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Solutions réguliéres des équations
d’Hamilton-Jacobi du second ordre non linéaires

Résumé : Nous étudions une équation d’Hamilton-Jacobi stationnaire du second ordre
en dimension infinie avec une non-linéarité du premier ordre convexe. Nous utilisons les
propriétés du semi-groupe de transition associé au terme linéaire pour écrire I’équation
sous forme intégrale et nous démontrons l'existence, 'unicité et la régularité d’une solu-
tion. Nous prouvons aussi que la solution est limite ponctuelle de solutions classiques de
problémes approchés. Enfin, la solution est la fonction valeur du probléme de controle
stochastique optimal associé. Nous donnons des exemples.

Mots-clé : équations d’Hamilton-Jacobi, contréle optimal stochastique, programmation
dynamique, formule de 1t6, dimension infinie, opérateurs maximaux monotones.
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1 Introduction

We study the following second-order Hamilton-Jacobi equation:
1
Au(x) = ETr[Qum(;v)]—l— < Az + F(x),uz(z) > —H(uz(z))+ ¢(x), v € X (1)

where X is a separable Hilbert space, A is the infinitesimal generator of a strongly conti-
nuous semigroup of negative type on X, () is a nonnegative self-adjoint operator on X
which is not necessarily nuclear, F'is a bounded Lipschitz continuous function which takes
its values in X and finally H is a Lipschitz continuous real valued function.

For all A > 0 and all ¢ uniformly continuous and bounded real valued function, we
define the mild solution of (1) as the solution of the integral equation

u(z) = /0+°o eNP[< F(),up > —Hluy) + ) (2)dt (2)

where {P;; t > 0} is the Ornstein-Uhlenbeck semigroup associated to the parabolic equa-
tion

{ %ﬁ = %Tr[va]—l— < Az, v, >

v(0) = .

The properties of the semigroup {F;; t > 0}, when it acts on the space of uniformly
continuous and bounded functions on X, have been studied, for instance, in [16], [6], [7]
and [18]. By a fixed point argument, we first prove, under the so-called null controllability
assumption which links @) and A, existence and uniqueness of a solution of (2) in the
Banach space of uniformly continuous Fréchet differentiable functions for large enough
A > 0. Besides, u is the resolvent of a unique accretive operator whose resolvent set
contains (0,+o0c). This implies that (1) has a mild solution for all A > 0 and all ¥.
Moreover, if 1 is Fréchet-differentiable, u is twice differentiable.

Following [7] and [18], we prove that the mild solution of (1) is the pointwise limit of
a uniformly bounded sequence of classical solutions of equations of type (1) (i.e. with a
different “1»”) which approximate (1) in a suitable sense.

Finally, when H is given by

H(p) = |S|1§]>%{< z,p > —h(2)}, (3)

where h is a convex Ls.c. function on {|z| < R} for some R > 0, then the mild solution of
(1) is the value function of the following optimal stochastic control problem: the dynamic
is the mild solution of the stochastic differential equation

{ dij(f) = (Ay(s) + F(y(s)) — 2(s))ds + VQdW (), s > 0
y(0) ==

RR n2649



4 Fausto Gozzi ana Elisabeth Rouy

where the control z lies in the space M, (0,400; X) of all stochastic processes which are
square integrable and adapted to the white noise W; and the value function is the minimal
cost defined by

V=t { [T MG + bl())ds)

ZEMSV(O,-FOO;X)
2| <R

The proof is based on 1t6’s formula. When H is sufficiently smooth, there exist an
optimal control z* and an optimal trajectory y* i.e. processes which satisfy

+oco
Vi) = [ e M=) + vy (s)lds
The optimal control is given by the feedback formula:

2"(s) = Hy(uz(y™(s)))

and the optimal trajectory is the mild solution of the closed loop equation:

{ d;zfé)S) = (Ay(s) + F(y(s)) — Ho(us(y*(s))))ds + VQdW (s), s >0
Yy = z.

We observe that, as in [4], [18] and in [19], our assumptions cover the case when A is
the Laplace operator in a bounded domain in IRY (N < 3) with Dirichlet or Neumann
boundary conditions. If N = 1 we can take () = I, while for N = 2.3 we have to deal
with an appropriate compact operator ). Similarly (see §6) we can cover the case when
A is the bi-Laplacian in dimension N < 7 (N < 3 if we take Q = I). Moreover, in the
finite dimensional case, our results state existence and uniqueness of regular solutions in
the uniformly elliptic case (see Remark 2.6-(iii)).

Several results on second order Hamilton-Jacobi equations are obtained by the ap-
proach of viscosity solutions. For a presentation of the argument in the finite dimensional
case see [10], [17] and the references quoted therein. For the infinite dimensional case, see
[23] and [28]. In particular, in [28] the author states existence and uniqueness of viscosity
solutions (which are a priori nondifferentiable) for a wide class of second order partial
differential equations. When @) is nuclear equation (1) falls into this class.

Other papers concerning more regular solutions of second order Hamilton-Jacobi equa-
tions in infinite dimensions are [2], [20], [13], [4], [3], [18] and [19] for the evolution case
and [9] for the stationary case. In particular the last paper studies (1) in the space of
functions that are square integrable on X with respect to the invariant measure of the
Ornstein-Uhlenbeck process (see [16] for the properties of such measure).

The plan of the paper is the following. Section 2 is dedicated to notations and preli-
minary results on the linear case. In Section 3 we prove existence and uniqueness of the

INRIA



Regular solutions of second-order H.-J. equations )

mild solution of (1). The purpose of Section 4 is to prove that mild solutions are limit of
classical solutions. In Section 5 we prove that the mild solution of (1) is the value function
of the optimal control problem defined above as soon as (3) holds. Finally, in Section 6
we give two examples.

2 Preliminaries

2.1 Notations

Let X and Y be two separable Hilbert spaces endowed with the scalar products < -,- >
and < -,- >y and the norms |- | and |- |y.

We denote by Cy(X,Y) the Banach space of all functions ¢ : X — Y which are
uniformly continuous and bounded on X and by || - || the usual norm on C;(X,Y") defined
by

[l = sup |¢(z)ly-
rz€X

For k € IN, we denote by CF(X,Y) the set of all functions of Cy(X,Y) whose all
Fréchet derivatives up to the order k& are uniformly continuous and bounded on X. It is
a Banach space when endowed with the norm

k
. h
Il = 3 sup |D ¢ ()],

h=07%

We also denote by C%'(X,Y") the space of all Lipschitz continuous functions from X
to Y; we define the semi-norm

p(x) — oy
|me=mm{Lil——iﬂ;ayex;x#y}

|z —y]
and we set

CM(X)Y) = {L,o € C%'(X,Y) Fréchet-differentiable s.t. || Dgllo1 < oo}

If Y = IR then we shall write Cy(X), CF(X) and C*(X) instead of Cy(X,IR),
C{(X,R) and C*!(X,IR).

Finally, we introduce the space C{(X) for a € (0,1) which is the Banach space of
Holder continuous and bounded functions. Similarly, C;7*(X) is the space of uniformly
continuous bounded Fréchet-differentiable functions with Hélder continuous bounded de-
rivative. We denote by ||¢||o the Holderian norm of ¢ € Cy(X).

RR n2649



6 Fausto Gozz and Elisabeth Rouy

2.2 The linear problem

From now on, we shall assume the following
Hypothesis 2.1

(i) A is the infinitesimal generator of a strongly continuous semigroup of negative type
¢ on X. For simplicity we also assume that ||| < 1 for everyt > 0.

(i) Q is a bounded self-adjoint nonnegative operator on X.

(ttt) W is a cylindrical Wiener process which takes its values in X and is defined on a

probability space (0, F,P).

Let then @Q; be, for all ¢ > 0, the operator defined by

¢
.
Q: =/ eSAQGSA ds
0
and assume

Hypothesis 2.2
Tr Qy < +oo, ¥t >0 (4)

Im e C Im Q}/%, Wt > 0. (5)

As it is described in [16] Ch. 9 and in [7] (see also [15]), these assumptions guarantee
that the transition semigroup (F;);>o defined on Cy(X) by Pip(z) = E[p(Z(t, z))] for all
t >0, where Z(t,z) is given by

Z(t,x) = + /Ot e(t_s)A\/édW(s),

is infinitely Fréchet-differentiable and is the solution in a mild sense of the Kolmogorov
equation

{ vy = 51r[Ques|+ < Az,v, >, t >0 (6)
(

0,:) = .

leH

v
Remark 2.3

(i) From (5) and the closed graph theorem it follows that for every ¢ > 0, the operator
I'(t) = Q;l/QetA is well defined and bounded. This yields, together with (4) that for
every t > 0 the operator ¢4 = %/QF(t) is Hilbert-Schmidt on X.

(ii) We recall (see [16]) that (5) is equivalent to the null controllability of the determi-
nistic system

£(t) = AL() +/Q=(t), £(0) = &.

INRIA



Regular solutions of second-order H.-J. equations 7

Note that the null controllability assumption is crucial to guarantee the regularity,
with respect to & of the solution of (6). In the finite dimensional case it reduces to
the Hormander hypoellipticity condition

Q: >0, Vi>0
(see [21], [14], [26]). |
We have the following result (see e.g. [16] or [18]).

Proposition 2.4 Assume that Hypotheses 2.1 and 2.2 hold true. Then, if ¢ € Cy(X),
Pip € C°(X) and we have the following estimates

[Pl < il
[1D:Pep|| < [T@)llell 5 V>0, Vo e Cy(X),
[1Daw Frpll < L@

1D, Pecl] < il 1
V>0, Vo e CI(X
{ 1DoPrgl] < [T e # € GX)

for some positive constant C'.

We shall also make the following assumption on I'(¢):

Hypothesis 2.5
Jeg > 0 such that |T(t)||'T*° is locally integrable at 0.
Remark 2.6

(i) It can be proven that ¢t — ||I'(¢)|| is non increasing and, consequently, that ||I'(¢)]|
is bounded for ¢ large enough and

a(A) = /0+°o e T(1)||dt < +oc (1)

+oo
/ =MD ()0 dt < +o00
0

for all A > 0 and
a(A) = 0 as A — +oo. (8)

(ii) Assumption 2.5 is satisfied if and only if there exist C > 0, to > 0 and 3 € (0,1)
such that

C
ID@ < 5. for 0 <t < to.

(iii) When the dimension of X is finite, then Hypothesis 2.5 reduces to assume that the
operator () is invertible i.e. the uniform ellipticity condition (see [27]). |

RR n2649



3 Fausto Gozz and Elisabeth Rouy

3 Resolution of the Hamilton-Jacobi equation

In this section, we are considering general nonlinear second-order Hamilton-Jacobi equa-
tions of the form

1
Au = §Tr[Qum]—|— <Az + F(z),up > —H(uz) + ¢, v € X (9)

under the Hypotheses 2.1, 2.2, 2.5 and
Hypothesis 3.1 on H and F.
(i) H: X — R is a Lipschitz continuous convex function, of Lipschitz constant K
(it) F: X — X is a Lipschitz continuous and bounded function of Lipschitz constant L.

We want to solve this equation for any A > 0 and any ¢ € C,(X).

We are going to define a class of solutions in C}(X) for which we can prove existence
and uniqueness for any A > 0 and any ¢ € C;(X). This will also imply that the solutions
of (9) are the resolvents of a nonlinear m-dissipative operator defined on a domain included
in C{(X). We shall then see in the next sections that the notion of solutions introduced
here is coherent with both the notion of classical solutions and value functions of optimal
stochastic control problems.

3.1 Mild solutions

We define here a notion of mild solutions which satisfy an integral equation.

Definition 3.2 Let A be a positive constant and ¢ € Cy(X). We shall say that u € C}(X)
is a mild solution of (9) if and only if u satisfies the following integral equation for all
zeX:

+o0
u(z) :/0 e NP+ < Fyup > —H(up)](2)dt. (10)
We shall then denote F\(v) = {u € C}(X) s.t. (10) holds}.

Then we have the following theorem which gives existence, uniqueness and regularity of
mild solutions of (9) for A > 0 large enough.

Theorem 3.3 Assume that Hypotheses 2.1, 2.2, 2.5 and 3.1 hold. Then there exists a
Ao > 0 such that:

(i) for all A\ > X and for all b € Cy(X), (9) has a unique mild solution F\(v) in Cp(X)
(ii) for all X > Xo, if ¥ € C4(X) then F\(¢0) € C3(X)

INRIA
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(ti7) for all X > A and all ¢, ¢ € Cy(X), we have
1
13 (¢) = (@)l = Tl = ¥ (11)

(tv) forall X, u > Ao, for all v € Cy(X), the following so-called identity of the resolvents
holds:

() = Fu(t + (p = A) FA())). (12)

In order to prove this theorem, we shall introduce some notations. For all A > 0, we
call T\ the linear operator defined on Cy(X) by

Tui(e) = | T e MPa(a)dt, Vo € X

and T\ the nonlinear operator defined on C}(X) by
TYu(z) = Ta[b+ < Fuy > —H(u,)|(z), Vz € X and ¢ € Cy(X).

Let us remark that, since (FP;)is0 is a contraction semigroup, Th¢)(x) and therefore
T;pu(r) are well defined. Moreover, (10) is equivalent to u(z) = T;/ju(x), so that u € C}(X)
is a mild solution of (9) if and only if it is a fixed point of T;p.

Proposition 3.4 For all A > 0 and for all » € Cy(X), the following statements hold:
(i) Tyip € CL(X) and
Tl < 5l
I(I30)]l < a(M)[[¥
(ii) if ¥ € CH(X), then Typ € C}(X) and

1
I(T30)za|| < a(A)[[ebe||

Proof. It is obvious by using Proposition 2.4 and (7). [ |

Proposition 3.5 For all A > 0, we have the following statements:
(1) if v € Cy(X) then T;b maps CL(X) into itself.

(ii) for all u, v € C{(X),
v v 1 .
17w = Tvll < (5 + aQO))(IF]| + K)Jus — val,

and thus there exists a A\g > 0 such that, for all X > Ag and for all v € Cy(X), T;p is a
contraction in C}(X).

RR n2649



Fausto Gozz and Elisabeth Rouy

Proof. The first point is a direct consequence of Proposition 3.4. The second one relies
on the fact that a()) is a non-increasing function and that (8) holds. [ |

Proof of Theorem 3.3-(i). This last proposition proves the first item of our theorem
since for all A > Ag and for all ¢ € Cy(X), T/{p has a unique fixed point and thus (9) a
unique mild solution. [ |

In order to prove the second point, we shall proceed with interpolation and bootstrap
methods.

Recall that ¢g > 0 is a parameter defined in Hypothesis 2.5 such that the Laplace
transform of ¢ — ||T'(¢)]|**= is well defined (see Remark 2.6-(i)).

Lemma 3.6 For any A\ > 0, T\ has the following reqularizing effects:
(i) If o € Cy(X) then Thp € C;T(X).
(it) If o € CF(X) for some a € [0,1) then Typ € Cytote=o(X).
(iii) If p € C,7°(X) then Ty € C3(X).

Proof. By following, for instance, [24] (see also the references quoted therein), we can
deduce, from the following estimates:

I(Peo)elh < LTI 2]
, VoeCyX), for0 <t <t
{ I(Po).ll < IT@)l ? € ClX) 0

for some positive constant Cy and some ¢y > 0, that for all § € (0, 1) and for all ¢ € C;(X),
[(Pep)alls < CollILOI* Nlell, for 0 <t < to,

for some positive constant Cy, since the interpolation space between Cy(X) and C}(X) is
CY(X) (see [5]). By choosing 6 = &g, we get the first item of our lemma by multiplying

this last inequality by e* and by integrating between 0 and +oc.

Now, we know that

Y e Cb(X) = Ty € Cz-l—EO(X)
o€ CHX) = Thy € C2(X).

Again, by interpolating, we have, for all o € (0, 1),
p € C(X) = Thp € Oy F)lmat2e )

and (ii) is proven. Finally, let ¢ € C}(X); we have

{ [(Fep)zall < Coll L[]
I(Pep)ezl < CHIT@ NNl

INRIA
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thus, for all § € (0, 1), we have
1(Pep)aall < CollL@ON*Nlelle, ¥ @ € CH(X), ¥t > 0.
By choosing, § = 1 — &¢, we get, for all ¢ € C;7™(X),

[(Pep)aell < Creo Pl 1-e0

and we conclude as previously in order to get (ii¢), which completes the proof of our
lemma. [ |

Proof of Theorem 3.3-(ii). Now, let ) be in C}(X) and A > Xg. Then, ¢ belongs
to C2(X) for all a € [0,1]. Moreover if u € C;1*(X) for some a € [0,1), since ¥+ <
Fouz, > —H(uz) € C(X) and v = T\ [+ < F,u, > —H(u,)], we have by Lemma 3.6- (ii)
u € Cyteote=e= (X)) By a bootstrap argument, we prove that u belongs to C;t*"(X) for
all n € IN, where the sequence (a,),en is defined by

Qg — 0
Opt1 = €o + o — €00y,

We check easily that (o, ).en converges to 1 as n goes to infinity. Therefore, we can prove
that v € C;°(X), which yields, by the third point of the previous lemma, u € CZ(X)
and the second item of the theorem is proven. [ |

Proof of Theorem 3.3-(iv). We now prove (12). Let A, p > X, ¢ € Cy(X). Recall
that 7T satisfies
T,\ = Tuo[l + (ﬂ — )\)T/\]

If we set u = F\(v), the identity (12) is equivalent to
Tf+(“_’\)“('u) = u.
But

IYHN) = Tyl (n— Nt < P, > —H(u)
o+ < Frup > —H(u,) + (5 — VT[4 < Fyu, > —H(u,))
= Th\[v+ < Fiuz > —H(uz)] = u

and the proof of (12) is complete. [ |

We shall first prove part (7ii) of Theorem 3.3 for ¢, v € C{(X). Then it will be easy
to extend (11) to functions in Cy(X) by using the following lemma:

Lemma 3.7 Assume that (11) holds for all b, € C}(X). Then it also holds for v, ¢ €
Cy(X).

RR n2649
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Proof. Let A > Xy and ¢, ¢ € Cy(X). Then there exist two sequences (@, ),en and
(¥n)nen of C3(X) which converge respectively towards ¢ and v in C,(X) (see [22] and
[25]. Let

u= F/\(I/))v Un = F/\(I/)n)v v= F/\(S‘Q)v Un = F/\(S‘Qn)a

for all n € IN. Then, for all n € IN, we have
it = o)l <l = wall + 1w = all + 100 = ]
But we have, for instance,
e = wnlly < 1 Tu = T [y + 1TV w0 = T3 a1
and, by using Propositions 3.4 and 3.5, it yields

lw = wnlly < 7llw = walls + 7'l = ol

where |
7=+ al), y=A(F+ K) <1
Thus,
,_y/

Ju = vl < 2l = v
and

7 1

= ol < 12 (0 = 6+ llew = 1) + =l

since ,, and ¥, belong to C}(X). Thus, when n goes to infinity, we have

1
lu—oll < £l — .
|

Proof of Theorem 3.3-(ii7) in C{(X). We now turn back to the case when ¢ and ¢
belong to C}(X). Let A > A\g. We set u = F\(¢)) and v = F\(p). It is clear that if we
try to compute directly ||u — v||, we don’t get the desired estimation since T;/j and Ty are
nonlinear. Thus, we have to approximate the nonlinear term. This is the aim of the next
lemma that we shall prove later on.

Lemma 3.8 There exists a sequence of operators (N, ).>o which satisfies:
(1) for all wy, wy € Cy(X),

HNE'wl - NE‘LUQH S le — ’LUQH, Ve 2 0. (13)

INRIA
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(ii) for all w € C}(X),

Now —
lim | =22 < Flw, > +H(w,)| = 0. (14)

e—=0 &

We set, for all ¢ > 0 and all w € C}(X),

Ns‘ Y — W
I/JE(LU) = M_ < F7 Wy > ‘|‘H(wm)
&€

We first notice that, for ¢ > 0, we have, by setting p = A 4 1 /e in (12),
1 1
W= s+ ) = T+ St < Py > —H ()

and an equivalent identity for v. It yields

1
u—v=Tyu[ =+ -(New = Nov) = ¢o(u) + ¢(v)]

and thus, by using (13),
1 1
o= oll < (1 =l + = o + ol + (o)1)
Az €
This implies
Mu = vl <Y =@l + [[(w)]| + [¥e(v)]]-
By letting € go to 0 and by using (14), we get (11). L

Now, we turn back to the proof of Lemma 3.8. Roughly speaking, (/V.).>o has to be
the semigroup associated to the equation

{ W, =< F,W, > —H(W,)
W(0)=w

which is a time-dependent first-order Hamilton-Jacobi equation whose solution should be
the value function of the following optimal control problem: the dynamic of the system
is described by the equation

{w@szw»—m¢s>o
ym(O) = z.

The controls « are taken in the set

A = {aeWh((0,+x); X) s.t. |a(s)] < M Vs € [0+, )
and |&(s)] <1 ae. s € (0,+00)}

RR n2649
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where M > 0 is a constant that we will precise later. The cost function is given by

t

J(t,0) = [ glals)ds + wly(1)),

0

where the function ¢ is defined on X by

g(a) = |s|1£4{< a,p > —H(p)}

and the value function is

Wiz, t)= inf J(z,t, ).

a€A

We are not going to prove this result because we only use it as an heuristic but one
can see [11] for precise results on first-order Hamilton-Jacobi equations and deterministic
control.

Now, for w € Cy(X), we set Now = W(.,¢) and we prove that it satisfies the properties
listed in Lemma 3.8.

Proof of lemma 3.8. Let wy, wy € Cy(X). For all ¢ > 0 and for all € X, we have

[News(z) = News(z)] < sup,e s {wi(yz(€)) — walyz(e))}

< lwr = w.

In order to prove (14), we first admit the following lemma.

Lemma 3.9 [f M > K then, for all p € X such that |p| < M, we have

H(p) = |S|1§;4{< pa > —g(a)}.

Now, let u € C#(X) and chose a constant M > max{||u.||, K}. Let ¢ >0 and z € X.
It is clear that the value function is limited by the infimum over all constant controls of
the cost function. And by using Lemma 3.9, we have

u(yz(¢)) - 'u(fﬂ)}

e

Ye(u)(z) < inf {g(a)+

la| <M

— inf {< F(z) — a,u.(z) > +g(a)}

|| <M
u(y.(e)) — u(;l;)_ Nt
= EE?W{ - < F(x) ,z()>}.

We write

u(e(e) — u(x) = [ < Plye(r) = oy ualye(r) > dr

INRIA
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and we get

ve)(@) < swp {2 1€ Fluln) - a,uaualr) > = < F(2) — @, uale) Jdr )

aj<Mm L€

< sup {2 [1< Flyu(r) — Fl@), unlya(r)) > + < F(2) — a0 ualya(7)) — wala) >Jdr |
laj<mr (e Jo

But, since, for all 7 € (0,¢),
|y2(7) — x| = [y=(7) — y=(0)] < (|[F']| + M) T,
we have

e < L |FIl+ M =
belw)(@) < < [l LEN+ M) rdr + 22 [ sl (19 + M) rdr

and finally, .
Ye(u)(@) < ([[F]] + M) (ual| L + el (1] + M)) 5.

We now deal with the converse inequality. For all 6 > 0, there exists as € A (which
in fact depends also on ¢ and z) such that

Nou(e) < [ glas(s))ds + u(y(e)) < Nouz) + 8

where y’ is the state which corresponds to as.
Therefore

¢¢M@2é£}mwm@+UMk”_wﬂ—<F@mqm>+m%@»—f

But H(u.(z)) >< as(0),uz(x) > —g(as(0)), thus
(y2(e)) — u(z)

3

delu)(e) 2 2 ["glas()ds +

+ < as(0) — F(x),us(x) > —g(as(0)) —

L[ (otasts)) — glon(pys + D = 0)
+ < as(0) — Fz),up(z) > - L.

o
3

Y

Since
|g(0&) _g(ﬁ)| S sup < O*/_Bap >§ M|a_6| Vaa 6 € X7
lp|<M
we have
1 re M e M e M
E/o (9(as(s)) — g(as(0)))ds = —?/0 |as(s) — as(0)|ds > —?/0 sds = _75.
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We write .
u(l(e) —ule) = [ < Fir) = as(r) us(yi(r)) > drs
then

'“(yg(g)i ~ ) L as(0) — (o), ual(z) >=

! / < Fyi(r) — F2) + as(0) — as(r), ua(yl(r)) > dr

—I-E/: < F(z) - oz(g(()),uz(yi(r)) — ug(x) > dr
z—g[wmuwm+Mwuwm—é[mm+Mwwmwm+Mww
> = (luall (L (IF] + M) + 1) + [ || (1] + M)?) 5.
Finally,

N
[e(w) ()] < (M + [Jugll (L (|1F]| + M) + 1) + [|uss || (| ]| + M)?) §+g, Vee X, ¥Vé6>0

therefore

| ™

()l < (M + lluall (L (IF ]|+ M) + 1) + luaal| (1F]] + M)?)

<

[N]

and goes to 0 as € goes to 0. |

Proof of lemma 3.9 Let G be defined on X by

G(p) = |S|g1;4{< p,a> —g(a)}

and let pg € X be such that |pg| < M. Then

G(po) = sup inf {<py—p,a>—+H(p)} < H(po)
la|<M lpI<M

by choosing p = py. Moreover,

G(po) = H(po) + sup inf {< po—p,a>+H(p)— H(po)}.
loe|<M IpISM

Since H is convex, we have H(p) — H(po) >< qo,p — po > for all ¢ in the subdifferential
of H at pg. Thus

G(po) > H(po) + sup inf]’w{<po—p,oz>—|-<qo,p—po >}

la|<M IPI<
and
G(po) = H(po)
by choosing a = g, which is possible since |go| < K < M. [ |
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3.2 Characterization of the nonlinear operator

In order to deduce, from the preceding section, the existence (and uniqueness) of a nonli-
near operator defined on a domain of Cy(X), which generates the solution of (9), we shall
use the results contained in [12].

We proved that there exists a Ag > 0 such that the application F defined by F(\) = F)
for all A > Ag takes its values in the set of the Lipschitz-continuous functions defined on

Cy(X), since

1
[F\y — Fhe|| < XW) — |l VA= Ao, Vb, € Gy(X). (15)
Moreover, this application satisfies, for all A\, u > Ag
Fx=Foo(l+4 (p—MF)). (16)

Thus, there exists a unique operator B defined on D(B) C C}(X) and which takes its
values in Cy( X)) such that F\ = R(\,B) for all A > Ag. In particular, the resolvent set of
B, say p(B), contains [Ag, +00).

This implies that B is an accretive operator and that p(B) contains (0, +00). Moreover
the properties of F, namely (15) and (16), hold for R(-,B), for any A, x> 0.

Since the image of Cy(X) by R(X, B) is constant, we define D(B) = R(A, B)Cy(X) for
any A > 0 and B is defined by Bu = Au — @ for some ¢ € C;(X).

Again, we can show that if v» € C{(X) then R(\,B)y € C}(X), even for small A > 0.

Indeed we have the following proposition.

Proposition 3.10 For all A > 0, for all ¥ E Co(X), R(A,B)Y is a fized point of Td’
Conversely if u € C}(X) is a fized point ofT then uw = R(A, B)i.

Proof. Recall that, for all A > 0, Fy(¢) is the set of all fixed points of T;b. Let u =
R(X, B)Y. Then u= R(A + Ao, B)(¢ 4+ Aou) = Fry, (¢ + Aou) which is the fixed point of
T;TAAOO“. Thus

v = Thir ¥+ dout < Fouy, > —H(ug)]
ThY + dout < Fyuz > —H(ug) + (A — X — Xo)u]
= T+ < Fyu, > —H(u,)] = T (u),

and u € F)\(¢).
Conversely, if u is a fixed point of T;p, then u € F\(¢). We can prove, as we did for
Theorem 3.3-(iv), that this implies u € F\;), (¥ + Aou). But
F/\+/\0(77Z) + )‘Ou) = R()‘ + )‘07 B)(Ivb + )‘Ou) = R()‘7 B);/J
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and the proof is complete. [ |

We summarize those results in the

Theorem 3.11 VA > 0, Vb € Cy(X), there exists a unique u € C{(X) mild solution of
(9). Moreover, if » € C}(X), then u € C}(X).

Proof. The existence and uniqueness of the mild solution of (9) follows directly from
the results stated above. The rest is straightforward since R(\, B)v is a fixed point of T/{p
and since we never used the fact that A\ was grater than Ag in the proof of part (ii) of
Theorem 3.3 except to deduce from it that some fixed point exists. [ |

We continue to investigate the properties of B.

Proposition 3.12 The operator B is monovalued.

Proof. Indeed, let v € D(B) and ¢, ¥ € Bu. Then, for all A > 0, Au — ¢ and Au — ¢
belong to Au — Bu, i.e. v = R(A\,B)(Au — ) = R(A, B)(Au — ¢). By using Proposition
3.10, it yields

ThAdu— v+ < Fiuy > —H(ug)] = Th[Au — o+ < Fou, > —H(uy)]

and thus we have

Thvp(x) =Th(x), VA >0 and Vo € X.

By using a well-known property of the Laplace transform, we deduce that for all z € X,
Pip(x) = Pip(z) for all t > 0. Now, (P;)s>o is not a strongly continuous semigroup but
however P;p(x) (for instance) converges, for each fixed x to ¢(x) as t goes to 0 and thus

e(z) = (z) for all & € X, which concludes the proof. [ |

Finally, to conclude this section, we caracterize the operator B thanks to the linear
operator £ which has been studied previously (see e.g. [16] ch. 9, [6] and [7]) and which
consists of the linear part of the Hamilton-Jacobi equation.

Theorem 3.13 The following assertions hold:
(i) D(B) = D(£)
(it) B=L+ < F,D,- > —H(D,").
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Proof. We can define D(L) as the set of all functions T\t for ¢» € Cy(X) and for an
arbitrary A > 0, so that D(L) is a subset of C}(X). Now, let v € D(B) and ¥ = Au — Bu.
Then v € CH(X), u=T\[v+ < F,u, > —H(u,)] and thus v € D(L).

Conversely, let © € D(L) and v = T\t for some ¥ € Cy(X). Then

w="T[— < Fouy > +H(u)+ < Fyug > —H(uy)] = TV <Fe>T0) )

and thus u € D(B).
Now, if u € D(B), let v» = Bu. We have, for a positive A > 0, Au — ¥» = Au — Bu, i.e.

w=T"""(u) = Th[M— ¥+ < Fyu, > —H(u,)]

thus
A= Lu = — Y+ < Fuy, > —H(uy)
and
= Lut+ < Fyuy, > —H(uy)
which concludes the proof. [ |

4 Strong solutions

Now we apply some results contained in [7] about Cauchy problems associated to weakly
continuous semigroups to show that the mild solutions of (9) can be approximated by
classical solutions. We first recall the definition of the K-convergence introduced in [7].

Definition 4.1
(i) A sequence (¢,) C Co(X,Y) is said to be K-convergent to ¢ € Cy(X,Y) if

sup [|¢nlo < +o0
nelN

lim sup [p,(z) — p(z)|y =0

n—+oo €K

for every compact set K C X. In this case we shall write

v =K-lim ¢,.

n——+oo

(i) A linear operator A : D(A) C Cy(X) — Cy(X) is said to be K-closed if, given a
sequence (@), C D(A) such that

n——+oo

K- lim On = @ and IC-nllgl—noo AS‘QTL =1,

we have

¢ € D(A) and Ap =1).
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(tt7) Let A : D(A) C Cp(X) = Co(X) and C : D(C) C Co(X) — Co(X) be two linear
operators; assume that A C C and that C is K-closed. We say that C s the K-

closure of A, and we write C = A", if for cvery ¢ € D(C) there exists a sequence

n—+00
(17)
K-lim Ap, = Cep.

n—+oo

Now we recall that, the family of operators {P,};5¢ is a weakly continuous semigroup
on Cy(X) (see [6] and [7]). Let £ be the infinitesimal generator of {F;; ¢t > 0}. Following

[7] we define the operator Ly as follows:

D(Lo) = {ﬁ,o € CX(X) : Trpwe € Cy(X), Ay € Cy(X, X);
r— (x, A%p(2)) € Cb(X)}

Lop = 3Tr[Qpu] + (2, A%¢y).
It is possible to see that D(Ly), endowed with the norm

def

Inll« = 1l + 1A ]l + 1 < - A% > || + sup I Trnz: ()]

is a Banach space. Moreover the following result holds.
Proposition 4.2 Assume that Hypothesis 2.1, 2.2, 2.5 hold true. Then
Lo =L. (18)

Moreover for every u € D(L) there exists a sequence (uy), C D(Lgy) such that (17) is
satisfied and
K-lm vy, = ug. (19)

n—+oo

Proof. The proof of (18) is contained in [7] §5. We prove only (19). Let u € D(L)
and let ©» = (A — L)u € Cy(X). Then there exists a sequence (¢, ),en C D(Ly) such that

Uy, £>g/) as n — 4o0o. We set

+ oo
un(z) = RO\, L)ou(z) = / e Py (2)dt.
0
The sequence (uy,), lies in D(Ly) since
R(X, L)D(Lo) C D(Lo)
and satisfies (17) (see [7]). Moreover, by differentiating we can write
+co
wna() = [ €N DLP ()t
0
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and, by using the explicit formula for the derivative D, P, (see e.g. [16] p.264) we easily
obtain that for every ¢t > 0

D, P, X D, P as n — o0
and
1Dz Pipn]| < ClIT ()]
for a positive constant ' independent of n. Then the claim follows easily by applying the
Dominated Convergence Theorem and the integrability of the map ¢t — ||I'(¢)]|. |

By reasoning as in [18] we give the following definitions for solutions of the Hamilton-
Jacobi equation (9)

Definition 4.3 A function u : X — IR is a strict solution of the equation (9) ifu € D(Ly)
and satisfies (9).

Definition 4.4 A function u € C}(X) is a K-strong solution of equation (9) if there exist
two sequences {u,} C D(Lo) and {t,} C Co(X) such that for everyn € IN, u, is a strict
solution of the problem:

and moreover, forn — 400
= ¢
u, - (21)
Unz — Us.

Now we apply Proposition 4.2 to equation (9) to obtain
Theorem 4.5 Assume that Hypotheses 2.1, 2.2, 2.5 and 3.1 hold true and let v € C}(X).
Then
(i) If u is a strict solution of (9). then it is also a mild solution
(it) If u is a mild solution of (9) and uw € D(Ly) then u is also a strict solution.
(tt7) u is @ mild solution of (9) if and only if it is a K-strong solution.

Proof. Statement (i) follows immediately from the definitions, while (ii) is a consequence
of (18). We prove (iii) starting by the “only if” part.

Let v € Cy(X). Let u = R(A B)y be the mild solution of (9). Then u € D(L)
and by Proposition 4.2, there exists a sequence (uy,), C D(Ly) satisfying (17) and (19).
Moreover, by setting
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Yn = Ay — Loy, + H(Upz)— < Fltn >
we have that v, € Cy(X) and (20), (21) are satisfied. This concludes the “only if” part.

To prove the “if” part, let u be a K-strong solution and let {u,},en be the approxi-
mating sequence as in Definition 4.4. Then for every n € IN, u,, satisfies

EOun = )‘un_ < F, Unz > +H(un1‘) - I7Z)TL

and by (21) the right hand side K-converges to Au— < F,u, > +H(u;) — . By Propo-
sition 4.2, it follows that v € D(L) and

Lu=u— < Fyuy, > +H(uz) — ¢

which gives the claim. [ |

5 Application to a control problem
We consider a stochastic system governed by the state equation
t
y(t) = ot [ IR (y(s) - 2(s)]ds + Wa(t), 120 (22)
0

where © € X, A and F satisfy Hypotheses 2.1-(i) and 3.1-(ii) respectively. The controls
z are taken in M3, (0, +o00; X) and

t
Wu(t) = / e(t_s)AdW(s).

0
Equation (22) can be viewed as the mild form of the stochastic differential equation
{ dy(s) = [Ay(s) + F(y(s)) — ()] ds + V@AW (s), s> 0

y(0) =2, z€X

(23)

where W(+) is a cylindrical Wiener process (see Hypothesis 2.1). The following Proposition
is proved in [16], Ch.7.1 and, in the case where A is diagonal, in [4].

Proposition 5.1 Assume that Hypothesis 2.1 and 2.2 and 3.1-(ii) hold true. Then, for
all z € ME (0, +o00; X), equation (22) has a unique solution

‘y(-;$,2) € MI%V(Oa—I'OOaX)
Moreover, if

T
/ s PTr eSAQeSA*dS < 40

0
holds for some B > 0 and T > 0, then the solution y(-,x, z) is continuous P-almost surely.
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We shall now study the following optimal stochastic control problem. Given R > 0,
minimize the functional cost

Tz =B[N Ty 550, ) + A=(5)))ds

over all controls z € M (0, 4o00; X) satisfying |2(s)| < R P-almost surely for a.e. s €
[0,+00). Here 1 € Cy(X) and the function h satisfies the following assumption

Hypothesis 5.2 h: B(0,R) C X — IR is convex and lower semicontinuous.

The value function of this problem is defined as
V(e) =inf {J(2;2) : 2 € ME(0,+00; X), |2(s)| < R} (24)

and a control z* € M3 (0, +00; X) satisfying |2*(s)| < R and V(z) = J(z, z*) is said to be
optimal with respect to the initial state z. As seen in the introduction, the corresponding
Hamilton-Jacobi equation reads as follows

Av = % Tr [Quee]+ < Az + F(z),v, > — H(v,) + ¥(z), 2 € X (25)

where the Hamiltonian H is given on X by

H(p) = sup {(z,p) — h(2)}. (26)

l2|<R

The aim of this section is to prove that, under the general assumption 5.2 on the cost
h, the value function V' is the mild solution of the Hamilton-Jacobi equation (25) and
that, when H is smooth enough, there exists an optimal control.

We want to emphasize here that this result is very interesting in terms of optimal
control since it states that the value function is smooth (at least C}(X)) for general costs

J with h satisfying 5.2 and % in Cy(X).

Theorem 5.3 Assume that Hypotheses 2.1, 2.2, 2.5, 3.1-(ii) and 5.2 hold. Let ¢ €
Cy(X), H be as in (26) and let uw € D(B) be the mild solution of (25). Then u =V on
X.

The proof of this theorem involves two different types of arguments. In order to prove
that V' > u for general h and v, we establish the fundamental equality (27) by using that
u is a K-strong solution as seen in the previous section.

Then, we can prove that the converse inequality holds in the case when h is smooth
enough by exhibiting an optimal control under feedback form.

The final step consists in getting rid of the smoothness assumption on h; it is done by
approximating H with its Yosida’s approximants.

We first start by the fundamental equality:
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Lemma 5.4 Under the assumptions of the previous theorem, we have, for every x € X
and z € M3 (0, +o00; X) satisfying |z(s)| < R P-almost surely for a.e. s in [0, +00),

) + B [ aly(9)= < 2(5),ualy(s)) > +h(()] ds | =

=B [T We) + ))ds | = I(ez)(27)

where y(s) =l y(s;x,z) is the mild solution of (23).

Proof. We first observe that H is well defined and Lipschitz continuous with a Lipschitz
constant lower than R. Indeed, by (26),

|H(p) — H(q)| < |s|ti%(27p—q> < Rlp— ¢,

so that the results of the preceeding sections hold. Now let u be the solution of the
Hamilton-Jacobi equation (25) and let w,,, ¥, be as in Definition 4.4. We first prove that
(27) holds for u,, i.e. that

unle) + T { [T € [ (g ()= < 2(6)tnely(5)) > +h(=())]ds | =

—E{ [ yls) + hsf . (29)

Indeed fix x € X, z € M} (0,+00; X) and let y = y(-;z,2) € M3 (0,+00; X) be the
solution of the corresponding state equation. By applying [t6’s formula to the process
e Mu,(y(t)), we obtain

—At

dle™u(y(1)] = | =A™ Mun(y(1) + =T [Qum@(t))]] dt + (dy(t), e M una(y(1)))

which gives, by (20),
dle™Mun(y(1))] = e [—(2(1), wna(y(1))) + H(una(y (1)) — $aly(t))] dt
+e QAW (1), una(y(1)))-

Then (28) follows easily by adding h(z(s)) on both sides, by integrating on [0, +oo[ and
finally by taking the expectation.

Now, recall that (21) holds; so that by the Dominated Convergence Theorem, we can
take the limit for n — +o0 in (28) in order to obtain the claim of the lemma. [ ]

Corollary 5.5 Under the hypotheses of the previous lemma, we have:

V >uon X. (29)
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Proof. By the definition of H, for every z € M3 (0,400;X), x € X and for a.e.
t € [0, 00], the following inequality holds P-almost surely

H(ux(y(t;2,2)))— < 2(1), ua(y(t; 2, 2)) > +h(2(1)) 2 0 (30)
and the result follows from (27). [ |

Remark 5.6 The fundamental identity (27) and so (29) also hold when h is only mea-
surable and bounded from below. [ |

We can now prove that there exists an optimal control when H is smooth enough.

Theorem 5.7 Assume that Hypotheses 2.1, 2.2, 2.5, 3.1-(ii) and 5.2 hold true. We also
assume that H is Gateauz differentiable with continuous directional derivatives. Finally,

let v be in Cy(X). Then
(1) the unique mild solution u of (25) coincides with the value function V' given in (24);
(it) for any x € X, there exists an optimal control z*;

(iii) z* is related to the corresponding optimal state y* by the feedback formula
2 (1) = Ho(Va(y™(1))) V2 0;
(iv) if H e CYY(X) and o € CL(X) then the optimal control is unique.

Proof. Let us first recall that, by the regularity of H, for every p € X, the function
z =< z,p > —h(z) has its maximum on B(0, R) at

z = H,(p)
(see e.g. [17], §1.8). Then the equality in (30) holds when
2(t) = Ho(uz(y(t; 2, 2))).
Now let us consider the closed loop equation
{ dy(s) = [Ay(s) + F(y(s)) — Ho(us(y(s)))]ds + VQdW(s), s>0

y(0)==2z, ze€X

(31)

which can be written in mild form as

(1) = e — [ IR () + Halualy(s)))ds + Wa(t), ¢20.
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Now, the regularity assumptions on H and the fact that v € Ci(X) imply that the
mapping
y =< Hy(uz(y)), h >

is continuous and bounded on X for every A € X. Since the semigroup €4 is compact (see
Remark 2.3-(i)), then, by a result of Chojnowska-Michalik and Goldys (see [8] Proposition
3), we obtain that equation (31) has a so-called martingale solution, which is mean square
continuous and has a continuous modification.

At this point, by setting

2*(s) = Hy(us(y™(s))),

y* is the mild solution of the state equation (22) when z = z* and the equality in (30)
holds. By using (27) and Corallary 5.5, we have

Viz) < J(z,z") =u(z) < V(z)

which proves claims (i), (i) and (iii).

To prove claim (iv), we only need to prove that when H € C'! and ¢ € C4(X), there
exists a unique solution of the closed loop equation (31); in this case it is clear that the
map

y — Hp(us(y))

is Lipschitz continuous so that we can solve (31) by Proposition 5.1. The conclusion
follows as in the previous case. [ |

Remark 5.8 Fzamples for which H is Gateaux differentiable with continuous directional
derivatives.

(i) The Hamiltonian has the above desired regularity if, for instance, A : B(0,R) C
X — IR is strictly convex and lower semicontinuous.

(ii) A common example of the last statement is the following:
h(z) = ||,
for a > 1. [ |
Remark 5.9 Ezamples for which H € C''(X) holds.

(i) The Hamiltonian has the above desired regularity if, for instance, A : B(0,R) C
X — 1R is strictly convex and continuously Fréchet differentiable and if, moreover,
Dh : B(0,R) — X is invertible with Lipscihtz continuous inverse (Dh)™! (see [1],
for instance).
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(ii) A common example of the last statement is the following:

1
h(z) = §|z|2

In this case it easy to check that

1 .
§|p|2 if [pl <R

1,
Rlp| - 532 if [p| >R

p if[pl <R
H.(p) =4 pht

H(p) =

and

p|

In order to prove Theorem 5.3, we are going to use the Yosida’s approximants of H
which are given, for all ¢ > 0, by

H.(p) = int {H() + 5 lp — 7P

reX

and which satisfy the following lemma:

Lemma 5.10 For all ¢ > 0, we have:
(i) H. is convex and belongs to C'(X)
(i) | < R

(ii1) 0 < H(p) — He(p) < # for all p in X.

Proof. The proofs of (i) and (ii) are contained, for instance, in [1]. It is clear that
H.(p) < H(p)+ 21—€|p —p|* = H(p) for all pin X. Now, let p € X, we have

0< Hp)~ H(p) = sup{H(p)~ H(r) ~ 5 lp—rl'}

reX 1
< sup {Rlp —rl=5lp - TIZ}-
reX 9

The function ¢ — Rt —1?/2¢ reaches its maximum on IR' at ¢R and, as such, is bounded
by R(Re) — (Re)*/2e = eR*/2 and the proof is complete. [ |
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Proof of Theorem 5.3. For all ¢ > 0, we define

he(z) = sup{< ¢,z > —H.(q)} for all z € X
9€X

and

H.(p) = sup {< p,z > —he(2)} for all p € X.
lz|[<R

Then H. = H.. Indeed, let p € X; we have on one hand

H.(p) = sup inf{< p—q,z> +H.(q)} < H.(p).
|z|<R9€X

On the other hand, since H. is convex and differentiable, we have, for all ¢ € X,
H(q) > He(p)+ < Heo(p)yg —p > .
Thus, for all z € X,
<p—¢,z2>+H(q) 2<p—q,z— Heo(p) > +H.(p).

It yields )
H.(p) > sup inf{<p—gq,z— Ho(p) >} + H(p).
|z|<R 9€X

Since, ||He:|| < R, the function on the right hand side is greater than its value at z =
H..(p) and thus

H.(p) > H.(p).

We can now define a sequence of new optimal control problems in which the cost
h has been replaced by h. and solve the associated Hamilton-Jacobi equations with the
Hamiltonian E’E = H.. Let V. and u, be respectively the corresponding value function and
mild solution of the associated Hamilton-Jacobi equation. Since H. is smooth enough,
then, by Theorem 5.7, we have V. = u.. We shall now see the relations between those
functions and the corresponding ones for the initial problem. On one hand, as H. < H,
we have, for all z such that |z| < R,

he(z) > 22§{< p,z>—H(p)} > |s|u<%{< p,z>—H(p)} = h(z)

since h is convex and by Lemma 3.9. Hence, by definition, V. > V.
On the other hand, u. is the mild solution of

Mg = Luc+ < Flue, > —H(ue) + 9
and thus of
M = Luct < Flueg, > —H(uey) + [0 — He(ter) + H(Uez)]
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since H—H, € Cy(X) and u. € C}(X). Then we can apply the comparison result obtained
in section 3 and it yields

1 eR?
Ueg — 1 <_Hsr _Hs‘sz S .
el < 1 () — e < S
Moreover, we already know that V > u and then we have

V>u=limu.=limV, >V
e—0 e—0

and the proof is complete. [ |

6 Examples

We shall work with the following

Hypothesis 6.1 Let X be a separable Hilbert space and let {ei} be a complete orthonor-
mal system in X. We assume here that A and () are of the following form:

Aep = —ager, Qep = Mpeg, k€N,

where {ay} and {\;} are sequences of positive numbers respectively increasing to +o0o and
decreasing to 0.

The following proposition is proved in [18].

Proposition 6.2 Assume that Hypothesis 6.1 holds and that Ay = o, Vk € IN and for
some r > 0. Then Hypotheses 2.2 and 2.5 are satisfied if and only if

<1
21—4-7«<‘|‘OO and r < 1.
k=1 Yk

Example 6.3 Let Cy = [0, 7] and X = L?(Cy), N < 3 and take the Laplace operator
with Dirichlet conditions at the boundary defined as

D(A) = HYCy)N HY(Cy), Az = Az, for z € D(A).

The operator A satisfies Hypothesis 2.1 and generates an analytic semigroup of compact
operators. Moreover A satisfies Hypothesis 6.1 by taking, for (ny,..,ny) € INY,

w2

2\F .
enl,..,nN(f) = <—) Slnnlfl ... 81n anN

and
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so that, by ordering the eigenvalues, we obtain
ak%k% as k — +o0.

If we take, as in Proposition 6.2, Qer = «;", r > 0, then Hypotheses 2.2 and 2.5 are
fulfilled provided
N —2

¢

<r<l

which is possible for N < 3. If N = 1 then we can take r = 0 which is the case studied
in [4]. Define now

oo = [ ale(@de, B =gl F()E) = ()

where a € C3(IR) and f € Cy(IR) N C*Y(IR). Then ¢ € Cy(X) and the hypotheses of
Theorem 5.7 are satisfied. Therefore the results of Theorem 5.7 apply to the following
optimal stochasticcontrol problem. Minimize the Cost Functional

J(z;2) = 1E{/0+Oo s /ON

over all controls z € MZ (¢, T; X) satisfying |z(s,-)| < R almost surely for s € [0, +o0|
where the state y(-,€) is the mild solution of the differential stochastic equation

dy(s,€) = [Aey(s,€) + f(2(s,€)) — 2(5,€)] ds + VQAW(5), s >1

y(s,6) =0 (s,€) € [t,+o0] x ICxN (33)

a(y(s ) + 5 12(, O] deds (32)

y(0,8) = (), ¢eln
driven by a White Noise W.

Example 6.4 Let X = L*(Cy), and take the iterated Laplace operator with Dirichlet
conditions at the boundary defined as

D(An) = {& € H¥(Cn), ) A,y A™a = 0 on 9}
Apz = (=)™ A)"z, for = € D(A).

The operator A,, (which occurs in elasticity theory when m = 2) satisfies Hypothesis
2.1-(i) and generates an analytic semigroup of compact operators. Moreover A,, satisfies
Hypothesis 6.1 as in the case m = 1 but

2m

ap~ k¥~ as k — 4o0.
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So, if we take, as in Proposition 6.2, Qer = o ", r > 0, then the hypotheses of Theorem
5.7 are fulfilled, provided

N —2m

<r<l1
2m "

which is possible for N < 4m — 1. If N < 2m then we can take r = 0 (see [4]). In this
case, Theorem 5.7 can be applied to the stochastic control problem (32) where, in the
state equation (33), A is replaced by A,,.
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