Universal 3-Dimensional Visibility Representations for Graphs

Helmut Alt 1 Michael Godau Sue Whitesides
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This paper studies 3-dimensional visibility representations of graphs in which objects in 3-d correspond to vertices and vertical visibilities between these objects correspond to edges. We ask which classes of simple objects are {\em universal}, i.e. powerful enough to represent all graphs. In particular, we show that there is no constant $k$ for which the class of all polygons having $k$ or fewer sides is universal. However, we show by construction that every graph on $n$ vertices can be represented by polygons each having at most $2n$ sides. The construction can be carried out by an $O(n^2)$ algorithm. We also study the universality of classes of simple objects (translates of a single, not necessarily polygonal object) relative to cliques $K_n$ and similarly relative to complete bipartite graphs $K_{n,m}$.
Type de document :
Rapport
RR-2622, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00074064
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:24:53
Dernière modification le : samedi 27 janvier 2018 - 01:31:27
Document(s) archivé(s) le : lundi 5 avril 2010 - 00:04:14

Fichiers

Identifiants

  • HAL Id : inria-00074064, version 1

Collections

Citation

Helmut Alt, Michael Godau, Sue Whitesides. Universal 3-Dimensional Visibility Representations for Graphs. RR-2622, INRIA. 1995. 〈inria-00074064〉

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

1093