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Abstract: Deadlock detection is an interesting problem in MultiDataBase Systems
(MDBS), since if all local transaction managements are blocking and force direct conflicts
between global transactions, the problem of ensuring the global serializability in the MDBS
is reduced to detecting and resolving global deadlocks.Unfortunately the autonomy of the
local systems precludes the visibility of the state of local transactions and the contention on
items, and therefore the classical approaches proposed for homogeneous distributed database
systems, and based on necessary and sufficient conditions, cannot be extended to the MDBS
case. A few specific methods have been proposed in the literature that exploit weaker neces-
sary conditions to detect potential global deadlocks, that not necessarily correspond to real
ones. In this paper we present a comparative performance study of several global deadlock
detection methods. The results of the analysis have suggested a new Hybrid Deadlock De-
tection method, that we present in the paper and that is very well suited for a distributed
implementation and has a performance that , according to our experiments, compares fa-
vorably with all the other methods in a variety of workload conditions.
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Détection de l’interblocage dans une base de données
hétérogene: une évaluation des performances

Résumé : Dans un contexte des bases de données hétérogénes (MDBS), la détection de
I'interblocage est un probléme intéressant puisque si tous les traitements des transactions
locales sont bloquants et créent des conflits entre les transactions globales, le probléeme de
sérialisabilité dans les MDBS se réduit a la détection et & la résolution des interblocages
globaux. Cependant, ’autonomie des systéemes locaux empéche de voir 1’état des transac-
tions locales et les conflits d’accés et rend par la méme inopérantes les approches classiques
proposées pour les systemes de base de données homogénes. On trouve dans la littérature
quelques méthodes spécifiques exploitant les conditions faibles nécessaires a la détection
d’interblocages globaux potentiels mais ceux-ci ne correspondent pas nécessairement aux in-
terblocages réels. Dans cet article, nous présentons une étude comparative des performances
de plusieurs méthodes de détection d’interblocages globaux. Les résultats de cette compa-
raison ont suggéré une méthode hybride bien adaptée a4 une mise en oeuvre distribuée et qui
présente, selon nos expérimentations, des performances soutenant largement la comparaison
avec les autres méthodes.

Mots-clé : Détection répartie d’interblocages, controle de la concurrence, bases de données
hétérogénes, évaluation de performances.
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1 Introduction

A MultiDataBase System (MDBS) allows access and manipulation of data stored on several
pre-existing, autonomous and (possibly) heterogeneous Local DataBase Systems (LDBS).
Transactions in a MDBS may be either local or global. Local transactions are directly sub-
mitted to individual LDBS and access only local data, while global transactions access data
from several LDBS by running local subtransactions under the control of the MDBS. The
main problem in MDBS transaction management is to deal with the autonomy of local
systems [Vei90]: design autonomy since the structure of each LDBS cannot be modified,
and ezecution autonomy since each LDBS has complete control and does not give visibility
on the state of local transactions. As a consequence of this a hierarchic structure has to
be adopted for global transaction management, with Local Transaction Managers (LTM)
controlling the execution of local transactions and ensuring local consistency and a Global
Transaction Manager (GTM) controlling the execution of global transactions to ensure the
correctness and consistency of their concurrent execution.

Even though several alternative consistency criteria have been proposed in the literature,
such as quasi-serializability [DE89], two-level serializability [MRKS91] and RS-correciness
[MRKS92], we consider in this paper global serializabilily, as it is the most widely used
criterion for multidatabase consistency. According to this criterion the GTM validates a
global schedule only if it is globally serializable, i.e. if the relative serialization order of
all conflicting subtransactions of any two global transactions is the same at each LDBS
where they execute [BS88]. Otherwise the schedule is not validated and some of the global
transactions are aborted.

Hence, to ensure global serializability, the GTM should actually know the local serializa-
tion order of all subtransactions. However, these orders, because of LDBS autonomy, are out
of the control and the visibility of the GTM which can only know the relative execution or-
ders of subtransactions at each local site. But it has been proved that the serialization order
corresponds to the execution order of transactions in an LDBS, under the restrictive condi-
tion that the LTM produces rigorous schedules, since it then forces all conflicts (write/write
and read/write) between uncommitted transactions to be direct conflicts [BGRS91]. Under
the weaker assumption of LTM producing strict schedules [BHG87], the serialization order
and the execution order of subtransactions may still differ due to possible indirect (tran-
sitive) conflicts between global transactions caused by local transactions. In this case the
problem may be solved by forcing each subtransaction to perform a write access to a special
item, the ticket, thus forcing a direct conflict between any two subtransactions running at
the same site [GRS94]. An especially interesting case, the one we actually consider in this
paper, is when all LTMs are blocking either rigorous or strict (with ticket access forced by
the GTM), and resolve directly local deadlock. In this situation the problem of ensuring the
global serializability in the MDBS is reduced to detecting and resolving global deadlocks,
i.e. deadlocks involving subtransactions submitted at several LDBSs, since in this case any
schedule that is not globally serializable will result in a global deadlock.

Unfortunately the classical approaches proposed for homogeneous distributed database
systems [Kna87] and, in general, for distributed systems [Sin89] cannot be extended to
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4 Roberto Baldoni, Silvio Salza

MDBS, since the autonomy of local system precludes access to the information (i.e., item
contention) needed to maintain a global state, e.g. a Waits-For Graph (WFG) of the entire
multidatabase, and to detect possible cycles. Hence one has to rely on some weaker necessary
condition which, not being a sufficient condition as well, will detect potential deadlocks that
not necessarily correspond to real deadlock. Two approaches have been proposed in this
direction up to now in the literature. The first one is to set a global timeout for every global
transaction, and to detect a potential deadlock if the timeout expires. The second one is
based on a directed graph called Potential Conflict Graph (PCG), where each local system
is considered as a single item. and a cycle corresponds to a potential deadlock [BLS90].

The first purpose of our study has been to analyze the performance of the proposed mul-
tidatabase deadlock detection methods in a variety of workload situations, and to compare
them to an ideal method (not feasible in an MDBS) based on a WFG. A quite interesting
preliminary result of the analysis has been to show that with PCG detection the distribu-
tion of the deadlock cycle length tends to be always very skewed, with most cycles being
of length two (about 90% in typical situations). On the contrary with WFG detection the
distribution tends to be uniform, especially with heavy workload. According to this remark
we also propose a new hybrid approach that consists in directly detecting all the potential
global deadlocks of length two, and detecting the remaining ones through a global timeout.
This method, that we shall call Hybrid Deadlock Detection (HDD), is actually considera-
bly simpler and more suited for a distributed implementation than PCG and more stable
than global timeout. Moreover the performance analysis we present in the paper clearly
shows that HDD can be easily tuned to match the performance of PCG in a large variety
of workload situations.

The paper is organized as follows. In Section 2 the reference MDBS architecture and the
transaction model is defined. In Section 3 the different multidatabase deadlock detection
methods proposed in the literature are discussed. Section 4 introduces the hybrid deadlock
detection approach we propose, and also gives a distributed implementation of it. Next in
Section 5 we present the simulation model used for the performance analysis, and we discuss
the workload model and parameters. In Section 6 the results of the performance evaluation
are presented and discussed, and, finally, conclusions are given in Section 7.

2 The Multidatabase Model

The MDBS architecture we consider in this paper is sketched in Figure 1. At each site S;
there is a local agent of the global transaction manager GTMj, a set of active servers W] and
a LDBS which includes the local transactions manager LTM; to handle local transactions.
The LTM ensures local serializability by means of a blocking protocol (e.g. two-phase-locking
(2PL)) producing rigorous deadlock-free schedules. Equivalently strict schedules can be pro-
duced with a write access to a ticket enforced for all subtransactions. In this environment,
as pointed out in the Introduction, the task of the GTM to ensure global consistency is
reduced to the detection and resolution of global deadlocks.

INRIA
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Figure 1: The multidatabase system architecture

Each transaction performs a sequence of read and write operations on a set of items.
Local transactions only access items from a single site and are directly managed by the
local LTM. Global transactions instead access items from several sites, and are managed
by the GTM; agent of the site S; where they are submitted, which acts as a coordinator
1. For each site S; where a global transaction T; submitted in site S; accesses an item,
the GTM allocates a server W,g that will be actually performing all the operations the
global transaction has to execute at site Si. The set of all these operations is called a
subtransaction, and its execution is seen by the LDBS as a local transaction. When a global
transaction has performed all its accesses and all servers have completed their operations,
the transaction enters the global commit phase, all subtransactions are committed and all
servers deallocated. All servers of a given transaction are deallocated as well if the transaction
is aborted because of a global deadlock detected by the GTM, or of a local deadlock that
causes the abort of a subtransaction. We also assume for simplicity that transactions cannot
abort for other reasons than deadlock. In what follows we consider a one-resource model
(each transaction can have outstanding at most one request at a time).

3 Deadlock Detection Methods

3.1 Waits-For Graph

As discussed in the Introduction, the Waits-For Graph (WFG) is not a feasible approach
for global deadlock detection in a MDBS, since it requires the complete knowledge of item

1The same GTM can be the coordinator of multiple concurrent global transactions.
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6 Roberto Baldoni, Silvio Salza

contention, which is not globally available because of the LDBS autonomy. However, we
may consider it as an ideal reference method since it allows to detect and resolve a global
deadlock as soon as it is formed. Formally a WFG [Kna87, BHG8T7] is a directed graph
where the vertices {T}} represent the active transactions and there is an edge from 7} to T;
if transaction 7; requests an item locked by transaction 7; in some site S;. In this case we
say that 7j is a waiting transaction. As we consider a multidatabase system, items are on
distinct LDBSs, so the WFG is the union of the local WFGs one for each LDBS.

A WFG can be seen as a forest of trees. The root of each tree represents a non-waiting. i.e.
running, transaction. All the other transactions in the tree are waiting directly or transitively
on one of the items locked by the root transaction, so each path represents a distinct waiting
chain. A cycle in the WFG represents a deadlock, in particular a local deadlock if all the
items in the circular waiting chain belong to the same LDBS, otherwise a global deadlock.

The operations performed by a global transaction modify the structure of the WFG in
the following way:

e if a running transaction 7; gets waiting on an item locked by Tj, then the tree A;
rooted in 7; becomes a subtree of the tree to which 7} belongs; this increases the
average length of the paths in the WFG and reduces the number of trees;

e if a running transaction 7; is committed or aborted (because the request of an item
forms a cycle in the WFG), then all items locked by T; are released, and the tree A;
rooted in 7; is split. This creates possibly one running transaction and one distinct
tree, with depth lesser than A;, for each item previously locked by T;. Altogether this
modification decreases the average length of the paths in the WFG, and increases the
number of the trees.

3.2 Global Timeout

The Global Timeout (GT) method simply associates a fixed timeout t¢ to each global tran-
saction. The transaction is assumed to be in a potential deadlock, and is then aborted as
soon as the timeout expires. It is trivial to show that this method ensures global deadlock
detection, since timeout expiration (before the transaction is committed) is an evident ne-
cessary condition to deadlock. From the viewpoint of the implementation, this method is
inherently distributed, since all controls can be performed locally by the coordinating GTM;
agent and no information is needed about the state of the other transactions.

However the selection of an appropriate value for the timeout is very critical, and may
considerably affect the performance. Small timeout values (compared with the transaction
response time) lead to abort many transactions that are simply not finished, but actually not
engaged in any deadlock, thus wasting system resources. On the other hand, large timeout
values result in long detection delays of real deadlocks, and originate large transaction jams
that severely affect the performance. Since a reliable estimate of transaction response time
is usually not available, selecting the right timeout value may become a critical problem for
the designer.
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3.3 Potential Conflict Graph

A Potential Conflict Graph (PCG) [BLS90] is a directed acyclic graph where the vertices
{T;} represents the global transactions, and there is an edge from Tj to 7; if there is a site
S such that 7} is waiting on some item in S, and 7; detains at least a lock in S; and is not
waiting on any item in St. As for the WFG, the global PCG results from the union of the
local PCGs one for each LDBS when considering the local PCGy, be the part of the PCG
due to site Sg. In [BLS90] it has been formally proved that if there is a global deadlock in
the waits-for graph, then there is a cycle in the PCG. The reverse is not true.

The main problem with PCG detection is that, especially if the number of items is large
compared to the number of sites, and each transaction accesses many items, there is a large
number of apparent deadlocks (i.e. potential deadlocks which do not correspond to actual
ones). And this may affect the performance by causing many restarts. Therefore, in order
to reduce such false alarms, when a global transaction gets waiting, the detection of cycles
in the PCG is postponed by a time ¢z, called local timeout. But setting up the local timeout
is a delicate task and a wrong choice may affect the performance, though not so severely as
in the case of global timeout.

Moreover the construction of the PCG requires to piece together all local PCGs. This
gives problems both in a centralized and in a distributed implementation. Drawbacks of a
centralized implementation are: the single point of failure implied by a centralized approach
and the heavy communication to maintain the PCG up-to-date that risks to saturate links
near the control site. In the case of a distributed implementation, typical deadlock detection
methods proposed for distributed systems based on tokens [BHRS95], probes [MM84, CM82],
consistent global snapshots [BT87, KS94] lead to an high complexity in terms of number
of messages needed to detect potential deadlocks and, worse, do not take into account the
restrictions connected to local autonomy [Vei90].

4 Hybrid Deadlock Detection

The main problem with PCG detection is that a cycle may have any length up to the number
of sites in the MDBS. But, as we will discuss later in Section 6, a very interesting result of
our performance analysis has been to show that, with PCG detection, the deadlock cycle
length distribution is actually very skewed, with a large majority of cycles having length
two. This has suggested us to propose a new method, that we shall call Hybrid Deadlock
Detection (HDD) that consists in:

e directly detecting all potential global deadlocks that involve only two global transac-
tions, i.e. corresponding to cycles of length two in the PCG;

e using a global timeout ¢ to detect the remaining deadlocks (i.e. the one involving
more than two global transactions).

The HDD approach has two main advantages. First building the PCG is no longer
necessary, since only a partial knowledge of the PCG is needed to detect deadlocks involving
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8 Roberto Baldoni, Silvio Salza

only two transactions; in particular, a cycle of length two can be detected just by piecing
together a distinct pair of local PCGs. Therefore it is simpler than PCG and more suitable
to a distributed implementation. Second, since the global timeout is used to detect only
global deadlocks involving more than two transactions (i.e. a strict minority), the selection
of the timeout value is far less critical than in the plain GT approach.

To show how the method works we give in the following subsection a sketch of a distri-
buted implementation.

4.1 HDD Distributed Implementation

In the algorithm we assume that the GTM; agents communicate by exchanging messages
over reliable; asynchronous and buffered channels and that transmission delays of messages
are unpredictable but finite. There is neither a shared-memory nor a common clock.

For clarity of exposition and without loss of generality we assume that each GTM;
can be the coordinator of one global transaction at a time. All the identifiers of global
transactions are assumed to be unique. This can be achieved by using a timestamp technique
[Lam78], e.g. utilizing as identifier of each global transaction the virtual time in which the
transaction was submitted. All messages are supposed to be labeled with the identifier of
the global transaction. Unread messages of committed/aborted transactions are removed
from the buffer by a background garbage process. Receive commands allow to screen out
messages in the buffer by specifying restrictions on the contents of the message [Geh84]. For
example receive deadlock (y) A y = item ignores all messages in the buffer until one of type
deadlock is received with its information component y equal to item.

Pseudo code sketching the behavior of GTM; is shown in Figure 3.

Information maintained by GTM;. Each GTM; agent maintains the following infor-
mation on the global transactions that detain a lock on some item or are waiting for some
item at site S;, and on each global transaction that was submitted at site S;, and is therefore
managed by GTM;:

A; = {T1,..,T,}: the set of all global transactions that are active at site S;, i.e.
lock at least one item at that site;

B; = {11, ..,T;n}: the set of all global transaction that are waiting on some item
at site S;;

S(Ty) = {S}, .., SF}: the set of all the sites SJ’»“ where the global transaction Ty,
coordinated by GTM;, is currently active.

For sake of simplicity in the following we omit the actions the GTM; has to do to atomically
update the sets A;, B; and S(T}).

Actions of GTM;. When a global transaction 7} is submitted to G'I'M;, which will then
be its coordinator, a timer is started, and if later the global timeout ¢ is reached before the

INRIA
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transaction is committed, then the transaction is aborted. Each time T}, requests an item
on a different site, say Sj, GTM; calls the procedure REQUEST (see Figure 3) which sends
the request message to agent GTM; (line 1). If the reply is the message lock (line 27), that
means the item was locked, and then the transaction may proceed (line 4). If the reply is the
message abort (line 29) that means that the subtransaction at site S; was aborted due to a
local deadlock , and hence T} is aborted as well (line 6). Finally if the reply is the message
wait then a local timeout tr is set (line 11), that has the same function than in PCG. If
tr expires before a lock message arrives (line 9) then the procedure to detect a potential
deadlock cycle of length is started (line 13).

Detection of potential deadlock cycles of length two. According to the definition of
PCG, and the one given above for A;, B; and S(T}), the condition for a potential global
deadlock of length two can be reformulated as follows: a transaction T} blocked in site S; is
setting a potential deadlock of length two, if there exists another transaction 7, such that
T, is blocked on some site where T, is active, and active on site S; (as shown in Figure
2). So the procedure works as follows: when T}, coordinated by GTM; requests an item at
site S; and the item is locked, then the set A; is piggibacked on the reply message wait
sent by S; (line 30). Then GTM; checks the predicate (T, € A;) A (B; NA; # 0), and if it
is true a potential deadlock involving S; and S; is detected (lines 13-14). Otherwise there
could still be a deadlock involving S; and a site S; € S(T};) — {i}, therefore a message
check-deadlock with A; piggibacking is sent to every GTM; with S € S(T,) — {i} (line
16). Each GTMj, then checks the predicate (By NA; # 0), and if it is true sends a deadlock
message to GTM; (line 24). On the other hand, if while waiting a deadlock message, the
lock message is received, the transaction may proceed (lines 18-19). For simplicity, in the
algorithm the deadlock resolution technique employed is the following: the transaction that
closes the cycle is aborted. More efficient deadlock resolution techniques could be envisaged
that, for example, abort the youngest transaction involved in the cycle by using its identifier
(timestamp).

Messages exchanged per waiting state and detection delay. The main advantage of
this distributed algorithm is that to maintain the structures A;, B; and S(7}) each GTM;
only needs information which is locally available, and hence no additional messages are
needed. Messages specifically sent to check for deadlock are sent only when a transaction
enters a waiting state, i.e. gets blocked (and the local timeout expires). So the detection cost
is in some way proportional to the degree of congestion, and to the probability of deadlock.
In the best case, when the site coordinating the global transaction is one of the two sites
involved in the potential deadlock, the number of messages exchanged per waiting state is
zero. In the worst case, it is 2(n — 2) where n is the number of sites in which the global
transaction is active, and assuming that a potential deadlock is detected in each site. As
for the detection delay in terms of number sequential messages exchanged, the algorithms
detects immediately a potential deadlock in the best case, and in 27" in the worst case, with
T being the average transmission delay.
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Figure 2: Potential deadlock of length two

5 The Simulation Model

In this and in the following section we present the results of a modeling study that we have
performed to compare the different global deadlock detection methods for multidatabase
systems discussed in the previous sections, i.e. the GT, PCG, and the new HDD we propose
in this paper. Moreover we also compare the performance of the above methods to the ideal
WFG method that we take as a reference since it allows instant detection and recovery from
deadlocks, and detects only real deadlocks.

In our simulation model the MDBS is represented as a set of Ng;;. identical LDBSs, each
managing the same number Ny, of items, and with the same transaction workload. More
precisely we have assumed a closed transaction workload, i.e. there are at each site two fixed
populations of Ng and Ny customers submitting respectively local and global transactions.
Each customer continuously generates transactions, waiting a think time t4p;n, between the
commit of a transaction and the submission of the next one. A closed workload model has
indeed clear advantages in a performance study, since the number of active transactions is
always limited by the number of customers, and therefore the system never gets to saturation.
The intensity of the workload can then be readily modulated by varying the number of
customers and/or the think time.

As for the transaction model, we have assumed that each global transaction accesses a
total of n{ ., items, from a subset of the sites in the multidatabase, and that the execution
of the transaction evolves as follows:

- a server is started on each site where the transaction requests a lock;

- locks are requested sequentially, by submitting each request to the corresponding server,
only after the previous lock has been granted;

INRIA
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procedure REQUEST (stem,GTM;): % item to lock, GTM; in which item is stored %

begin
1. send request(item) to GTM;;
2. select
3. receive lock
4. return(stem_locked);
5. receive abort
6. return(abort); % local deadlock %
7. receive wait(A;)
8. select
9. receive lock
10. return(stem_locked);
11. delay tr;
12. end
13. if (Tye AYA(BiNA; #0)A(i#j); % deadlock detection procedure %
14. then return(abort); % potential global deadlock %
15. else
16. for each w € S(Ty) — {j,i} send check_deadlock(item,A;) to GTM,;
17. select
18. receive lock % false global deadlock %
19. return(item_locked);
20. receive deadlock(y) A y = item
21. return(abort); % potential global deadlock %
22. end
23 end
end.
when check_deadlock(item,A;) arrives at GTM; from GTM:
begin
24. if (BinA; #0) then send deadlock(item) to GTMj;
end.
when request(item) arrives at GTM; from GTMg:
begin
25. forward the request to the server of the transaction whose coordinator is GTMy;
26. if the item has been locked;
27. then send lock to GTMg;
28. else if the transaction has been aborted by the LDBS;
29. then send abort to GTMy;
30. else send wait(A;) to GTMy;
end.

Figure 3: The HDD algorithm code (GTM; side)

RR n~ 2668



12 Roberto Baldoni, Silvio Salza

- each lock is a write lock with probability p,;

- when a lock is acquired, a time t?/o is spent for disk access (on the server site) and
transmission, and a time t¢py for processing (on the transaction site);

- ifeither a local or global (potential) deadlock is detected the global transaction is aborted
and restarted after a time #,.5¢;

- if the transaction completes successfully a processing time of ¢4, is spent on the tran-
saction site to complete the global commit phase.

Local transactions have a similar structure, but request their n! _, locks directly from
their LTM, and spend all their disk and processing time on their site.

In designing the simulator we adopted a fairly simple structure, since the main purpose
was not to provide a realistic representation of the MDBS, but instead to investigate on
deadlock and to compare different detection methods. Therefore the resources in the sites
were very schematically represented: all times were assumed to have exponential distribution,
and resource contention was explicitly modeled only for CPUs by assuming Processor Sharing
discipline. Disk and transmission times were all modeled as pure exponential delays.

6 Results of the experiments

A preliminary set of experiments was run to select appropriate values (intervals) for the
workload parameters to be used in the comparative analysis. A main outcome of this preli-
minary analysis was that considering local transaction workload was not necessary, since it
merely produces a background noise, and is not interesting for our specific purpose of perfor-
mance comparison. The values of workload parameters used in the main set of experiments
discussed below are shown in Table 1. The number of customers submitting global transac-
tions per site Ng has been used as a running parameter in some experiments to represent
the workload intensity. In the other experiments three values were considered to represent
different intensities: Ng=6 for light workload, Ng=8 for medium workload and Ng=10 for
heavy workload. As stated before, a symmetrical structure of the MDBS was considered,
in the sense that the same values of the parameters were used for all the sites in all the
experiments.
As for the performance metrics we considered two main indices:

- Tg: transaction response time, i.e. expected time between submission and commit of a
global transaction.

- A throughput, i.e. expected number of global transactions committed at each site per unit
of time.

The two indices represent respectively a measure of the quality of the service and the
productivity of the system.
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Parameter | Meaning Value
Ngite Number of sites 10
Nitem Number of items per site 200

Ng Number of global customers per site 6- 10
ny . Number of items locked by a transaction 15

Puw Probability of a write lock 50

ty Think time 10 sec
t oy Processing time per item 35 ms
t?/o Disk and transmission time per item 40 ms
td m Global commit time 100 ms
1, Global restart time 1 sec

Table 1: Workload Parameters

6.1 Distribution of deadlock cycle length

A first series of interesting results concerns the distribution of the length [ of deadlock cycles,
i.e. the number of items involved in a deadlock. This was analyzed for different workload
intensities and for different deadlock detection methods. The distributions are shown in
Figure 4 and 5 for the WFG and PCG methods respectively.

The behavior is quite different in the two cases. With WFG detection cycles tend to be
short for light workload (low deadlock probability), but as the intensity (and the deadlock
probability) increases the distribution tends to become uniform. Instead with PCG detection
the distribution appears to be largely insensitive to the workload intensity, and is very
skewed, with high probability for cycles of length two (about 90% for the workload profile
we considered). This suggests indeed that deadlock detection can be efficiently performed,
concentrating on potential cycles of length two, as actually is done by the HDD method we
propose.

This behavior can be explained as follows. Referring to the discussion in Section 3.1, in
the WFG the cycle length depends on the depth of the trees that form the graph. This in turn
depends on two different factors: the average utilization of the items which tends to increase
the depth of trees, and the deadlock probability which tends to prune the graph since it
leads to transaction abortions, and then to tree decomposition. For low item utilizations
(light workload) few transactions are waiting, and then the trees in the WFG are shallow,
and this is why the distribution is skewed on the left. When the workload intensity increases
the experiments showed that the item utilization increases much faster than the deadlock
probability and hence becomes the dominant factor, leading to deeper trees and to a flatter
distribution. In the case of light workload, an explanation to the predominance of short cycles
has been given in [BHG87] while an empirical confirm can be found in [Gray et al. 81].

In the PCG case the generation of the paths in the graph has a substantially similar
structure, but in this case the potential deadlock probability is the dominant factor, since
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Figure 5: Deadlock cycle length distribution with PCG detection
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Figure 6: Global transaction throughput versus workload intensity

for the same workload it is considerably higher than in the WFG case, as in the PCG the
contention is on the sites (a few units) and not on the items (several thousands). Increasing
the workload intensity does not change the behavior, since the very high potential deadlock
probability limits the number of active transactions (not in think or restart state), and
therefore sets a limit to the item utilization as well.

6.2 Response time and throughput

Results on throughput, shown in Figure 6, are in full agreement with the remarks we made
at the end of last section. That means increasing the workload intensity N¢ increases the
number of active transactions and then item utilization and the deadlock probability, and
finally the transaction response time. This brings the system toward saturation, but however
it can never get to it since we are considering a closed workload. Nevertheless, when N¢g goes
above a given threshold the throughput starts decreasing, with a behavior not surprisingly
similar to thrashing in paging systems.

The interesting remark is that both the PCG and the HDD methods show a more stable
behavior and get their maximum throughput for a higher workload intensity. This can be
readily explained by considering that the detection of potential deadlocks instead of real ones
leads to a larger number of restarts, and consequently for heavy load sets some kind of control
on the number of active transactions. It should be remarked that, as far as throughput is
concerned, both PCG and HDD perform better than the reference method.

For transaction response time we have run a set of experiments to compare in different
situations all four detection methods i.e. WFG, PCG, HDD and Global Timeout (GT). The
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Figure 7: Transaction response time and local timeout (medium workload)

problem has been mainly to determine the influence of two relevant parameters that appear
in the definition of the algorithms i.e. the local timeout ¢z and the global timeout ¢ (cfr.
Sect. 3 and 4).

Figures 7 and 8 show the influence of local timeout for medium and high workload inten-
sity. The pictures clearly show that small values of ¢t give the best performance. Therefore,
since the minimum is hard to determine for the system designer, a choice of tf = 0 is always
safe, and indeed we have assumed a null value for ¢z in all the other experiments. Another
interesting remark is that a reasonably low value of the global timeout in the HDD method
reduces the negative effect of high values of ¢{z. This can be clearly seen in Figure 8 by
comparing graphs a and b.

The main results of the performance study are summarized in Figures 9, 10 and 11,
where the transaction response time Tg is plotted, for all detection methods, against the
value of the global timeout ¢, for different workload intensities.

The pictures clearly show the main problem connected with GT detection, i.e. selecting
an appropriate value for t¢. In fact the performance of the GT method dramatically depends
on this parameter. Small values of ¢ cause too many restarts, due to apparent deadlocks,
and large values increase congestion since deadlocked transactions get stuck for a long time
before being restarted. Therefore the selection of values for ¢ either too small or too large
may lead to a considerable degradation in the response time. So there is no safe side to be
taken by the designer, and this makes the GT method definitely very critical to use, though
quite easy to implement.

Both WFG and PCG are of course independent from tg, and for light and medium
workloads have a very similar performance. Instead the performance of HDD is somewhat in
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Figure 9: Transaction response time and global timeout (light workload)
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Figure 10: Transaction response time and global timeout (medium workload)

between PCG and GT: for small values of 5 it has almost the same behavior than GT, but
for larger values of t¢ it behaves pretty much as PCG. That means HDD is still sensitive
to the value of tg but, differently from the GT case, there is a safe side since it is sufficient
to select tg large enough. As a rule of thumb from our experiments it was determined that
tg can be safely selected in a range between two and six times the expected transaction
response time.

As for the influence of the workload intensity, the remarks made when discussing the
throughput are confirmed. That is for light and medium workload (Figures 9 and 10) PCG
and HDD (with appropriate value of ¢¢) have pretty much the same performance than WFG,
but for heavy workload (Figure 11) the former performs considerably better. As for GT, with
heavy workload this method can only approach the performance of PCG and HDD, and only
for the optimum value of ¢4, which, as we pointed out earlier, may be very hard to select.

7 Conclusions

The aim of our study has been to gain a better understanding of the structure of the global
deadlock detection problem in multidatabase systems, and to compare, in a large variety of
workload situations, the performance of the global deadlock detection algorithms proposed in
the literature. A first relevant result of the study has been to show that if potential deadlocks
are detected, and regardless to the workload intensity, the distribution of the deadlock cycle
length becomes very skewed, with a very large majority of the cycles involving only two
sites. Therefore we propose a new approach, the Hybrid Deadlock Detection (HDD) that
concentrates on detecting such minimal cycles. This method is very suitable for a distributed
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Figure 11: Transaction response time and global timeout (heavy workload)

implementation, and actually a sketch of a distributed algorithm is presented in the paper.
Moreover, according to the results of our performance analysis, HDD compares quite well
with the other methods we considered, i.e. Global Timeout (GT), Potential Conflict Graph
(PCG), and Waits-For Graph, the latter being only an ideal reference method, since it cannot
be implemented in a MDBS.

The results of the performance analysis can be summarized as follows:

e the WFG method performs well especially for light workload, but as the workload
intensity increases it is outperformed by the methods based on weaker conditions; this
is because their higher rate of restart (due to apparent deadlocks) limits the number
of active transactions, thus postponing the thrashing effect due to saturation, as our
analysis of the throughput clearly shows; this behavior may seem surprising, as one
would expect that causing inappropriate restarts should degrade the performance;

e the GT method can be very easily implemented, but may be impractical to use since
the selection of the global timeout ¢ value is very critical, with an optimal value
that, for heavy workload, corresponds to a very deep minimum; values both smaller
and larger than the optimal value produce a severe performance degradation, therefore
there is no safe side to be taken for the designer;

e the PCG method has quite a good performance, and an appropriate selection of the
local timeout ¢; is not critical and allows to limit the number of restarts due to
apparent deadlocks; on the other hand it is quite complex to implement since it requires
to build a global state of the multidatabase, in order to trace cycles of any length;

RR n~ 2668



20

Roberto Baldoni, Silvio Salza

e the HDD method removes most of the implementation problems of PCG, because
only simpler structures and a limited number of messages are needed to trace cycles
of length two; moreover the selection of ¢ is far less critical than in GT since there is
a safe side; and for the performance our analysis shows that, for a reasonable choice of
tg, HDD has practically the same performance than PCG on a wide range of workload
conditions.
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