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Ensembles partiellement ordonnés admettant des
représentations de dominance simultanés

Résumé : Nous caractérisons les paires de codominance— paires d’ensembles
partiellement ordonnés admettant simultanément des représentations de dominance
dans les systémes de coordonnées (z,y) et (—z,y)— et nous présentons un algo-
rithme linéaire pour les reconnaitre et construire les représentations de codomi-
nance. Nous définissons la dominance polysemy comme une généralisation de la
codominance et décrivons quelques problémes connexes ainsi que certains résultats
préliminaires.

Mots-clé : Géométrie algorithmique, Ensemble partiellement ordonnés, Domi-
nance
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1 Introduction

Even the most fundamental relationships among simple geometric objects yield a
wealth of challenging problems that reach throughout discrete mathematics. Examples
abound in the thriving field of graph drawing [2, 4, 5, 8, 13, 14|, which addresses
not only the classical ball-and-stick model of graphs, but also representations based
on such objects as line segments, n-balls, and discrete point sets with relations like
intersection and proximity. Other examples arise from close kin to these geometric
graphs: partial orders like containment and left-to-right precedence. They, too, have
been studied widely [1, 6, 7, 12, 17]. One of the most important of these partial
orders is dominance, a relation on R"™ that is well known in computational geometry
[11]. Given points p = (p1,...,pn) and q = (q1,-.-,qn), We say that p dominates g
provided

(P12g1) A= A (Pn 2 gn). (1)

An n-dominance representation of a partially ordered set (poset) P = (X, <) for a
positive integer n is a function f: X — R™ such that for all z,y € X, « < y if and
only if f(z) is dominated by f(y). Where there is no risk of ambiguity, we often
refer to 2-dominance simply as dominance. Figure 1 illustrates a poset P = (X, <)
and a dominance representation f of P.

c d
[ ] [ ]

a b
(a) P = (X,<) (b) f(X)

Figure 1: A poset P and a plane-dominance representation of P

It is clear from the definition that the dominance relation on a set S C R"
depends on both S and the orientation of the coordinate axes. In general, different
orientations induce different partial orders. In this paper we consider those pairs
(and eventually tuples) of partial orders on a common ground set that arise as the
dominance relations on a set .S for different coordinate systems. Each such partial
order may be thought of as one of the meanings of S. This is an example of the
phenomenon of poset polysemy, which we now describe in a more general setting.
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4 P. Tanenbaum & S. Whitesides

The heart of the matter is the study of bijections between the ground set X of
several posets Pi,..., P, and another set 3, which admits partial orders <1,..., =g
that are in some sense natural. Such a bijection f is polysemic provided that for all
z,y € X and for 1 <7<k,

z <; y if and only if f(z) X, f(y).

Poset polysemy, then, concerns the inherent partial orders on some set of interest,
and specifically, the relationships among them. While the problems we address here
are based on dominance, another example of poset polysemy arises from interval
and interval-containment orders [16].

After some definitions and background information in section 2, we discuss a type
of pairwise dominance polysemy in the plane that we call codominance. In section 3
we characterize the pairs of posets that admit codominance representations and in
section 4 we present an algorithm that recognizes codominance pairs in linear time.
In section 5 we discuss other types of dominance polysemy and present some related
open problems.

2 Preliminaries

Let P = (X, <) be a poset and z,y € X. If either z < y or z > y we call z and y
comparable. Otherwise, we call them incomparable and write z || y. If Y C X, then
the restriction of P to Y—also called the subposet of P induced by Y —is the poset
P[Y] = (Y, <) where for any z,y € Y, # <' y if and only if # < y. The dualof P is
the poset PY = (X,>) obtained by reversing all the comparabilities of P.

A poset P = (X,<) is a chain (also called a linear order) provided that for
all z,y € X either z < y or z > y. The antichain on X is the poset (X,0). A
linear extension of a poset P = (X,<p) is a chain L = (X, <) for which z <y y
whenever # <p y. Linear extensions are essentially equivalent to topological sorts.
Dushnik and Miller [3] defined the dimension dim(P) of a poset P = (X, <) as the
size of a smallest set of linear orders on X whose intersection is <. They also showed
that dim(P) is the smallest d for which P has a d-dominance representation, thus
justifying the choice of the term dimension.

If Pp = (X,<1) and P, = (X, <3) are posets, then for any distinct z,y € X there
is a unique ordered pair (R, R2) such that Ry y and = Ry y for Ry € {<1,]l1,>1}
and Ry € {<2,||2,>2}. Thus the ordered pair (P;, P2) induces nine relations on X,
of which some may, in general, be empty. We introduce notation for these relations
in table 1. As an example, z [> y means z ||; y and = >3 y.

INRIA



Stmultaneous Dominance Representation of Multiple Posets 5

<2 Il2 >9
<1 < < <

| K =+ >

>1 > > >

Table 1: The nine relations from <1 and <9 on X

For any p,q € R? with p = (p1,p2) and q = (q1,¢2), We say that p right-
dominates q whenever (p1 < ¢1) A (p2 > ¢2). Likewise, where there is any risk of
ambiguity, we refer to the conventional notion of dominance defined in (1) as left-
dominance. Note that two points are incomparable under (left-)dominance if and
only if they differ in both coordinates in such a way that the point with the larger
z-coordinate has the smaller y-coordinate. But in that case the two are comparable
under right-dominance. This yields the following result.

Lemma 1 Every pair p,q € R? is comparable under at least one of left- and right-
dominance. [

3 Characterization of Codominance Pairs

Lemma 1 has an equivalent restatement in terms of the relations in table 1: Given
the posets (R?,<1) and (R2, <3), where <; and <3 are respectively left- and right-
dominance, & is empty. What more can be said about the interrelation between
the left- and right-dominance relations on a set of points in the plane? That is the
first problem in poset polysemy that we address. For any posets P; = (X, <;) and
P, = (X,<3) on some set X, the ordered pair (Py, P») is a codominance pair on X
provided that there exists a function f: X — R? taking z; € X to x; € R? such that

z; <1 z; if and only if x; is left-dominated by x;
and
z; <9 z; if and only if x; is right-dominated by x;.

In this case, the function f is called a codominance representation of (Py, Ps).
Codominance is closely related to the graph-theoretic idea of representation by
rectangles of influence [5]. A graph G = (V,E) is a rectangle-of-influence graph

RR n" 2624



6 P. Tanenbaum & S. Whitesides

provided that V C R? and that u,v € V are adjacent in G if and only if no point in
V \ {u,v} is within the minimum axis-aligned box containing u and v.

Observation 2 (Pi, P5) is a codominance pair if and only if (P2, Py) is.

In light of observation 2, it is reasonable to say in such a case that P; and P» are
codominant.

If (P1, P») is a codominance pair on a set X and z,y € X, then as we have seen,
z R y for exactly one relation R in table 1. This relation tightly constrains the
relative positions of x = f(z) and y = f(y) for any codominance representation f of
(P1, P2). In fact there is a bijection, as given in table 2, between pairs R = (R, R2)
and relative postion of x and y. We call <, &, >, and > the azial relations of

Table 2: Point positions and comparabilities in P; and P»

(P1, P2) because they imply that pairs of elements lie on horizontal or vertical lines.
Table 2 also constitutes a proof that codominance representations are unique to
within addition or subtraction of empty horizontal and vertical bands. For details

see [15].

INRIA



Stmultaneous Dominance Representation of Multiple Posets 7

Observation 3 Let P be any poset. Then (P, P) is a codominance pair if and only
if P 1s a chain.

Lemma 4 Let posets P, = (X, <1) and P> = (X, <2) be codominant. If z,y,z € X
with * <1y <1z and © 1o z, then either v <oy <g z or z <gy <g x.

PROOF. Let f be a codominance representation of (Pj, P»). Since z <3 z and
@ Lo z, the directed line segment from x = f(z) to z = f(z) must point, as table 2
shows, in an axial direction, either rightward or upward. Since y is comparable
to both in P;, the point y = f(y) must lie in the interior of segment Xz. This
implies either one or the other of the conclusions, depending whether Xz is vertical
or horizontal. Il

We now present four theorems that further illuminate the constraints on codomi-
nance pairs. These theorems all deal with 3-element restrictions of a codominance
pair, which is to say pairs of the form (P;[Y], P,[Y]), where P; = (X,<;) and
P, = (X, <3) are codominant and ¥ C X with |Y| = 3.

Theorem 5 If posets P; = (X,<3) and P, = (X, <3) are codominant and z <;
y <1 z ts a chain in Py, then the subposet of Py induced by {z,y,z} is none of the

posets in figure 2.
\/ /.y\
]

NN

I.y

() (b) (©) (d)

[NOTE: § means either z or z.|

Figure 2: Theorem 5

PROOF. Follows from lemma 4. I

Theorem 6 If posets P = (X, <3) and P> = (X, <2) are codominant and z,y,z €
X such that x 11y, y L1 z, but  ||1 z then the subposet of Py induced by {z,y,z}
is none of the posets in figure 3.

RR n" 2624



8 P. Tanenbaum & S. Whitesides

(a) (b) (c) (d) (e)

[NOTE: § means either z or z.]

Figure 3: Theorem 6

PROOF. Restrictions (a), (b), (d), and (e) are forbidden by lemma 1, so consider
(c). If the restriction P’ of P, to {z,y, z} is a chain, then z and y are comparable in
both P; and P», so (z,y) must be in one of the axial relations. A similar argument
shows that (y,z), too, must be in one of the axial relations. Then since z ||; z, one
of the line segments Xy and ¥z must be horizontal and the other vertical. Thus if P’
is a chain, then y is neither the minimum nor the maximum, so (c) is also forbidden.

Theorem 7 If posets P; = (X,<1) and P, = (X, <2) are codominant and z,y,z €
X such that ¢ <1 z, z |1y, and y ||1 2, then the subposet of Pa induced by {z,y,z}
is none of the posets in figure 4.

(a) (b) (c) (d) (e)

[NOTE: § means either z or z.|

Figure 4: Theorem 7

PROOF. Restrictions (a), (b), (d), and (e) are forbidden by lemma 1, and (c) by
theorem 5. il

INRIA



Stmultaneous Dominance Representation of Multiple Posets 9

Theorem 8 If posets P; = (X,<3) and P> = (X, <3) are codominant and {z,y,z}
is an antichain in Py, then the subposet of P5 induced by {z,y,z} is none of the
posets in figure 5.

(a) (b) () (d)
Figure 5: Theorem 8

PROOF. Follows from lemma 1. I

Theorems 5-8 are summarized in table 3. Consider posets P; = (X,<;1) and
P, = (X,<9) and Y = {y1,y2,y3} C X. The restriction P;[Y] has one of the five
morphologies displayed along the left edge of the table. The vee and wedge shapes
are equivalent in this context and thus correspond to a single class. Likewise, Ps[Y]
falls into one of the four morphology classes along the top edge of the table. Each
of the first three classes has a distinguished element, which is drawn open while
the others are drawn solid. Now classify the triple Y as type-ij, where P;[Y] has
morphology ¢ and P»[Y]| has morphology j. The ijth entry in the body of the
table then indicates the required relationship between the distinguished elements
of the two restrictions. The crosshatched entries correspond to empty classes and
appear at the lower right because in these cases Pj[Y] and P5[Y] combined have
fewer than the three comparabilities necessary to keep 3= empty. Table 4 likewise
summarizes lemma 1. The fact that tables 3 and 4 are symmetric is a consequence
of observation 2. Henceforth, and because of this symmetry, we shall refer only to
the top half of table 3 (triples of type-ij, where 1 < i < j < 3) and rely on this
equivalence between type-ij and type-jz.

Tables 3 and 4 are not only necessary conditions, but also sufficient conditions
for codominance.

Theorem 9 Posets P, = (X,<;) and P, = (X, <3) are codominant if and only if
there exist no z,y € X with z 3 y and for every chainz <; y <; z of P; (1=1,2),
the restriction Ps_;[{z,y, z}] is none of the posets in figure 6.

RR n°2624
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*—0O—e

Table 3: Three-element restrictions of codominance pairs

Table 4: Two-element restrictions of codominance pairs

e—0—e

VA 1o -
same same different any
same different same

different same
any

[ ]
[ ] [ ]
[ ]
any any
any

INRIA
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| "V S e

(a) (b) (c) (d) (e)

Y

Figure 6: Forbidden three-element restrictions for posets codominant with ¢ < y < z

PROOF SKETCH. Every codominance pair meets the conditions—this follows
from lemma 1 and theorems 5-8. The converse can be shown by induction on the
size of X. Given a pair (Py, P») that meets the conditions and given a codominance
representation f of (P —x, P, — z) for any « that is maximal in P;, one can—by
extending f—create a codominance representation for (Py, P;). The complete proof
may be found in [15]. |

4 Recognizing Codominance Pairs

Let <j and <3 be two partial orders on a finite set X (without loss of generality
X = [n]) and let m = | <y |+ | <2|. We present an algorithm that decides in
O(n + m) time and O(n + m) space whether (P;, P») is a codominance pair, where
P = (X,<1), P, = (X,<3). If so, then the algorithm produces a codominance
representation that maps 1 < k < n to k = (zz,y) € R%

X 1is represented in the input by the value n, and <; is represented by a list or
ordered pairs in which (k, £) signifies that & <; £. The pairs are counted as they are
read, and if m < (g) then the algorithm trivially rejects the input based on lemma 1.

For each k£ € X the algorithm iteratively tightens real-valued bounds on the
values of z; and yi. The initial bounds on each k are —oco < @3, < 0o and —oco <
yr < 00. The main body of the algorithm is the loop in figure 7. The algorithm
makes it out of the loop without rejecting the input precisely when (Pj, Ps) is a
codominance pair. While the loop requires ©(n?) time, lemma 1 shows that merely
reading the input requires Q(n?) time for any codominance pair. So the running
time for the algorithm is optimal, and is in fact O(n + m). The space required
is clearly also O(n + m). Furthermore, the algorithm can produce a codominance
representation on the integer grid by simply sorting the points on @ and y. This
produces (in asymptotically negligible time and space) a drawing of (Py, P;) in an

RR n°2624



12 P. Tanenbaum & S. Whitesides

Algorithm Recognize_Codominance
while X # 0
remove some k from X;
select values for =, and yi;
> These values may be selected arbitrarily,
> provided that they satisfy the current bounds on k.
for all /e X
update bounds on zy and yy;
> Update is based on relationship between
> k and £ in P, and Py, as summarized in table 2.
if updated bounds are infeasible
reject (P1,Ps);

Figure 7: The recognition algorithm for codominance pairs

n X n grid, which may be seen to be optimal by the example of a chain and an
antichain on [n].

5 Other Types of Dominance Polysemy

There are several reasonable directions in which to extend the exploration of do-
minance polysemy. We shall describe three such directions and present some basic
results for two of them.

5.1 Orthodominance

As is well known, a 2-dominance representation g for a poset P = (X, <) induces
a pair of weak orders on X. One of them orders X by the z-coordinates of g(X)
and the other by the y-coordinates. Note that if both the z- and the y-coordinates
are unique, then these orders are linear extensions of P and their intersection is <.
A codominance representation f for a pair (P, P2) of posets, providing as it does a
simultaneous dominance representation for each poset separately, induces two such
pairs of weak orders:
Wi = (We1, Wy,) from Py
and

Wo = (Wyo, W,,) from P,

INRIA
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The key feature of codominance representations is that

Wy, = Wy,
and (2)
Wzl = (WZZ)d'

By relaxing the constraints (2) we can obtain different notions of polysemic domi-
nance pairs. One way to do that is to eliminate the duality between W1 and W4,
allowing them to be completely independent. In doing so we arrive at the notion of
orthodominance, which we proceed now to define rigorously.

Let myz, 7yt R3 — R? be the orthogonal-projection functions mapping any p =
(a,b,c) € R3 to m,.(p) = (a,c) and m,,(p) = (b,c). For any set X = {v1,...,v,}
and posets P; = (X, <1) and P» = (X, <3), the ordered pair (P;, P») is an orthodo-
minance pair on X provided that there exists a function f: X — R3 taking v; € X
to v; € R3 such that

v; <1 v; if and only if 7, (v;) is left-dominated by 7. (v;)
and
v; <o vj if and only if 7,.(v;) is left-dominated by ,.(v;).

In this case, the function f is called an orthodominance representation of (Pi, Ps)
and P; and P, are said to be orthodominant.

Figure 8 illustrates an orthodominance representation of a chain and an anti-
chain on a 2-set. As another example, P; and P» as illustrated in figure 9 are not
orthodominant, for suppose (Pi, P>) had an orthodominance representation map-
ping u, v, and w to u = (uy,ug,u3), v, and w = (wy, w2, ws), respectively. It would
follow from u == w that uz # ws. But in order for v > u and v X w, v would have
to be in both the z = ug and the z = w3 planes.

Theorem 10 The set of orthodominance pairs on any set X s a reflexive symmetric
relation on the posets on X of dimension 2 or less. However, the relation need not
be transitive.

PROOF. Symmetry is trivial. As for reflexivity, let P be a poset on X for which
there exists a (left-)dominance representation that maps each v; € X to (a;,b;).
Then the function f: X — R3 defined by f(v;) = (ai,a;,b;) is an orthodominance
representation of (P, P).

Now suppose Pj, Ps, and Pj3 are as illustrated in figure 10. Then (P, P;) and

RR n°2624
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r(0) T2 ()

Ty=(q) <

N

Figure 8: An orthodominance representation of p > ¢
v u w
P P
Figure 9: Nonorthodominant posets

u

v u w
u w v
w
P P, P

Figure 10: Orthodominance is not transitive

(P2, P3) have the orthodominance representations

u o (1,2,2) u = (2,1,2)
v — (2,1,2) and v ~— (2,1,1)
w = (2,1,1) w = (1,2,1),

INRIA
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respectively, but as the previous example showed, (Pj, P3) is not an orthodominance
pair.

The next theorem captures the fact that the idea of orthodominance was obtained
by relaxing (2), the codominance constraint.

Theorem 11 The codominance pairs on any set X form a subset of the orthodo-
minance pairs on X. If | X| > 3, then this containment is proper.

PrROOF. Let P; and P, be posets on X such that there exists a codominance
representation of (Pp, P2) that maps each v; € X to (a;,b;). Without loss of genera-
lity, 0 < a; < 1. Then the function f: X — R3 defined by f(v;) = (a;,1 — a;, b;) is
an orthodominance representation of (Py, P5).

On the other hand, if P; and P, are as illustrated in figure 11, then (P;, P») has

u v

v U

w w
P P

Figure 11: Orthodominance does not imply codominance

the orthodominance representation

u — (2,1,2)
v o= (1,2,2)
woo= (1a1,1)7

but has no codominance representation since it violates the type-1,1 constraint of
theorem 9.

5.2 Circular Sequences of Posets

Goodman and Pollack [9, 10] introduced the circular sequence of a set S of n points
in the plane: the cycle of permuations of [n] obtained by labeling the points in S
and projecting them onto a line that rotates through 360 degrees. We generalize
the linear orders (permutations) of their definition to arbitrary partial orders of
dimension 2 or less, obtaining specifically the circular dominance sequence of S: the
cycle of left-dominance relations obtained by rotating the z- and y-axes through 360
degrees.

RR n"2624



16 P. Tanenbaum & S. Whitesides

For S a 3-set, we can easily produce distinct circular-sequential dominance tuples
by making S the vertices of a triangle that is either acute, right, or obtuse. The result
is three 12-tuples, which is to say lists of a dozen posets (for details see [15]). It is no
coincidence that all three tuples have length 12. A circular dominance sequence has
period bounded in much the same way as have the circular [permutation]| sequences

[9].

Observation 12 The period of the circular dominance sequence of any n-set S C
R2, which is to say the length of the circular-sequential dominance tuple induced by
S, is at most 4(3).

5.3 Generalized Codominance

A third way in which to extend the exploration of dominance polysemy is to genera-
lize the notion of codominance to higher dimensions. But even here there are several
possible generalizations. One generalization to R™ is based on the (3) orthogonal-
projection functions m;;: R* — R2 for 1 <4 < j < nthat map p = (p1,...,ps) € R®
to (pi,pj) € R2. Tt considers those (5)-tuples (P12}, Piays - - - Pin—1,n}) of posets
on a common ground set X for which there exist functions f: X — R" such that
m;j © f is a dominance representation for Py, j; forall 1 <¢ < j < n.

Another generalization to R" is based on a partition ny + --- + ng of n and on
the 2" orthogonal-projection functions 7g: R™® — R for the t-set S = {s1,...,8:} C
[n] that map p = (p1,...,pn) € R™ to (ps,...,ps;) € RE It considers those
k-tuples (Py,...,P) of posets on a common ground set X for which there exist
functions f: X — R™ such that 7(; ;) 0 f is an nj-dominance representation for
P1, Tni41,. i +nr} © [ 18 an na-dominance representation for P, and so on. When
such a polysemic representation exists, it is clear that dim(P;) < n; fori =1,...,k.
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