;
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(3) conditionally on (W, X) being equal to some (w, k), we have
Y > Geom(ppax),
where Geom(p) denotes the geometric distribution of parameter p:
PrGeom(p) = ] = (1 - p)p'
Then we will get that: H(Y)=H(Y,W,X)= H(X)+ HWI|X)+ H(Y|(W, X)), with

H(X) = H(a), HOVIX) < 200 - D], H|W,X)) < H(Geom(pee)) = 122,
which yields the announced bound.

In order to define W, set X = k and consider the possible values of Y, that is all the intervals
y € Y such that y C J;,. We may organize them as follows. There is a unique sequence of tosses
(M,,) such that, for all n, K,, = [y,6) with v < Br_; and § > G;_; (resp. with. v < §; and § > §;):
this is the upward sequence (resp. the downward sequence) associated to Ji; it is finite only if
¥ = Br_1 (resp. if § = B;) for some K,. Now any possible value of Y corresponds to a unique,
finite sequence of tosses (M, (¥))o<n<n(y), and we can check that

is valid for (M,,) equal to either the upward sequence or the downward sequence.

For a given y, set sign(y) = upward (resp. sign(y) = downward) if y derives from an upward
sequence (resp. a downward sequence), and M(y) = M,,)(y) (the value of the last toss that stops
the algorithm at y). Omne can check that if sign(y) = upward (resp. if sign(y) = downward),
then M(y) cannot be equal to 1 (resp. M(y) cannot be equal to M); in consequence, there are
only 2(M — 1) possible values for (sign(y), M(y)). We may now define the new random variable
W = (sign(Y'), M(Y)) which obviously satisfies properties (1) and (2). Moreover,if X = kand W =
(s,m), then all the possible values of Y derive from the same upward or downward sequence (M,,),
and they may be ordered in a sequence (y;) such that n(y;) is strictly increasing. In consequence,
the interval algorithm yields y; with probability

n(yi)—1
piy)={ I pam. | Pws
n=0
which implies that p(y) < pmaxP(yi—1): property (3) may be deduced from this inequality.

4. Conclusion

The interval algorithm may be adapted to generate the first n terms of a finite state space Markov
chain; the average cost L*/n is then asymptotically optimal. Independent identically distributed
tosses with an M-coin may also be replaced by a Markov chain.

Appendix: basic properties of the entropy function
The entropy of a distribution a = (a;);c; (where I is countable) is defined by:
H(a)= - Zailnai.
iel
The notation H(A)is also used if A is a random variable with distribution a. If Card(/) = P, then
H(A)=H(a)<InP.
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Since a pair of random variables (A, B) is a random variable, one may also consider the entropy
H(A,B). If B = f(A) (where f is deterministic), then H(A) > H(B) (notice that it implies
H(A,B)= H(A)).

In the general case, denote by A/B = b the distribution of A conditioned on B = b (it is assumed
that Pr(B =b) > 0). Set f(b) = H(A/B = b). Then one may define

H(A|B) = E[f(B)],

which satisfies: H(A|B) = H(A,B) — H(B).
Now, consider two distributions a = (@;);>1 and b = (b;);>1 ordered in decreasing probabilities
(a; > a;p1 and b; > b;yq, for all 7). The partial ordering a > b is defined by:

J J
dar>> by, Vi1
i=1 i=1
If a > b, then H(a) < H(b) (this is indeed valid for all the concave, symmetric functions).
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Abstract

Due to the specific nature of radio networks, the channel access in radio local area
networks (LAN) is different from cabled LAN. The HIPERLAN standard for radio networks
will provide a 24Mbps data rate transmission. It has a special feature, called active signalling,
which can be used to provide an efficient channel access mechanism.

1. Active signalling

The channel access in radio LANs has to face special problems. Unlike wired LANs, nodes
cannot build a complete history of the network from the fragments of feedback they obtain from
the channel. This feature makes the collision detection techniques in radio networks different from
cabled networks.

The active signalling feature of the radio LAN standard HIPERLAN provides an efficient channel
access mechanism. It consists in requiring each node that wants to access the channel to send a
certain sequence of on/off’s as a preamble to each packet transmission. This sequence is encoded
according to a random pattern whose details will be described later. The objective is to use these
patterns to select (with a high probability) only one node so that no collision occurs during packet
transmission. The patterns are also functions of the access priority assigned to the packet. During
the transmission of its pattern and when it is in the “off” period, the node senses the channel: if
it detects any other signal, then the node stops its pattern transmission and defers until the next
attempt.

2. HIPERLAN active signalling pattern selection

The HIPERLAN active signalling pattern is divided into two consecutive phases, the access
priority assertion phase and the contention phase.

2.1. The access priority assertion phase. The first slots of the pattern are dedicated to
priority signalling.

The priority phase consists in leaving a certain number of idle (off) slots before one busy (on)
slot. This number of slots is equal to 5 (maximum number of priority levels) minus the priority
level. The priority assertion phase ends with the first busy slot encountered, called the priority
pulse. Therefore, only the contenders with the highest access priority level survive to the priority
assertion phase. Figure 1 shows an example where node B, on access priority level 3, beats node A
on access priority level 2.
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end of

previous packet

\:I: pattern of node A

Dq __________________________________ pattern of node B

priority pulses
(A does not transmit its burst)

Ficure 1. How to win priority contention

2.2. The contention phase. The contention phase is divided into two consecutive parts, the
elimination part and the tail selection part. The role of the elimination part is to select a small
number of survivors from a large number of contenders. The tail selection part tries to select only
one survivor from a small number of contenders with a high probability. If more than one survivor
is selected at the end of the contention phase, a collision occurs.

The elimination phase. It consists in enlarging the priority pulse with a random number of slots.
Each node stretches its pulse independently of the other nodes and according to a geometric dis-
tribution of probability p = 1/2. Therefore the pulse is larger than k slots with probability 1/2*.

After the stretched pulses, the node leaves an idle slot, called the survival verification slot where
it senses the channel. Only the contenders which simultaneously hold the highest access priority
level and select the longest stretched pulse survive to the elimination part. Figure 2 shows an
example where node A with stretch length of 1 slot is eliminated by node B with stretch length of
2 slots.

_endof A detects pulse of B and defers
priority part

survival

verification slot mid pattern of node A

et mid pattern of node B
packe

stretched
pulse

FiGure 2. How to win the elimination part

The tail selection phase. This phase is also called the “yield” part and follows just after the
survival verification slot. The nodes which survived to the elimination part again select a random
number of slots according to a geometric rate 1 — r with » = 1/8. But instead of transmitting
busy slots again as with the stretched pulse procedure, the contenders terminate their pattern with
a number of idle slots equal to their respective new selected numbers. Thus if a node detects no
signal during its silent period, then the node transmits its packet. Otherwise, the node defers until
the next access cycle.

Therefore, only the nodes whose patterns simultaneously present the highest access priority level,
the longest stretched pulse and the shortest “yield” part gain the right to transmit their packet.
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Ficure 3. How to win the tail selection part

Figure 3 shows an example where node B with yield length of 2 slots is selected before node A with
yield length of 3 slots.

3. Performance evaluation of HIPERLAN active signalling channel access

The contention phase has a certain length, called overhead. Starting with n contenders at the
same highest priority level, we prove that the average contention overhead is log,n + O(1). Also,
whatever the number of contenders, the residual collision rate on packet transmission is less than

3.5%.

3.1. Analytic evaluation of the elimination phase. Given n contenders at the highest
priority level, we denote by .5, the average number of survivors after the elimination phase, L, the
average stretched pulse length of these survivors, and p,, the probability of having a single survivor.

With p the geometric stretching probability and ¢ = 1 — p, the following recursions hold:

" [n
S, =ng" + Z (k)pkq"_kSk,
k=1
" (n
Pu=) (k)p’“q”"“pk,

k=1
_ n B n k n—k
Ly=1—-¢"+> |, |0f¢" "L
k=1 k

Referring to the general methodology used in the analysis of algorithms (translating in terms of
generating functions, then using Mellin transforms to estimate harmonic sums, see [1] for example)
leads to the following result.

THEOREM 1. Asymptotically,

7 __+p (M) +0(1/n),

= e/ T \log(1/0)
B q log n .
= fog(iyp) T <1og(1/p)> +00/n),
_ logn 5 1 log n "
"= log(1/p) Tlog(tjp) 2T <1‘og<1/p>) +0(/m).

The P(z)’s are 1-periodic functions with amplitude of order exp(—=n?/log(1/p)), and 7 is the Euler
constant.
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For p = 1/2, the P;(z)’s have amplitude less than 107°, and S, = 1.44, p, = 0.72, L, =~
log, n + 0.33. These approximate values are quite good for n > 20. As expected, they show that
the elimination phase selects a small number of survivors from a large number of contenders.

3.2. Analytic evaluation of the entire contention phase. This time, 5, L,, and p, denote
the same quantities as before but taken at the end of the entire contention phase. With 1 — r the
geometric rate in the yield part, the entire contention phase leads to the following recursions:

_ nr n B n k n—k
sn_il_(l_rnq@(k)pq 5.
nr(l—r)*=t
pn:ﬁ ‘|‘Z ks
1—
L=+ it nqwz() o

e ”f(l(lr): " and 1(1(17«) -~ are the average number of allowed
transmissions, the probability of having only one transmission and the average number of slots

before first transmission in a yield contention involving n contenders, respectively.

Notice that the quantities

THEOREM 2. Asymptotically,

¢y 1 _(1 —r)f L P (M) +0(1/n),

" log(1/p) 5 1= (1= 1)fq log(1/p)

)
_ q r(l—r)* log n N
Pn = > 1 g TP (—) +0(1/n),

log(1/p) 51 - (1= log(1/p)
_ logn v 1 log (H}Qo(l -(1- T)k‘])) log n
= loa(1/p) T loa(i/m) "2~ Tog(1/7) (1‘og<1/p>) +O(/n).

The P;(z)’s are 1-periodic functions with amplitude of order exp(—n?/log(1/p)).

For the value p = 1/2 and r» = 1/8, we obtain the leading terms in S,, p, and L, equal to
1.0302...,0.9713..., and log, n + 7.1393 ... respectively.

3.3. Network performance analysis. As expected, there is a high probability that the con-
tention phase selects only one survivor. The size of the overhead is log,n + O(1) where n is the
number of contenders with the highest priority level. The throughput Thr,, is defined by

Pl
L,+L+41
where £ is the average packet size. For n not too large (say n < 32) and for a typical value of
L = 40, the throughput is relatively stable at a value close to 0.8. This outlines the important

benefit obtained from active signalling access schemes over pure carrier sense schemes (CSMA), as
used by Ethernet: the throughput in CSMA rapidly collapses to 0.

Thr, =
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1. Introduction

String searching can be generalized to “multidimensional search” or “multidimensional pattern
matching”: a multidimensional pattern, p, most often an array and usually connected and convex,
is searched in a multidimensional array, the text, {. A strong interest appeared recently [3, 2,
4]. Notably, the duel paradigm improves average and worst-case complexity of pattern matching.
Knowing for each position of self-overlap a mismatching position—the witness—allows to eliminate
one of the two candidates by one question—the duel. One studies here pattern periodicities and
space coverings. One proposes a period definition valid in any dimension and consistent with the
more general definitions in dimension 1, i.e. on words. We prove here that a periodic pattern is
generated by a subpattern, and the subpattern, as well as the generating law and the link to the
regular distribution of periods, is exhibited. The exceptions to this regularity , the degenerated
periods, are interpreted as “border effects”. They derive from some regularity of the generating
subpattern, a basic phenomenon in dimension 1. This allows for a classification of periodicities valid
in any dimension, and detailed in dimension 2. Notably, the number of periodicity classes appear
linear in the dimension. Also, one provides a full characterization of sources positions, including
the degenerated ones that are essential to the design and correctness of 2D pattern matching
algorithms. This considerably refines and achieves the previous classification by [1], and even the
extended results in [4], and allows for a classification of space coverings, where non-degenerated
periodicities appear essential. Omne exhibits relationship between the periods of a pattern and
the possible space coverings by the same pattern. This is relevant both to the derivation of the
theoretical complexity of d-dimensional pattern matching and to algorithmic issues.

The simple remark that the set of invariance vectors almost has a monoid structure provides the
link to the well studied periodic functions in Z9. Using their properties leads to a great simplification
of the proof of previous results in the area. Additionally, it provides tools for a generalization to
any dimension. Finally, the paper provides knowledge to derive efficient pattern preprocessing. In
particular, the characterization of minimal generating sub-patterns reduces (partially) periodicity
and witness computation to well known problems on words. This allows for using the large toolkit
of 1D algorithms to determine periodicities. A preliminary version of this work appeared in [6].

2. Formalism

Basic Notalions. A d-dimensional pattern p is a d-dimensional array whose values range on some
alphabet A. Given a vector @, we denote 4[¢] or @; its ¢-th coordinate. Let P be the set of vectors
@ such that |@[é]| < [; where [; is some integer, called the i-th dimension of p.
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Ficure 1. Radiant biperiodic pattern

DEFINITION 1. Two vectors % and ¥ are said in the same direction if and only if, for any ::
i;.T; > 0. A vector @ dominates a vector ¥ in the same direction if and only if, for any 4, |7;| < |;].
A vector ¥ is minimal if it does not dominate any vector.

We are interested in shifts such that the two copies are consistent in the overlapping area.

DEFINITION 2. A vector  is an invariance vector for p if and only if, for any ¥ € P, one has
pl¥ + 4] = p[d]. A couple (u,7) of invariance vectors is said an invariance couple if and only if
Vj 32 luy|+v;| < I;. Tt is simple if & and ¥ are collinear. These invariance vectors are said simple.
We note I the set of invariance vectors.

3. Main results

Lattice distribution of invariance vectors. If a pattern p admits a non-simple invariance couple, it
is said biperiodic (see Figure 1). We have:

DErFINITION 3. Given a lattice L with basis (4, ¥), we denote F'Cyz 7z = {Ai 4+ pv;0 < A, p < 1},
A S-path is a chain @ ... %, of vectors in p such that, for any ¢, either @;,; — @; or @; — W; 41 is in
S. Given two vectors (4, 7), the free zone F'Zz; is the set of points @ in p such that there exists
no (i, ¥)-path interior to P to F'Cy 7. The periodicity domain is p — FZz ;. The border is:

B =p— Uz gerA{d | (@ + &, @ + §) € p*, dir(¥) = dir(Z) = dir(y)}.

—

THEOREM 1. Let p be biperiodic. For any invariance couple (i, %) exists a lattice L such that:
(1) ICLUBUFZz;,
where B is the border of L. If L admits two simple vectors, then (1) reduces to:
(2) ICLUB.

(#,7) is said a non-degenerated invariance couple and L is said a non-degenerated lattice. A
pattern admits at most one non-degenerated lattice, called the canonical lattice and denoted Ly

where (F, F) is a basis. The invariance vectors in I = I — By z are named the non-degenerated
invariance vectors. p is said a non-degenerated biperiodic pattern.

Figure 1 provides an example where £ = [4,4] and F = [6,2]. It is worth noticing that a basis
is not necessarily made of invariance vectors: this is intrinsically 2D. Similar phenomena occur
on any set of collinear vectors: e.g. a regular distribution of invariance vectors and a degeneracy
paradigm.
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Periodicity classification. A pattern is:

(1) non-periodic: no invariance couple
(2) monoperiodic: exists one simple invariance couple; all invariance couples are simple.
(3) biperiodic: exist one non-simple invariance couple. If the associated lattice is non-degenerated,
the pattern is said non-degenerated biperiodic. It divides into two subclasses:
(a) fundamental biperiodic or lattice periodic: all lattice vectors are invariance vectors.
(b) non fundamental biperiodic or radiant periodic: all invariant lattice vectors are in the
same direction.

Word properties. It appears from our example kind of a word repetition. In 1D, minimal generators
and periods are based on primality notion on words. Extending this primality notion to dimension
2. provides an alternative point of view to the characterization of I as a subset of a lattice Lz g
plus its border B g p) As a major algorithmic consequence, it allows for using 1D algorithms to
search for periodicities, hence witnesses. Also, it simplifies the proofs [7].

DEFINITION 4. Let p be a non-degenerated biperiodic pattern. Let (E, ﬁ) be a fundamental basis
such that a fundamental lattice cell F'Cz 7 is in the periodicity domain. Denote ¢ its direction, and

j the other direction. Let § = GCD(E;, F;) and L = inf{k > 0;ké; € L p}. Define for any (A, p)
in[0...L—1]x[0...6 = 1], @, , as the only vector in FC s such that:

Wy, — (A6 + p€j) € L p.

Let p, , be p[@, .]; let s, be the primitive word associated to the word pg 4—1...pr—1,-1. The
sequence (s, )i1<u<s is the linear canonical generator in direction 1.

Remark that the existence and uniqueness of ), , is a direct consequence of Fuclid’s theorem
and that (£, F')-periodicity implies that (s;) is independent of the fundamental basis chosen.

THEOREM 2. Let p be a non-degenerated biperiodic pattern, and (s;)1<i<s be the associated linear
generator. Then, any vector W in the periodicity domain and in the same direction satisfies:

(3) plw] = s,(A mod [s,])

where (A, p) is defined by the equation @ — @y, € Lz 5. One has L = GCM([s,|) = lFCf’ﬁl.

Intuitively, a biperiodic pattern p is made of § patterns that repeat indefinitely, except maybe
for the borders: rows (or columns) ¢, ¢ € {1...6} are linear concatenations of strings s} and row
J+ 06 is equal to row j shifted by some value a. In Figure 1, we have §; = 6, = 2 and s; = abede fgh
and s, = ijklmn.

Position of sources. . We remark that (3) holds for any @ if p is fundamental biperiodic. We show
that if a vector @ in Lz 5 NT is not an invariance vector then P contains a point that violates
(E, ﬁ) periodicity: capital characters in Figure 1. Extremal such points, [15,2],[16,0] and [1,8],
lead to the exclusion of [8,0],[6,2] and [0, 8] from I (represented by bolded a).

Mazimal Coverings Classification. One proves that two copies of p shifted by @ and ¥ are mutually
consistent if and only if @ — ¥ is an invariance vector or pz N p; = 0. One defines a (&, ¥)-lattice
covering as a set of interleaved -overlapping sequences where two neighbouring sequences are
shifted by . It is regular if @ + ¢ € T, else it is said extended. It steadily follows:

THEOREM 3. A mazimal covering of the 2-dimensional space by a patlern p is either of the three:
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(1) tiling,

(2) a tiling of i-overlapping sequences where @ is a minimal invariance vector.

(3) a (4, 7)-lattice coverings. It is regular and (4, %) is a basis of the canonical lattice if p is
biperiodic; otherwise it is extended.

Remark that extended lattice coverings are an extension of the covering notion, where some
“holes” appear in the representation. This is pertinent for algorithmic issues as it allows to deter-
mine the mazimum number of occurrences of a given pattern, a parameter related to the worst-case
complexity.

4. Hints for the proofs

One shows that the sum of invariance vectors is an invariance vector almost everywhere, and
characterizes this zone of non-invariance, the free zone, that creates “border effects”. This additive
property allows to use general results on biperiodic functions on Z? and prove a lattice distribution
of almost all invariance vectors. Notice this vectorial approach provides a very short proof of the
previous results in [1, 4]. Many proofs rely on the Factorisation Theorem [5]: equation ab = ba
implies that ¢ and b are powers of a same primitive word. For example, in Theorem 2, equation
(3) implies that, for any pu, |s,| divides L. Otherwise, for some j, one has L mod |s;| = a # 0.
With @ = s;4[1]...s;[a] and b = s;[a+1]...54[|s;|], s; factors as s; = ab = ba which contradicts the
primitivity. Hence, GC'M(|s;|) divides L. Also, (3) implies that GC M (|s;|)€; is a lattice vector,
hence Lé;, by the minimality property.

A major consequence of these word properties is the possibility to compute the linear generator,
hence the fundamental basis, from any fundamental parallelogram. One initially computes § as
GCD(i;,7;) and L as inf{k;ké; € Lz z}. For each of the § sequences p, , defined, one can extract
the associated primitive word s;. One may use the well known 1D algorithm that searches for the
primitive seed of a word (for instance the preprocessing of Knuth-Morris-Pratt). Then, one can
compute all witnesses between two sequences s; and s;. This determines whether the set is cyclic

(not minimal) and (E P ) steadily follows. An implementation and other applications are described
in [7].
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[summary by Philippe Dumas]

The concept of reversing a finite sequence is best introduced by an example. Define a sequence
of vectors z; by the formula z; = fi(z;_1) for ¢ = 1,...,p+ 1; here z, and the functions f;’s are
given. More precisely the functions fi,..., f, map R™ into R™ and the last one f,4; maps R™ into
R. For each %, the variable z; is a function of zq, ; = g;(zo). Moreover let us assume that all these
functions are differentiable. We want to compute the Jacobian matrix J, ., (z), which expresses
the partial derivatives of z,;, with respect to the components of z,. By the chain rule, this matrix
is expressed as a product of matrices,

Jogpii (20) = Jp, 00 (@) X T, (2po1) X o X g (20).
The matrix J,

9,41 (o) is @ row matrix of type 1 x m, while the matrices in the product are square
matrices of type m X m except the leftmost one, which is a row matrix of type 1 x m. The first
idea which comes to mind is the following. We compute Jy, (zo) and we store it; next we compute
1, the Jacobian matrix J;,(z;) and the product J,,(zo) = Jy,(21) X J;, (20); we store this product,
we compute x5, the matrix Jy, (z5), the product Jy, (z2) X J,,(20) and so on. At each step of the
computation, we store a m X m matrix. If m is large (a value of about 10° is possible), this method
is not practical. So, we apply another strategy. We first compute z, and the Jacobian matrix
Ji, .. (2p); we store it; next we compute z,_; and the Jacobian matrix J; (z,_1); we compute the
product Jy  (2,) X Jg,(2,-1) and we store it, and so on. The gain of storage is evident: each
time we store a 1 X m matrix in place of a m X m matrix. But there is a waste of time because

we compute again and again the values z,,...,z,. Obviously, we could store these values but the
available memory has a limited size.

The problem of reversing the sequence zy,z;,...,2, may be now formulated. We want an
algorithm which provides the values z,,z,_1,...,2; in this order and costs the minimal amount

of time, knowing that each computation z; = f;(#;_;) takes one unit of time and only r values
may be stored at a time. Such an algorithm provides the value z; only by computation from the
previous value z;_; or by retrieval from memory. Several authors have addressed this problem. Baur
and Strassen [2] used the idea we presented as an introduction to study the complexity of partial
derivatives. Abbot and Galligo [1] gave an optimality result in the framework of divide-and-conquer
algorithms: for such an algorithm, one chooses an index ¢ between 1 and p, one deals first with
the sequence z,,...,7,, and next with the sequence zy,...,2,_;. Grimm, Pottier and Rostaing-
Schmidt [3] considered all the algorithms and showed that algorithms of divide-and-conquer type
provide the optimal time of computation 7. In practice, it is necessary to find a trade-off between
r, the number of registers, and T', the number of computations, hence the important quantity is the
product 77". Grimm, Pottier and Rostaing-Schmidt gave a lower bound for the product (r + 1)7’,
which is rather tight and shows that the product »7 has order pln” p.
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> 5
P X6 =1(0,3,5,6)
R X5 =(0,3,5)
> S P X4=1(0,2,3,4)
R X5 =1(0,2,3)
R X, =1(0,2)
P X, =(0,1)
FiGURE 1. The diagram show the reversing of a sequence xzy, . .., zs with 3 registers.
Column j corresponds to term z; for 7 = 1,...,6. The symbol > means that the

value is computed but not stored; the symbol S means that the value is computed
and stored; P means the values is calculated, printed and then thrown away; R
means the value is retrieved from memory, printed and then thrown away. The
list X; gives the indices k£ of the values z; which are stored just before term z; is
printed. The total number of symbols >, S or P provides the time of computation.

1. Reduction to divide-and-conquer algorithms

The search for an optimal algorithm needs a careful definition of what is an algorithm in this
context. The following definition is proposed.

DEFINITION 1. A reversal table of the sequence zq,...,z, with r registers is a family (X, ;),
0<i<r;,0<j<p,such that
X< Xippjfor0<i<r, 0<j<p;
- Xo;=0and X,,; =j for 0 <j<p;
—r;<rfor0<yj<p.

The definition must be understood in the following manner. The list X; = (Xm')ogis,nj provides
the values z), which are stored just before the value z; is printed. More precisely the list contains
the indices k arranged in increasing order. See Figure 1 for an example. Notice that the value z; is
stored for free because the register used is not taken into account; in fact there are r 4+ 1 registers
used.

To each reversal table X = (X, ;) is associated its time of computation

tX = Z ti,ja with ti,j = Xi,j — K

0<i<r;
0<j<p

Jo

where Y; ; is the maximal index of stored values less than X, ;. Line 5 of Figure 1 provides the
following values: ¢4, = 2 because the value z, may be obtained at this time only from z,; {45 =0
because z3 is available from memory, and ¢, 4 = 1 because z, must be computed from z3. The
goal is to find a reversal table X which provides the minimal time of computation ¢{x. The main
theorem is stated as follows.

THEOREM 1. There exists an optimal reversal table which is of divide-and-conqguer type.

We say that a reversal table (X, ;) is of divide-and-conquer type if there exists an index ¢ such
that
X1,p = Xl,p—1 == Xl,q =4q.

This means that the algorithm computes the value z,, handles the sequence z,,z,41,...,%,, and
next the sequence zg,..., 7, ;.
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Ficure 2. The diagram shows a divide-and-conquer optimal reversing of a sequence
of length p = 10 using r = 3 registers. The time of computation is T = 18.

2. Optimal time

The previous result reduces the search for an optimal algorithm to the consideration of algorithms
of divide-and-conquer type.

THEOREM 2. The time of any optimal reversal table of a sequence x,,...,z, with v registers is
given by
r+k
T(p,v)=k 1) -
(1) = hip+ 1) (TH),

where k is any integer which satisfies

(T+k_1)—1§p§ (7‘—|—k)_1.
r r

Moreover a reversal table of divide-and-conquer type is optimal if and only if its index q salisfies

(7’—|—k—2)§q§<r—|—k—1)7 and (T—I_k_l)—lgp—qg(r—l_k_l)—l.
r r r—1 r—1

The first part of the assertion appears in [1]. The proof uses an auxiliary function m, ,; this
function gives the maximal length of a sequence which can be inverted using only r registers and
computing only s times each value z; in the worst case. The proof of the second part relies on the
consideration of

M) =q¢+T(q-1,r)+T(p—q,r—1).
This function of the real variable ¢ achieves its minimum on the interval given in the theorem and
this minimum is 7'(p, r). This gives a functional equation for T'(p, r), which translates exactly the
divide-and-conquer strategy.

It must be noted that for a divide-and-conquer optimal reversal table the number r of registers
is exactly the maximal number of times a term of the sequence is computed. One can observe this
phenomenon in the example of Figure 2, where the terms z1,..., 210 are respectively computed 3,
2,2,2,1,1,2,2, 1,2, 1 times.
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3. Space-time trade-off

Up to now the number r of available registers was fixed. But it is natural to make the computation
more efficient by choosing r as a function of p. In this context the quantity of interest is the product

rT'(p,r).
THEOREM 3. The product (r+ 1)T is greater than a quantity which is equivalent to pln®pln~*4.
There exist arbitrary large p’s and r’s such that the product (r + 1)1 is equivalent to pln® pln~24.

The idea of the proof is to replace the true quantities using the approximations

r+k

r

(r4+ D)T(p,r)~(p+ r(k-1), ( ) ~ (r k)RR

This gives an r which minimizes the product (r 4+ 1)T". The result is illustrated by Figure 3.

30+
25+
20+
15+

101

0% 5 10 15 20 25 30
P

Ficgure 3. The product rT'(p,r) is close to C, = pln® pln~?4 for p large. Shown
here are the sequences r1'(p,r)/C, for 1 < p <30 and r = 2,...,10.
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Abstract

The Polymerase Chain Reaction, PCR for short, is able to produce million copies of
a specified DNA segment. Grouping (multiplexing) numerous PCR in a few experiments
would decrease the PCR costs and save time. Starting from a biological model for the
multiplexing conditions, we transform the problem to a combinatorial one, show that the
problem is N P—complete, give an approximation algorithm, and show its quasi-optimality.

1. Introduction

Devised in the mid-1980s, the Polymerase Chain Reaction, PCR for short!, is able to produce
enormous numbers of copies of a specified DNA sequence. The method is sensitive to very small
amounts of DNA, and has numerous applications (diagnostics, etc); however, in most of the PCR
experiments performed by biologists, the amplification of each target fragment of DNA requires a
separate and costly PCR experiment, with the corresponding manipulations, and the immobiliza-
tion of an automat [4].

PCR exploits certain features of DNA replication. Single-stranded DNA is used as a template
for the synthesis of a complementary new strand. These single stranded DNA templates can be
produced by simply heating double-stranded DNA to temperature near boiling. Then we require a
small section of double stranded DNA to initiate (“prime”) synthesis.

The starting point for DNA synthesis can be specified by supplying an oligonucleotide primer
that anneals to the template at this point. Both DNA strands can serve as templates for synthesis
provided an oligonucleotide primer is supplied for each strand. FEach cycle of PCR duplicates
the segments under amplification; so, starting from one segment, n cycles of PCR produce 27
segments. Figure 1 shows the synthesis initiated by the forward primer 5-ACACA...AGCAA-3’ on
the 3’-5 strand of a segment of DNAZ2.

Primers cannot be chosen at will inside a locus (a portion) of a gene: they must respect con-
ditions permitting a correct amplification by PCR; the temperature of hybridization at which the
polymerase synthesises the new DNA strands is one of these conditions; this temperature depends
on the composition of the primer, and more specifically on the respective percentage of the bases
A and T, versus the bases G and C; a more accurate method relates the hybridizing temperature

1We refer to [5] for a detailed introduction to the subject of PCR.

?The 3’ extremity of a chain is N-terminal; the 5’ extremity is C-Terminal; the numbers 3 and 5 refer
to the position of the carbon connected to the N-termination and to the C-termination inside the 5-carbon
sugar constitutive of the bases of DNA (other components of a base of DNA are a phosphate group and one
out of four organic bases).
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5’ . .CTGACACAACTGTGTTCACTAGCAA...... AAGGTGAACGTGGATGAAGTTGGTG.. 3’
3?<<-TTCCACTTGCACCTACTTCAAC 5’
reverse primer
forward primer
5’ ACACAACTGTGTTCACTAGCAA->> 3?
3’ ..GACTGTGTTGACACAAGTGATCGTT...... TTCCACTTGCACCTACTTCAACCAC.. 5’

FIGURE 1. Primers for DNA polymerase

to experimental measurements of base-stacking energy. Anyhow, when choosing a pair of primers,
the hybridizing temperatures of the two primers should be about the same. Another condition
relates to homology between the two primers and to self-homology; such homology would very
often prevent a correct amplification, the primers hybridizing to each other, or identical copies of
a self-homologous primer hybridizing together.

Several software programs are available to predict which pair of primers to choose inside a given
locus. The conditions which hold for a one-locus PCR amplification still have to hold for multi-loci
amplification.

Starting from a set S of n loci, we want to find the subset C,,,, of maximum size of 5, such that
in each locus of C,,,, we can select a pair of compatible primers, and such that the 2n selected
primers are each other compatible.

We made an extension the program PRIMER, of S. E. Lincoln, M. J. Daly, and E. S. Lander [1]
in a MULTIPCR program. PRIMER is a two-step program; step-1 selects forward and reverse
candidates primers; step-2 chooses a best pair of one forward and one reverse primer among all
the possible pairs of candidates. MULTIPCR takes as input the output of PRIMER step-1, and
chooses for each locus a forward and a reverse primer compatible with the primers chosen for the
other loci, whenever this is possible.

2. Multiplexing the Polymerase Chain Reaction

2.1. Requirements. We detail in this section a model of compatibility between primers that
Gilles Thomas® proposed to us and the corresponding requirements.

We will speak of locus amplification when considering the amplification of a single segment; only
one amplification is allowed inside a given locus; to each locus amplification correspond a forward
and a reverse primer. We define a subprimer as a subsequence of a primer and we consider in the
following that all subprimers of a multiplexing experiment have the same length o. In practical
experimentations, o will have values 4 or 5. We define a 3’-subprimer as the subprimer ending a
primer at its 3’ extremity (primers being always read in the direction 5’ = 37).

The requirements are the following:

(1) Locus amplification requirements:
(a) The distance between the forward primer and the reverse primer is between 150 and
450 bases (these minimum and maximum values are given as parameters and corres-
pond to the “product range size” taken as input by the program PRIMER).
(b) The primers satisfy the conditions of non-palindromicity; such a palindromicity would
cause self-homology.
(c) The 3’-subprimers are not reverse complementary with any of the subprimers (sub-
primers as 3’-subprimers are assumed to be of length o bases).
(2) Multi-locus amplification or experiment requirements:

3Laboratoire de Génétique des Tumeurs, Institut Curie, 26, rue d’Ulm, 75005 Paris.
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Primer Urn number

o]

3’ CTTA 5° — B ATTC 3° — 61 o

1111

5’ AAGAAGAAT 3’

AAGA — 8 o
AGAA — 32 e
GAAG — 130 e
AAGA — 8 o
AGAA — 32 e
GAAT — 131 o
. e _ Lo e . L
0 1 8 32 61 130 131 255

Ficure 2.

(a) Any 3’-subprimer of an experiment is not reverse complementary with any subprimer,
including itself, of any primer of the experiment; this would initiate hybridization of
the primers themselves. An example for this condition is given in subsection 2.2. Note
that subprimers (including the 3’-subprimers) may be identical between different loci,
or inside a locus.

(b) The temperatures of denaturation, or the GC/AT percentage in the primers of a
multi-locus PCR amplification have to belong to a limited range of values (by instance
48% — 52%).

(c) Electrophoresis* distance: the difference of lengths between any two segments ampli-
fied in the same multi-locus PCR amplification is greater than § bases; this is necessary
to allow a correct differentiation of the amplified segments after electrophoresis. This
distance supposes that the loci are not polymorphic, in which case the problem of
differentiating the amplified segments has to be handled in a different way.

2.2. An urn model to solve the problem of compatibility between primers. We give
here a constructive example of our algorithm.

— Using the mapping (A = 0,C = 1,G = 2, T = 3), We transform each subprimer of length
0 = 4 in a number in base 4 between 0 and 4* = 256, and each subprimer of length o = 5

in a number between 0 and 4° = 1024; the resulting numbers are converted in base 10 (
TTA = 3304 = 6049).

— We then consider a model of 256 urns, when ¢ = 4, or a model of 1024 urns, when o = 5.
For each subprimer, we compute the associated number as described above, and we throw
a ball in the corresponding urn.

The compatibility constraint (requirement 2(a) of §2.1) is then transformed as shown in Fig. 2
(when ¢ = 4). The complementary of the 3’-subprimer is taken (CTTA in Fig. 2) and reversed

4Electrophoresis is a migration method which allows short segments to move faster than the long ones;
this method allows the differentiation of segments of different lengths, from a mixture of them, but it has a
limited precision corresponding to our parameter 6.
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(ATTC in Fig. 2), with > being the palindromic operation on a chain). Ordinary subprimers
generate black balls, while reversed complementary 3’-subprimers generate white balls.
The compatibility rule implies that an urn can never contain simultaneously black and white

balls.

2.3. An algorithm deriving from the urn model. We propose in this section an approxi-
mate algorithm with high efficiency in practical computations; this algorithm is likely to be almost
optimal.

Our algorithm is as follows: we sort our set of loci in increasing order along the number of
candidates pairs of primers; we process our set of ordered loci, locus after locus; for each locus, we
try each possible pair of primers with respect to the conditions, including the distance condition
(requirement 1(a)).

For each pair, we “throw white and black balls in urns”, along the model described above; we
eliminate the pairs which cause “black and white” collisions; among the acceptable pairs of primers,
we select the pair of primers which minimizes, in the following order:

(1) the number of urns containing white balls;
(2) the number of urns containing black balls, whenever the number of “white urns” is identical
for two pairs.

The “white and black balls” corresponding to pairs of primers already selected remain in the urns
when processing a new locus.

The loci providing no compatible pair with the pairs of the loci already chosen for the current
experiment are left apart and processed in a next experiment.

Experimental result shows that, when processing 248 loci of Genbank, it would be theoretically
possible to amplify simultaneously 245 loci, with o = 5; the average size of the loci is 4000 bp., with
an average number of 20,000 admissible pairs of primers. However, it is biologically unrealistic to
think to amplify simultaneously much more than ten loci.

3. Determining the pairs of primers which maximize the number of loci in a single
experiment is a N P-complete problem

We model our problem as a set of bipartite subgraphs with additional edges (Figure 3 (a)); in
this graph, each primer is represented by a vertex; the set of vertices is partitioned by locus, each
locus corresponding to a bipartite subgraph; in our example, vertices belonging to the same locus
are represented by the same character (e for locus 1, o for locus 2, % for locus 3), the forward
primers being represented on the left part of the figure (Figure 3 (a)), while the reverse primers are
represented on the right part. There are two kind of edges:

— acceptance edges, inside the bipartite subgraph restricted to a single locus; such a non-
arrowed edge indicates that the forward and the reverse primers joined by the edge are
compatible;

— incompatibility edges, joining a vertex of a locus to a vertex of a different locus; these edges
with arrowed extremities indicate that the primers they join are not compatible.

Our “Compaltible Primers Problem”, in short CPP, has the following description:

Instance of the problem: a graph composed of a set of bipartite graphs By, B, ..., By; the
edges of these graphs constitute a set of acceptance edges Aj; a set of incompatibility edges, these
edges joining pairs of vertices which do not belong to the same bipartite subgraphs; an integer K.

Question: is it possible to choose a subset of acceptance edges A’ C A with |A’| > K such that
A’ contains at most one edge from each B;, 1 < < J, and such that no two vertices belonging to
these edges are extremities of an incompatibility edge.
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(a) A representation of the (b) A transform of the multiple
compatible primer problem choice matching problem

Ficure 3. Transformation of any graph to a set of bipartite subgraphs modelling
the compatible primers problem

A typical graph of CPP is shown in Figure 3(a); any edge of a “Multiple Choice Matching
Problem” (in short MCMP) graph is transformed in a vertex of a CPP graph; dummy nodes
(figured by x) are added, one for each subset of vertices of MCMP. Figure 3(b) represents such a
transform of a MCMP graph (not represented in the figure) to a CPP one. This transformation is
detailed in [2, 3]. Therefore, solving CPP in polynomial time would also solve MCMP in polynomial
time, which contradicts the N P-completeness of MCMP. We hence proved N P—completeness of
CPP.

4. Evaluating the limit probability of rejection of a locus

The experimental results obtained with 248 loci show that about 50 loci are enough to fill almost
completely the system of urns. We want to evaluate the probability of rejection of a locus in such
a saturated system of urns.

if s is the number of subprimers of a primer (practically, if o = 4, s = 17 for primers of length
20), with 7, the probability of acceptation of a primer by a system of U urns containing either
white, or black balls, we have

b b\’
(1) ﬂ-l,b,n = E <1 — ﬁ) and 7T1,30,226 = 0.014.

The probability 71, of compatibility of two primers between themselves, when considering an empty
system of urns, is

o L) (- ) (1-2) o
T = i T U U = 0. .
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The MULTIPCR algorithm considers a number V of forward primers for a locus, and, for each
forward primer, a number R of reverse primers at an acceptable distance of this primer (between
150 and 450 bp); depending of the locus length, V' is between 100 and 500, while R remains close
to 50.

The small value of 7 39 925 allows us to apply the Poisson approximation to the binomial distribu-
tion of the number of accepted forward and reverse primers, with respective parameters v = V4,
and p = Rmy1T1 5 .

The probability II of rejection of a locus is then
(3) I((V), p(R)) = 3 (Pr{v = i} x (Pr{r = 0}))) = e+,

=0

probability whose some values for R = 50 are

v 250 300 350 400 450
(v(V),p(50)) 0.230 0.171 0.128 0.095 0.071

Considering our experimental results on 248 loci, this shows that our algorithm is quasi-optimal.
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1. Introduction

Sequence comparison is traditionally based on gene comparison based on local mutations (in-
sertions, deletions or substitutions of nucleotides). Such comparisons do not yield evolutionary
information. It appears that evolution is manifested as the divergence in gene order. For example,
the large number of conserved segments in the maps of man and mouse suggests that multiple
chromosome rearrangements have occurred since the divergence of lineages leading to human and
mice. The number of such rearrangements has been recently estimated to be approximately 180.
This leads to a major shift of sequence comparison toward the analysis of such rearrangements at
the genome level. Nevertheless, there are almost no computer science results allowing a biologist
to analyze gene rearrangements.

This talk addresses two problems: define and estimate the distance between two different species
for a same gene and reconstruct the rearrangement scenario. A paper version can be found in [1].

2. State of the Art

Some genomes evolve so rapidly that the similarity between many genes is very low and is
indistinguishable from the background noise. Nevertheless, according to Ohno’s law, gene content
of X chromosomes is assumed to have remained the same throughout mammalian development in
the last 125 million years. However, the order of genes on X chromosomes has been disrupted
several times, even though synteny has been almost completely conserved.

The order of genes in two organisms is represented by permutations 7 = (773 ...7,) and o =
(0102...0,).

DEFINITION 1. A reversal p of an interval [, j] is a permutation
p=11,2,....i—1,5,7—1,...,0+ 1,4, +1,...,n]

7.p has the effect of reversing genes 7, m;41,..., 7.

The reversal distance problemis to find a series of reversals py, ps,...p; such that m-py-ps---p; = 0
and ¢ is minimum (Fig. 1a). The number ¢ is called the reversal distance. Sorting by reversals is
the problem of finding reversal distance d(7) between 7 and identity 1.

Reversals generate the symmetric group 5,,. Given a set of generators of a permutation group,
determining the shortest product of generators that equals 7 is NP-hard [2]. The problem is
PSPACE-complete [4]. And in [5] it is conjectured that sorting by reversals is NP-complete even
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when the generator set is fixed. Bounds for the related problem of sorting by prefix reversals can
be found in [3]. Gollan conjectured that the reversal diameter of 5,, i.e. the maximal reversal
distance between two permutations, is d(n) = n — 1, a bound achieved for only one permutation.
Lower bound and verification for n < 200 are presented in [5].

3. Breakpoint graph

The key idea to sort by reversals is the definition of the breakpoint graph (see Fig. 1).

Let 7 = (my...7,) be a permutation of the elements {1,...,n}. Denote i ~ jif | — j| = 1.
Extend a permutation 7 = (7,...7,) by adding 7o = 0 and 7,4, = n+ 1. We call a pair of
consecutive elements m; and 7,41, 0 < ¢ < n, of 7 a breakpoint if w; o m;11. The breakpoint graph of
7 is an edge-coloured graph G(7) with n + 2 vertices {7, 71, ..., Tn, Top1}. We join vertices m; and
7; by a black edge if ¢ ~ j and by a gray edge if m; ~ m;. (See Fig. 1b). Later we also use the notion
of breakpoint graph G(m,7) for two permutations 7 and 4 which is defined as G(7,v7) = G(7y~)
described earlier. A cycle in an edge-coloured graph G is alternating if the colours of every two
consecutive edges of this cycle are distinct. In the following, by cycles we mean alternating cycles.

Let 7 be a signed permutation of {1,...,n},i.e. a permutation with “4+” or “—” sign associated
with each element (Fig. 1c). In the signed case, every reversal of fragment [z, j] changes both the
order and the signs of the elements within that fragment. We are interested in the minimum
number of reversals d(7) required to transform a signed permutation 7 into the identity signed
permutation (+1 4 2---4 n). Define a transformation from a signed permutation 7 of order n
to an (unsigned) permutation 7 of {1,...,2n} as follows. To model the signs of elements in 7
replace the positive elements +z by 2z — 1,22 and negative elements —z by 2z,2z — 1 (Fig. 1c).
We call the unsigned permutation 7, the image of the signed permutation 7. In the breakpoint
graph G(7), elements 2z — 1 and 2z are joined by both black and gray edges for 1 <z < n. We
define the breakpoint graph G(7) of a signed permutation 7 as the breakpoint graph G(7) with
these 2n edges excluded. Observe that in G(7) every vertex has degree 2 (Fig. 1c) and therefore
the breakpoint graph of a signed permutation is a collection of disjoint cycles. Denote the number
of such cycles as ¢(7). We observe that the identity signed permutation of order n maps to the
identity (unsigned) permutation of order 2n, and the effect of a reversal on 7 can be mimicked by a
reversal on 7 thus implying d(7) > d(7). In the following, by sorting the image 7 = w7, ... 7, of
a signed permutation T = 7,7y ...7T,, we mean sorting of 7 by reversals p(27 + 1,27) which “cut”
only after even positions in w. In the rest of this section, 7 is an image of a signed permutation.

Cycle decompositions play an important role in estimating the reversal distance. Applying a
reversal to a permutation may change the number of breakpoints, b(7), as well as the number of
cycles in a maximum decomposition, ¢(7). The key idea in the algorithm of [1] is to take advantage
of this strong correlation. One proves:

THEOREM 1. For every permulalion m and reversal p, one has:
Ab(m,p)+ Ac(m,p) < 1.

Proor. (sketch): every reversal removes/adds at most two breakpoints. Omne considers all 5
potential values of Ab in a case-by-case fashion. [

This immediately gives a new lower bound for the reversal distance:
THEOREM 2. For every permutation w, d(7) > b(7) — (7).

For all biological examples, one has d(7) = b(7) — ¢(7). Hence, the use of the breakpoint graph
reduces the reversal distance problem to maximal cycle decomposition problem. One shows:
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B
D

non-oriented cycle
o oriented cycle

(d)

Ficure 1. (a) Optimal sorting of a permutation 0 = (35864 79211011)by 5
reversals. (b) Breakpoint graph G(¢). (c¢) Transformation of a signed permutation
into an unsigned permutation 7 and the breakpoint graph G(7). Gray edges (8,9)
and (22, 23) are oriented while gray edges (4,5) and (18,19) are unoriented. Cycles
C and F are oriented while cycles A, B, D and F are unoriented. Gray edges (6,7)
and (12,13) are interleaving while gray edges (6,7) and (4,5) are non-interleaving.
(d) Interleaving graph H, with two oriented and one unoriented component.
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THEOREM 3 (STRONG GOLLAN CONJECTURE). For every n, the only permutations that require
n — 1 reversals to be sorted are v, and ils inverse y; ' :

~J(,3,5,7,...,m—1,n,...,8,6,4,2), n even;
T (1L,3,5, 7,00 — 1,...,8,6,4,2), n odd,

Proovr. (sketch). Let P, be the set of n-permutations that satisfy d(7) = n. It contains 7, and
1. One inductively proves that there are no other elements. [

Finally, one proves that the expected reversal distance is very close to the reversal diameter.
The key idea is that a typical cycle is long, hence the number of cycles is small. More precisely:

E(d)>(1— =)

logn

4. Algorithms

4.1. A greedy algorithm. Define a strip of 7 as an interval [¢,j] such that (¢ — 1,7) and
(j,7 + 1) are breakpoints, and no breakpoint lies between them. A strip is increasing if =;,7;,
otherwise it is decreasing. A reversal can remove at most two breakpoints; therefore d(7) > @
In [5] a greedy procedure is given, where one chooses a reversal that removes the most breakpoints
of 7, resolving ties in favour of reversals that leave a decreasing strip. An upper bound on the
number on d(7) that provides a performance guarantee of 2, follows from the lemma:

LemMA 1. If © is a decreasing permutation with a decreasing strip, then @ allows a 1 or 2-
reversal. Additionally, If every reversal that removes a breakpoint of © leaves a permutation with
no decreasing strips, then ™ has a 2-reversal.

4.2. An approximation algorithm for signed permutations. While the problem of sorting
signed permutations is easier to handle, it is also more relevant to a biological point of view: genes
are directed fragments of DNA sequences. Fortunately, the concept of breakpoint graph as well
as strips extends naturally to signed permutations (see above). The algorithm SignedSort sorts a
signed permutation 7 in at most b(m) — $cq(m) reversals, where ¢, is the number of 4-cycles. It
provides an approximation ratio of g

4.3. An approximation algorithm for sorting by reversals. As 2-reversals correspond to
elimination of 4-cycles, one concentrates on finding a cycle decomposition with a large number of
4-cycles. The algorithm ReversalSort achieves an approximation ratio of %

To conclude, let us cite among the remaining open problems the analysis of genome rearrange-
ments in mulliple genomes.
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Abstract

The concept of complex multiplication is defined, after some background is given on
elliptic functions and quadratic forms. Applications to the class number problem, primality
proving and Ramanujan’s formulas for 1/7 are presented.

1. Introduction

This is an introduction to the ideas of complex multiplication of lattices and elliptic curves. The
theory plays an important role in class field theory, and has had recent applications in algorithmic
number theory, especially in elliptic curve primality proving. This presentation is a first glimpse of
a very rich and deep theory developed by Kronecker, Weber, Hilbert, Shimura, Deligne, etc [3]. A
good introduction to the ideas presented here is [6].

First, some background material on elliptic functions and quadratic numbers is given. This
background then allows us to define complex multiplication. Some theorems that demonstrate how
these three areas are interconnected and some applications in primality proving, the class number
problem and Ramanujan’s 1/7 formulas are presented.

2. Elliptic Functions

A lattice is an additive subgroup L of C generated by two complex numbers w; and w, which are
linearly independent over R. We write L = [wy,ws]. An elliptic function for L is a function f(z)
meromorphic on C that is doubly periodic: f(z 4 w;) = f(z) for i = 1, 2.

One of the most important elliptic functions is the Weierstrass p-function, defined for a lattice

L as
1 1 1
p(Z) T2 +weLz;¢o <(Z o w)2 - E) ‘
Let G, k > 2, be the Fisenstein series for L:
1
weEL w#0 w

Then expanding p(z) and @'(z) near the origin, we get

p(2) = 1/2° 4+ 32°Ga +52"Gs + - -+,
O'(2) = —2/2° + 62G4 4+ 202°Gs + -+ - .
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Define g, = 60G, and g3 = 140Gs. Then p satisfies the differential equation

p'(2)" = 4p(2)° = g20(2) — gs.

In addition, p and g’ are generators for the field of elliptic functions over L. One of the main
theorems of complex multiplication states when we can write p(az) as a rational function in p(z).

In order to easily detect the difference between lattices that are complex multiples of each other
and lattices that are truly different, we introduce the concept of j-invariant of a lattice.

For a lattice L = [wy,ws], define 7 = wy/wy. Then let A(7) = g5(7) — 27g5(7). The j-invariant
of L is the complex number

J(r) = 1728g5(7)/ A(7).
It turns out that two lattices are isomorphic if and only if they have the same j-invariant.

The j-invariant can also be used to classify elliptic curves [8]. Consider the elliptic curve F,
which is an equation of the form y? = 423 — g2 — g5. From the theory of elliptic curves, we know
there is a unique lattice Ly such that g» = ¢2(Lg) and g3 = ¢g3(Lg). (The inverse is also true - given
a lattice L over C, there is a unique corresponding elliptic curve F). We extend the definition of
J to elliptic curves by saying that j(£)= j(Lg). Then two elliptic curves F;, E5 are isomorphic if
and only if j(E,) = j(E2).

3. Quadratic Forms

One application of complex multiplication is in solving the class number problem, which is a
problem related to quadratic forms. Some background on quadratic forms is needed in order to
state this problem. A quadratic form is a function f(z,y) = az? + bay+ cy* with a,b, ¢ € Z, and its
discriminant is —D = b? — 4ac. For future reference, define the discriminant of a quadratic number
7 to be the discriminant of the unique quadratic form (a,b,¢),a > 0, (a,b,c) = 1 such that 7 is the
root of az? + bx + ¢ = 0.

Define Q(—D) to be the set of all quadratic forms with discriminant —D and (a,b,c) = 1.

Associate with f a matrix A = (b72 bf). Then two quadratic forms f, f are equivalent if there is

a matrix M € SLy(Z) such that A’ = M~'AM.

Define H(—-D) = Q(—D)/ ~, where ~ is the equivalence relation defined above. Then an
important theorem states that h(—D) = |H(—D)| is finite. Each class contains exactly one form
which is reduced (]b] < a < ¢, and b > 0 if [b| = a or a = ¢), and we identify each class with this
form: H(-D) = {Q1,Q2,...,Qn}. Then, there is a (fairly complicated) way of composing two
forms, and this operation makes H(—D) into an abelian group. H(—D) is called the class group,
and h(—D) is the class number. The problem is to find all —D for which h(—D) is fixed, especially
for h(—D) = 1. See [T7].

4. Complex Multiplication

For two lattices L and M, we say that L ~ M if and only if da € C such that oL = M. Define
S(L)y={a€C,al C L}.

Finally, we can give our definition of complex multiplication.

DEeriNITION 1. If S(L) contains more than Z, L is said to have complex multiplication. If a is
in S(L) — Z, L has complex multiplication by a.

S(L) has some special properties.

THEOREM 1. Let L = [wy,ws]. Then a € S(L),a € C—Z if and only if o is a quadratic integer.
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Writing 7 = wy/wi, then @ = ar + b, 7 € R, so Q(a) = Q(7) = Q(v/=D), where —D is the
discriminant of the quadratic number 7. Denote this field by K.

Quadratic field theory tells us that the ring of integers of K is O = Z[(—=D + +/—D)/2]. Then
S(L) is a subring of Og. Thus, if L has complex multiplication by a single element «, then it has
complex multiplication by each member of a ring of elements in an imaginary quadratic field. Note
that the non-integer elements of S(L) are genuinely complex, which explains the name complex
multiplication.

ExaMPLE. Let @ = (a,b,c) € H(—D), and set 79 = (=b + vV—D)/(2a). Then the lattice
Lqg = [1, 7g] has complex multiplication by all of O = Z[(-D + v—D)/2].

One remarkable fact is the relationship between lattices with complex multiplication and the p
function.

THEOREM 2. Letl L be a lattice, and p be the p-function for L. Then L has complex mulliplication
by a € C—Z if and only if

plaz) = Fp(2))/G(p(2))
with F, G relatively prime polynomials, and deg(F') = deg(G)+ 1 = N(a).

Algorithms exist to find F' and G [6].
Complex multiplication can also be defined on elliptic curves, in the obvious way.

DEFINITION 2. An elliptic curve E has complex multiplication if and only if the associated lattice
L has.

The following theorem shows which F¢ have complex multiplication, and by what ring.

THEOREM 3. All elliptic curves Eg = C/Lq, where L is defined as in the example, have complex
multiplication by the full ring of integers . These are the only ones with complex multiplication
by O, up to isomorphism.

The following theorem relates complex multiplication with the j-invariant.

THEOREM 4. Let E be an elliptic curve with complex multiplication, L its associated lattice, and
D the associated discriminant. Then j(F) is an algebraic integer of degree h(—D).

THEOREM 5. The minimal polynomial of j(7q), known as the class equation, is
HpX)= [ (X-j(r)
QeH(-D)

If K is an imaginary quadratic field, then Ky = K(j(1g)) is Galois and is called the Hilbert class
field of K.

5. Applications

5.1. ECPP. Elliptic Curve Primality Proving makes use of the class equation to find large
prime numbers. Part of the method is to determine if, for a prime p, (p) splits completely in Ky,
or equivalently, H_p(X) has h roots modp. Thus one of the problems is to actually compute the
class equation. One algorithm to do this involves the theory of complex multiplication [2].

125



5.2. Class Number Problem. We would like to be able to calculate the number of —D’s that
have class number h, as well as determine what those —D’s are. Work done from 1934 onwards has
solved the problem for A = 1,2,3,4 and 5 < h < 23 for h odd [7, 1].

One method is to consider the minimal polynomial of j(7) which has degree h = h(—D). If
we can find the minimal polynomial, then its degree will tell us the class number A for the —D
associated with 7. The following theorem supplies one approach to the problem.

THEOREM 6. Let v2(2) = v/j(2) sending iR to R. If 3 fD then Q(v2(7)) = Q(j(7)).
Thus, finding the degree of the minimal polynomial of 7, will give the degree of j(z), and hence

h(—D). This is an easier task than working with j(z) directly. Various other rather complicated
functions (Weber functions [9]) are used in the development of this problem. In particular, the
Weber functions allow us to find all imaginary quadratic fields of class number 1.

THEOREM 7. h(—=D) =1 if and only if d = 3,4,7,8,11,19,43,67,163.

5.3. Ramanujan. Recalling the Eisenstein series, define Ej by G = 2((k)E}, and then define

2= <E2(T) B WS(T)) gzgg

Then Ramanujan proved
THEOREM 8. IfT € K, then s, € Ky.

When combined with an identity from Fricke and Clausen involving s, D and j(7), some very
complicated identities involving 7 are produced, including the following when D = 163:

i( BN 0 D (640320)%/° 1
C n = —
AT T (30)nt? 6403209~ 163-8-27-11-19- 1277

where ¢; = 13591409/(163-2-9-7-11-19-127). This series gives a very fast-converging approximation
for 1/m. Other values of D produce similar formulas. See [4] and [5] for more details.
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Introduction to Simulated Annealing and Boltzmann’s Machine

Marcin Skubiszewski
INRIA-Rocquencourt

January 16, 1995

Abstract

Simulated annealing is a technique to find approximate solutions to numerous difficult
optimization problems such as NP-complete problems. The method is difficult to use and
can be applied to problems whose properties are hardly understood. Boltzmann’s machine is
a special optimization algorithm designed according to the principles of simulated annealing.

This talk presents simulated annealing with emphasis on the practical use of the method.
The presentation of Boltzmann’s machine is intertwined with a critical analysis of research
on this topic. In particular, we discuss works about practical applications of the algorithm,
as well as its use on fast specialized hardware.

A demonstration is given of the working of Boltzmann’s machine on specialized hardware.
Three optimisation problems illustrate the talk: graph partitioning (the classical computer
science MIN CUT problem), synchronizing binary sequences (an open problem from coding
theory) and airline traffic planning.
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An Algebraic Approach to Residues in Several Variables

Bernard Mourrain
INRIA-Sophia-Antipolis

March 6, 1995

Abstract

We present algebraic methods (mainly from linear algebra) to compute local or global
residues of multivariate polynomials. These methods are based on computations of Be-
zoutians, of which we recall the properties. We show how they make it possible to find
the structure of the quotient in the case of a complete intersection and of eigenspaces of
the multiplication matrices in this quotient. The relation with “classical” residues will be

mentioned.
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