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Le schéma d’Euler pour les équations différentielles
stochastiques conduites par un processus de Lévy

Résumé : En relation avec des méthodes de Monte Carlo pour résoudre certaines équations
intégro-différentielles, nous étudions la vitesse de convergence de FEg(X%) vers Eg(Xr), ou
(X:,0 < t < T) est la solution d’une équation différentielle stochastique gouvernée par un
processus de Lévy (Z;), (X[) est défini par le schéma d’Euler de pas _% Sous des hypothéses
appropriées nous montrons que l’erreur d’approximation Fg(X7)—IFEg(X7) peut étre développée
en puissances de % si la mesure de Lévy de Z a des moments d’ordre assez élevé. Dans le cas
contraire, la vitesse de convergence est plus faible et dépend de la queue de la mesure de Lévy.

Nous abordons également la question de la simulation des incréments de (Z;).

AMS Classifications. Primary:60H10, 65U05; Secondary: 65C05, 60J30, 60E07, 65R20.

Mots-clé : Equations différentielles stochastiques, approximation, processus de Lévy.



THE EULER SCHEME FOR LEVY DRIVEN SDE’s 3

1 Introduction

We consider the following stochastic differential equation:
t
Xi=Xo+ [ f(X,)dz, | (1)

where X is an R%valued random variable, f(-) is a d x r-matrix valued function of
R?, and (Z;) is an r-dimensional Lévy process, null at time 0. For background on Lévy
processes and stochastic differential equations governed by general semimartingales, we
refer to Protter [14]. In this paper, we consider the problem of computing FEg(Xr) for a
given function g(-) and a fixed non random time 7.

We have two main motivations. The first one is the numerical solution by Monte-Carlo
methods of integro-differential equations of the type
ou
5 (he) = Au(t,z) + /RJ{U(t,w +2) —u(t,z)— <z Vu(t,z) > Ly <cytM(z, dy) (2)
where A is an elliptic operator with Lipschitz coefficients and the measure M(z,-) is
defined as follows: let v be a measure on R? — {0} such that

2
12 I ADv(de) < oo
and let f(-) be a d X r-matrix valued Lipschitz function defined in R? then, for any Borel
set B C R? whose closure does not contain 0, set

M(z,B) :=v{z; < f(z),z >€ B} .

Our second motivation is the computation of the expectation of functionals of solutions
of SDE’s arising from probabilistic models, for example the calculation of the energy of
the response of a stochastic dynamical system: in the latter case, obviously the Markovian
structure of (X;) is important to develop simple algorithms of simulation; a result due to
Jacod and Protter [9] states that, under an appropriate condition on f(-), the solution of
a stochastic differential equation of type (1) is a strong Markov process if and only if the
driving noise (Z;) is a Lévy process; this explains our focus on this case.

When Z is a Brownian motion Talay and Tubaro [20] have shown that when f(-) is
smooth and if (X[) is the process corresponding to the Euler scheme with step T'/n (see
below for a definition), then for a smooth function g(-) with polynomial growth, the error
Eg(Xr)— Eg(X?) can be expanded with respect to n:

Eg(Xr) — Eg(X}) = % + 0O (%) :

Using the techniques of stochastic calculus of variation, Bally and Talay [1] have shown
that the result also holds for any measurable and bounded function g(-) when the infini-
tesimal generator of (X;) satisfies a “uniform hypoellipticity” condition.

RR n~ 2621



4 Philip PROTTER , Denis TALAY

Here we follow the strategy of [20]: we suppose that g(-) has derivatives up to order 4
but we make no assumption on the generator of (X;). The proof used for the Brownian
case does not carry through and needs to be adapted. The changes in approach are
commented on in detail in Subsection 4.3. The nature of the results moreover is different.
When the jumps of Z are bounded the order of convergence O (%) is preserved. When the
jumps are unbounded the order of convergence depends on the tail of the Lévy measure
of Z. However if the jumps are well behaved, as reflected by the Lévy measure having its
first several moments finite, we still have a rate 1/n of convergence.

The discretization of Brownian driven SDE’s has been now analysed in many papers
for various convergence criteria: see Talay [19] or Kloeden and Platen [11] for reviews.
The case of SDE’s driven by discontinuous semimartingales has barely been investigated.
Kurtz and Protter [13] have studied the convergence in law of the normalized error for
the path by path Euler scheme, and L? estimates of the Euler scheme error are given by
Kohatsu—Higa and Protter [12].

An important point is the numerical efficiency of the Euler scheme compared to other
approximation methods of (X;). In particular the Euler scheme supposes that one can
simulate the increments of the Lévy process Z. Actually, in practical situations the law
of Z; — Z, may be explicitly known: for example, Stuck and Kleiner [17] have proposed a
model for telephone noise that could be interpreted as a symmetric stable Lévy process
of index « (they found a ~ 1.95). Section 3 presents algorithmic procedures for the
simulation of the increments of a class of Lévy processes which are likely to include useful
models arising from engineering applications.

In a forthcoming paper we will discuss three important problems related to the present
article. First, for more complex situations than those investigated here, it is sometimes
possible to approximate the law of Z; — Z, itself, which is desirable in view of simulation
problems; we describe the effect of this additional approximation on the convergence rate
of the Euler scheme. Second, we will study the convergence rate of another approximation
method of (X;), based upon the approximation of Z by a compound Poisson process: this
approach allows the consideration of all the cases where one is given the Lévy measure
of Z, which probably is more common than those for which one is given the law of the
increments of Z (which generally cannot be easily derived from the Lévy measure). We
also compare the numerical efficiency of this procedure to the Euler scheme when both
can be used. It is worthwhile nevertheless to announce here that frequently the Euler
scheme is the more efficient algorithm (in terms of the number of computations to run
to ensure a given accuracy). Finally, we will extend the latter numerical procedure and
its error analysis to the case of SDE’s driven by diffusions and Poisson random measures,
which thus includes Lévy processes.

We make a rather detailed presentation of results which are well known by specialists
of Lévy processes but are perhaps nevertheless not well known in general.

INRIA



THE EULER SCHEME FOR LEVY DRIVEN SDE’s 5

Notation.

We denote by AZ, the jump of (Z;) at time s: AZ, = Z, — Z,_.
The Lévy decomposition of 7 is:

Zt = O'Wt + ﬁt + x(Nt(w, d$) — tz/(dw)) + Z AZS IL[HAZSHZH . (3)

lali<1 0okt

For a function v defined on [0,7] x R?, dy1p will denote the derivative with respect
to the time variable, and ;% will denote the derivative with respect to the ** space
coordinate. In the same way, 0y? will denote the second derivative of ¢ with respect to
the time variable, and for a multiindex I 0r¢ denotes the derivative with respect to space
coordinates.

2 Rate of convergence of the Euler scheme

Let X be the solution of (1) for a given and fixed Lévy process Z.

In general, the law of the random variable X7 is unknown. We propose to discretize (1)
in time. Let Z be the discretization step of the time interval [0, 7] and let (X;") be the
piecewise constant process defined by X = X, and

Xpriyr/m = Xprim + F( X7 (Zpsryr/m — Zprm) - (4)

From a pratical point of view, this scheme requires that the law of the stationary and inde-
pendent increments Z(,11yr/n — Zpr/n can be simulated on a computer. For considerations
on this point, see Section 3.

We now state our rate of convergence results. The case where Z has bounded jumps,
or even simply where the Lévy measure has all its moments up to k for some k large
enough, allows us to relax the assumptions on f(-) and ¢(-), and we obtain a faster rate.

For K >0, m >0 and p € IN — {0}, set

polm) = T+IBIE+ ol + [ Jzlv(d2)
S8+ o+ ([ el [ s )
where v is the Lévy measure as in (3), and
Trp(m) = exp (Kpy(m)) (6)
For m > 0 we define
() = v({; llo) > m}) (7)

RR n~ 2621



6 Philip PROTTER , Denis TALAY

Theorem 2.1 Suppose:

(H1) the function f(-) is of class C*; f(-) and all derivatives up to order 4 are bounded;
(H2) the function g(-) is of class C*; g(-) and all derivatives up to order / are bounded;
(H3) X, € L*(Q).

Then there exists a strictly increasing function K(-) depending only on d, r and the L™ -
norm of the partial derivatives of f(-) and g(-) up to order j such that, for any discreti-
zation step of type %, for any integer m,

|Eg(Xr) - Bg(X2)| < Allgll (1 — exp(—h(m)T)) + HDsm) gy

n

Thus, the convergence rate is governed by the rate of increase to infinity of the func-
tions h(-) and ng(r)s(:). The proof is given in Section 4.

Theorem 2.1 is probably far from being optimal. We include it in order to provide at
least some rate estimates for all Lévy processes. Our main result is Theorem 2.2.

Theorem 2.2 Suppose:

(H1’) the function f(-) is of class C*; all derivatives up to order 4 of f(-) are bounded;

(H2’) the function g(-) is of class C* and moreover |0rg(z)| = O(||z||M') for |I| = 4 and
some M' > 2;

(H3*) [t llzl"v(dz) < oo for 2 <y < M™ := max(2M',8) and X, € LM (Q).
Then there exists an increasing function K(-) such that, for alln € IN — {0},

[Bg(Xr) — Bg(Xp)] < @) )

Suppose now:

(H1”) the function f(-) is of class C®; all derivatives up to order 8 of f(-) are bounded;

(H2”) the function g(-) is of class C® and moreover |9;g(x)| = O(||z||M") for |I| = 8 and
some M" > 2;

(H3”) Jioys1 llzl"v(dz) < 00 for 2 <y < M™ :=2max(2M",16) and X, € LM (Q).

INRIA



THE EULER SCHEME FOR LEVY DRIVEN SDE’s 7

Then there exists a function C(-) and an increasing function K(-) such that, for any
discretization step of type %, one has

B4(xr) w9 %3) = “ 4 g (10)

and sup, n?|R%| < Nk (T),mr (00).

The proofs are given in Section 5.

The functions C(-) and K(-) depend on g(-), f(-) and moments of X,. They can be
described (we do this in the proofs of the theorems in Section 5), in terms of the solution
of a Cauchy problem related to the infinitesimal generator of (X;) and the derivatives of
this solution.

We remark that if the first 4 (resp. 8) derivatives of g(-) are bounded, then M' = M" =
0. Also, if the Lévy process Z has bounded jumps and X is (for example) constant then
(H3’) and (H3”) are automatically satisfied.

The main interest of establishing the expansion in the second half of Theorem 2.2
(compared with just an upper bound for the error) is to be able to apply the Romberg
extrapolation technique:

Corollary 2.3 Suppose (H1”), (H2”) and (H3”). Let X™/* be the Euler scheme with step
size n/2. Then
K(T)

n2

|Eg(Xz) - {2E9(X;*) — Eg(X2)}| <

The result is an immediate consequence of (10). The numerical cost of the Romberg
procedure is much smaller than the cost corresponding to schemes of order n=2. See [20]
for a discussion and illustrative numerical examples for the case Z is a Brownian motion.

If f() and g(-) are smooth enough and v has moments of all orders larger than 2, the
arguments used in the proof can also be used to show that, for any integer k£ > 0, there
exists constants C1,. .., Ckyq such that

Cy Oy C

T k n
Eg(XT)_Eg(XT):7+¥+"'+E+RT

and sup, n* 1| R%| < Crya.

Finally, we underline that no ellipticity condition is required on the infinitesimal ge-
nerator of X.

Remark 2.4 Theorems 2.1 and 2.2 are stated for a vector Z = (Z',...,Z") of driving
semimartingales where Z 1s a Lévy process; however they also remain true if the driving
semimartingales are strong Markov processes of a certain type. Indeed, Cinlar and Ja-
cod [6] have shown that up to a random time change every semimartingale Hunt process

RR n~ 2621



8 Philip PROTTER , Denis TALAY

can be represented as the solution of a stochastic differential equation driven by a Wiener
process, Lebesque measure, and a compensated Poisson random measure (see Theorem
3.35, p. 207). Our situation is more restrictive since we use Lévy processes, themselves
semimartingales, rather than random measures. The difference is essentially this: the
coefficient for the random measure term is of the form k(z,z); if k(z,z) = f(z)h(z) (i.e.,
if it factors), then the random measure term becomes equivalent to considering Lévy pro-
cess differentials. We conclude then that a large class of semimartingale Hunt processes
(essentially quasi left continuous strong Markov processes with technical regularity condi-
tions) can be represented as solutions of SDE’s driven by Lévy processes. Hence if Z is
such a Hunt process we can write

t
Zt - Z() +/0 g(Z.s—)dYS

where Y is a (vector) Lévy process and equation (1) can be rewritten

Xo=Xo+ [ (X, )o(Z, ),

and by passing to a larger system we obtain
t .
Xt - X() + /0 f(Xs—)dYS
with a new coefficient f()

Example 2.5 Let Z be a real valued Lévy process with no Brownian part such that its
Lévy measure v has a finite second moment. Then EZ; and E(Z,)* are finite. Set
Zy:=Z;— EZ;, f(z) =z and g(z) = 2. An easy calculation shows that

t
E(X,)? = /xzu(dx)E/ E(X,)%ds , 0<t<T,
0

so that
E(Xr)* = exp </ $2V(d$)T)
Similarly, one has
E(X2) = <1 4+ - [ x2y(dm)) .
n.

Thus, the rate of convergence is % We conclude that Theorem 2.2 is optimal with respect
to the rate of convergence, even with no Brownian component. One cannot a priori hope
this example s typical with Lévy processes with finite second moments, since it is the
linear (or exponential) case, and thus the derivatives of E,g(X;) are zero for order three
or higher: indeed, in the proof of Theorem 2.2 one can use this fact to eliminate several
terms that effectively slow the rate.

INRIA



THE EULER SCHEME FOR LEVY DRIVEN SDE’s 9

Example 2.6 Let Z be a Lévy process which is a compound Poisson process with Lévy
measure

dx .

W(de) = Dn, (@)1 s

(Thus v does not have a finite 8" moment and one cannot apply Theorem 2.2). Theo-
rem 2.1 can still be used however and we have pg(m) is of order log(m) as m tends to
infinity. Also h(m) is of order # Therefore Theorem 2.1 gives us a rate of convergence

mE(T) 1

n m8

We are free to choose m as a function of n, so let m = n?. The optimal choice of v 1is

—L _— and we obtain a rate of convergence of n~=8ETET) which may be only slightly

8T K(T)
worse than % Note however that if v were of the form

1
V(d.’]}') = ]].B_I_(I)md.’ﬂ y
which of course is farther away from having 8§ moments, analogous calculations yield a

rate of convergence @ for some v > 0.

3 A Discussion on Simulation

If one considers a stochastic differential equation of the type
t t
Xo=Xo+ [ o(X,)dW, + [ b(X,)ds
o 0

where (W;) is a standard Wiener process, then to implement methods of the type conside-
red here (using the Euler scheme) one needs to be able to simulate the increments of the
Wiener process W(x41)yr/n — Wir/a. Since the Wiener process has independent increments,
this amounts to having to simulate a (finite) i.i.d. sequence of normal random variables,
for which efficient methods are well known.

In contrast, simulation problems for equations of type (1) can be formidable. It is
perhaps first appropriate to discuss a little what a Lévy process is. By the independence
and stationarity of the increments, we can write

n

Zy =Y (Zges1y/n — Ziym)

k=1

and thus Z; is the sum of n i.i.d. random variables for any n. Hence Z; is infinitely
divisible (indeed, Z; is infinitely divisible for all ¢ > 0). Thus “knowing” Lévy pro-
cesses can be equated with “knowing” infinitely divisible distributions. Many familiar
classsical distributions are infinitely divisible such as the Normal, Gamma, Chi-squared,

RR n~ 2621



10 Philip PROTTER , Denis TALAY

Cauchy, Laplace, Negative Binomial, Pareto, Logarithmic, Logistic, Compound Geome-
tric, Student, Fisher, and Log-normal (that the last three are infinitely divisible is non
trivial; see e.g. Steutel [16]). Goldie’s theorem [8] allows one to generate such at will: the
product UV of random variables is infinitely divisible if U is arbitrary but nonnegative,
V' is exponential, and U and V are independent.

From our standpoint, however, it is perhaps more appropriate to deal with Fourier
transforms. Indeed, using the Lévy-Khintchine formula (see, e.g., Protter [14]), one can
imagine a description of the process (Z;) being given in applications by a description of the
diffusive constant o, a description of the drift constant 3 and a description of the behavior
of the jumps (remember (3)). Since the Brownian component (W;) and the jumps of the
Lévy process Z are independent, we will treat here only the simulation of the jumps.
Mathematically speaking, being given a description of the jumps is tantamount to being
given the Lévy measure.

3.1 A finite Lévy measure v.

The following is well known and elementary but we include a proof for the sake of com-
pleteness.

Theorem 3.1 Assume (Z;) is a Lévy process with no Brownian term and no drift term
and a finite Lévy measure v. Let \ := v(R"). Then, (Z;) is a compound Poisson process

with jump arrival rate A and its jumps have distribution

Xl/.

Proof. Due to the independence and stationarity of the increments, the Lévy-Khintchine
formula uniquely determines the distribution of the entire process (Z;). We have

E |:ei<u,Zt>:| — o () 7
where, for some a € R",

(u) := / (1 — e<"*>)y(dz) + (1—e<"" 4i<uz>w(dz)+i<au>.
ll=ll>1 l|lz]|<1

Let (NV;) be Poisson with arrival rate A, and let 7} (j € IN) be its arrival times. Let U;
be an i.i.d. sequence with £(U;) = pu(dz) = sv(dz), and let

= Z Uj Lig>y) -

Then _
E [eith*] = Z FE [exp(i < u, Zy >)|Ny = k| P(N; = k)
= iElexp(Z<uU>) P(N; = k)
= exp (—t [(1- < )u(da))

INRIA



THE EULER SCHEME FOR LEVY DRIVEN SDE’s 11

and the result follows. W

Thus if v is a finite measure, we need only to simulate the increments of compound
Poisson processes, and this too is well understood: the problem is reduced to the simu-
lation of random variables having law %1/: for example, one can use a rejection method,
see Bouleau and Lépingle [5] or Devroye [7].

3.2 A Lévy measure with a countable number of point masses.

Here we assume the Lévy measure is of the form

v(dz) = 7(dz) + ki_o: ageg, (dz) | (11)

where eg, (dz) denotes the point mass at ;. € R of size 1; 7(dz) is a finite measure on R
not including any point masses at the {8y }r<1, and also we assume

> Biey < 0. (12)
k=1

Note that without loss of generality we can assume [}, € [—6, 6], all k, for some ¢ > 0,
since otherwise we can put the jumps into 7(dz). With this assumption the hypothesis (12)
is automatically satisfied (and hence redundant) since all Lévy measures v satisfy

/R(x2 Al)v(de) < oo

Theorem 3.2 Suppose (11)and (12) with T = 0. Let (NF) be independent Poisson pro-
cesses with parameters oy,. Then

M= 3 Bu(NE — ut)
k=1
1s a Lévy process with Lévy measure v.

Proof. Let
MZZ = Zﬁk(Ntk — Oékt) .
k=1

Then (M}") is a square integrable martingale, and

Bl(M7)] = Zﬁat .

RR n~ 2621



12 Philip PROTTER , Denis TALAY

Then M := lim, M" exists as a limit in L?(Q2), and by Doob’s martingale quadratic
inequality lim, M" = M in L%*(Q), uniformly in ¢ on compacts; moreover M is also a
martingale and a Lévy process. Finally note that

e
= limF [ei“EZ:1 ﬁk(Ntk—aki)]

= lim ﬁ E [eiuﬂk(Nf—akt)]
" k=1

— lim H )
" r=1
where

or(u) = /(ei” — 1 —tuz)oyeg, (dz) . B

Corollary 3.3 Suppose (11) and (12) and set

A= /T(dx) :
Then the process (Z;) has the form
Zt = Ht + Jt 3

where (Hy) is a compound Poisson process with jumps having law %T(d:ﬂ) and arrival
intensity A, and where (J;) is independent of (H;) and is of the form

Jt = Zﬁk(Ntk - Oékt)
k=1
for (NF) independent Poisson processes of intensities ay.

Proof. This is simply a combination of Theorems 3.1 and 3.2. N

The simulation problems here begin to get a little complicated. Clearly one will have
to truncate the infinite series expression for J;. We hope to address these issues in future
work.

3.3 Symmetric Stable Processes.

Recall that a real valued Lévy process (Z;) is called stable if for every ¢ > 0 there exists
a > 0 and b € R such that the process (cZ;) has the same law as the process (Z,; + bt). If

INRIA



THE EULER SCHEME FOR LEVY DRIVEN SDE’s 13

one takes b = 0 then (Z;) is strictly stable. It follows from the Lévy-Khintchine formula
that if (Z;) is stable then a = ¢*, for some @, 0 < a < 2. The constant « thus determines
the process and it is called the order of the process. In this case the Lévy measure takes
the form

v(dz) = (mq Ly + mo ]lz>0)|:c|_(1+a)da:

for 0 < a <2, my >0, mg > 0. If my = my then (Z;) is called a symmetric stable
process.

If 0 < & < 1, then the densities of some stable random variables are known “explicitly”.
Indeed, let p(-, @) denote the density on [0, +00) of a stable random variable with Laplace
transform exp(—s®), for s > 0. The corresponding Lévy processes are known as stable
subordinators, and they have non-decreasing sample paths. Note that if Uy,...,U, are
ii.d. random variables with density p(-,«) having Laplace transform exp(—s®), then
n~le 7_1Uj also has density p(-,a), whence p(-,) is the density of a stable law of
index « (cf, e.g., p.110 in Revuz & Yor [15]). In this case for z > 0, p(z, ) is given by
(see Kanter [10]):

o= (2 ()" [ (- () a0

a(z) == <M> e (Si”((l - 04)2)> _ (14)

sin(z) sin(az)

where

Theorem 3.4 Let (Z;) be a vector valued symmetric strictly stable process of index o,
0 < a<?2,and let ¥ be a symmetric positive matrixz such that

E [ei<u,Zi>:| — eft<2u,u>a. .

Then ‘
Law(Zy — Z,) = Law ((t — 5)1/(2a)V1/2G)

where Law(G) = N(0,%), V is independent of G and

where U is uniform on [0, 7]; L is exponential of parameter 1; U and L are independent;
the function a(-) is given in (14).

Proof. Tt is well known that (Z;) has the representation

(%) = (W)

where Y is a stable subordinator of index §, and (W;) is an independent standard Wiener
process (see, e.g., page 111 in [15]). As Herman Rubin observed (see Corollary 4.1 of [10],

RR n~ 2621



14 Philip PROTTER , Denis TALAY

p.703), the function p(-,a) of (13) is the density of (a(U)/L)'~*/* where a(-) is given
in (14); U is uniform on [0, 7]; L is exponential of parameter 1; U and L are independent.
Therefore

Law (Y1) = Law ((a(U)/L) =) |

and by scaling we have
Law(Yy) = Law ((t — 5)71/“}/},3) = Law ((t — s)fl/a(Yt — Ys)) )
Since

Law(Zy — Z,) = Law(Wy, — Wy,)
= Law (WthYs)

= Law <\/Y} - YSG)
(M@—sﬂMVG),

= Law
we are done. B

Note that Theorem 3.4 implies that in order to simulate the increments of a strictly
stable symmetric process of index «, it is enough to simulate three independent random
variables: a Gaussian, an exponential and a uniform.

3.4 The case v(R) = cc.

We have already treated two cases where v(R) = oo: first, the case where the infinite
mass comes only from the contribution of point masses (subsection 3.2); and second, the
case of symmetric stable processes. In certain cases one knows what process corresponds
to an infinite Lévy measure, and also one knows how to simulate the increments of such
a process. Such examples are rare! The most well known is the Gamma process: a Lévy
process (Z;) is called a Gamma process if

Law(Z;) =T(1,t), Vt>0.

That is, the law of Z; has density

Its characteristic function is

E [eiUZt} = (1 _ iu)t

which is clearly infinitely divisible since

L = 1 n‘v’>1
-y \(Q—dupm) > "=

INRIA
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One can then calculate the Lévy measure to be
1 —x
v(de) = —e * N~odz .
x
Thus reasoning backwards, if one knows
1 —z
v(de) = —e " L,vode
x

one can simulate the increments of (Z;) by simulating gamma random variables. For such
random variables many techniques are known. See, for example, p. 379 in Bouleau [4].

If one is not so lucky as to be given v corresponding to a known (and nice) process,
various other techniques are possible. We plan to present these in subsequent work.

4 Proof of Theorem 2.1

4.1 Preliminary remarks.

In order to avoid having to treat the case where Z reduces to being continuous (which
was the case studied in [20]), from now on we suppose:

(HO) the discontinuous part of Z is not the null process.

A naive copy of the arguments in [20] would involve estimates on the moments of the
increments of Z which were they to hold, would imply by Kolmogorov’s lemma that Z
had continuous paths. Since we are assuming Z has jumps, such estimates do not exist.

We introduce an intermediate process Z™ defined by

20 =2 = >, AZy Lyaz.sm -

0<s<t

Note that Z™ is a Lévy process (see Theorem 36 of Chapter 1 in Protter [14] e.g.),
therefore (see Chapter 6 in [14] e.g.) the process (X;") which is a solution to

dXy" = f(X{")dz"

is also a Markov process. Applying the Euler scheme to (X;"), we define a discrete time
process (X;"™).
Decompose the global discretization error into three terms:
[Eg(Xr) — Eg(X7)| < |Eg(Xr)— Eg(X7')|
+Eg(X7') — Eg(Xr™)| + [Eg(Xr™) — Eg(Xp)|
= A1—|—A2—|—A3 . (]_5)
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16 Philip PROTTER , Denis TALAY

Before bounding from above the A;’s, we need some intermediate results.

We start by a technical lemma. It appears in a more general setting in Bichteler and
Jacod [3] with a proof for @ = 2, i an integer, and a slightly different result is proven in
Bichteler [2] (p. 536). We give a detailed proof here for the sake of completeness.

Lemma 4.1 Let Q be a real number with Q > 2. Let L£(Q) be the class of Lévy processes
L such that Ly = 0 and the Lévy measures vy have moments of order ¢ with 2 < q < Q).
Let H(Q) be the class of predictable processes H such that

T
E U I|H,]|9ds| < oo . (16)
0
For L € L(Q) we rewrite (3) as follows:
Lt = JLWt + bLt + lall<1 .’L‘(Nt(u.), d(L’) - tVL(dZE)) + Z ALS IL[HALSHZl] . (17)
z 0<s<t

There exists an increasing function Kq(-) depending on the dimension of L such that,

for any L € L(Q), for any H € H(Q),

P Q
/ H.dL, ]
0

< o) 1+ 1o 19 + ([ 1etPata)) 4 [ 11 tan)] [ BlaI2dss)

E

sup
0<t<T

Proof. We give the case for L one dimensional.

It is clear that without loss of generality we can suppose ¢ = 0 (for Brownian stochastic
integrals the inequality (18) is classical). Since v has a second moment we know that
E|L;|* < oo. Let B be such that FL; := rt. Then (L; — frt) is a martingale. For
L, = (Bt the inequality (18) obviously holds. Thus we consider the case 3 = 0, that is,
L is a martingale.

In the computations below, the constants C), and the functions K,(-) vary from line
to line.

Choose the rational number & such that 2 < p < 2¥1. Applying Burkholder’s
inequality for p > 2 we have

t
/ 1.dL,
0

p/2

E " < (4p)E ‘/Ot \H,2d[L, I], (19)

Set

s<1

ap = E[L, L, = E {Z(ALS)Q} - /|x|21/L(d:I:) <00,

INRIA
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Since [L, L] is also a Lévy process, we have that [L, L]; — art is also a martingale. The-

refore (19) becomes:

p/2

/2
o2 E ‘/ H%ds| . (20)

P t
<G| [P 1), - azs)
0

We apply Burkholder’s inequality again to the first term on the right side of (20) to obtain:

P p/2 t
| <cE Z|H3ALS|4 +K (/|:c| " d:c) B [ |Hrds.
0

s<t

We continue recursively to get

p/2F 1
< GF {Z IHSALSIZHI}

s<t

£) (fj U |$|2iVL(dm)]p2_i> /Ot H,|ds | (21)

=1

Next we use the fact that, for any sequence a such that ||al|;s is finite, ||al|;z < ||al|i
for 1<qg<2 As1 < % <2 we get:

p/2
{Z |HSAL3|2k+1} - {Z <|H3ALS|2k)2}

s<t s<t

> |HALP

s<t

o
k

o=
)

IN

whence

p/2F 1
E {Z |HSAL3|2’““} <EY|HAL, .

s<t s<t

Note that >, |AL,[? is an increasing, adapted, cadlag process, and its compensator
is t [ |z|PvL(dx), which is finite by hypothesis. Since |H|? is a predictable process,

(/ H,|7d (§|AL v — s/|a:|PVL (de) ))

is a martingale with zero expectation. Therefore (21) yields:

p2t t
/|.’13|pVL (dz) + K,(t (/|ac| vi(dz) ) ] E/ |H,|Pds .
0

P
<
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18 Philip PROTTER , Denis TALAY

It remains to show that, for any 1 < < k,

: P2 p/2
(f1aP'vetde))™ < ([ laPratda))” + [ lalrva(de)
Let A\p := [ |z|*v(dz), so that
L o
pr(de) = <oy (dz)
L
is a probability measure. Denote 2! by q. One has to show:

A/ 2, o) < 2 4 P2, (d 99
T |z|" " pr(de) ) < N7+ A [ 2P pp(de) (22)

If
P/q
</|x|q2ML(de)) < /\zi/%p/q

the inequality (22) is obvious. On the other hand, if

s 2/(g-2)
AL < |z|7 g (de)

then it is sufficient to prove that

p/q
([ lalr2uslde)) < [ laus(de)

But the bound on Ay and Jensen’s inequality give the result. W
The preceding lemma leads to bounds for the derivatives of the flows 2 — X™(z,t,w).

Lemma 4.2 We assume (H1).

For any multiple index I denote by 0; X" (-,w) the derivative of order I of the flow
r — X"(z,w). Then, for any integer p, there exists a strictly increasing function Kp(-)
such that for any multi-index I with length |I| < 4,

B0 X" (2,t,w)* < g, (7)2pim(m) - (23)

Proof. Let v™ be the Lévy measure of the process Z™.

Let DX;* denote the Jacobian matrix of the stochastic flow X[*(-,w). It solves (see
Theorems 39 and 40 in Chapter 5 of Protter [14], e.g.):

T t
DX =1d+ Y. [ Vi (X)DXd(Z)" .
a=1"70
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Lemma 4.1 shows that there exists an increasing function K,(-) depending only on d,
7, p and the L*-norm of the first derivatives of f(-) such that

E|(DXP* < 1+ K,(T) [I817 + o]
p t .
([ lalPam @) + [aprav )] [ BI(DX) s
Gronwall’s lemma leads to

E [sup (DX

0<s<t

< MK, (1) 2p(M)

(with a possible change of the function K,(-)).

We then write the stochastic differential system satisfied by the flow X/*(-,w) and its
derivatives up to order 2. The preceding estimate and a new application of Gronwall’s
lemma provide the estimate for |I| = 2.

The conclusion is obtained by successive differentiations of the low. N

Corollary 4.3 Assume (H1) and (H2).

Set
v (t,z) = FE.9(X7",) . (24)

Then, there exists an increasing function K(-) such that for any multi-index I with |I| < 4,

|0rv™ (8, 2)| < nk(r)8(m) - (25)

Proof. For I =i € {1,...,d} one has

ov™(t,z) = E,[ DXy ,09(X7",)] (26)
from which
|0;v™ (t,z)| < CE,||DX7 || < Cy B, | DX7 ||
where || - || stands for any of the equivalent norms on the space of d x d matrices. Thus,

Lemma 4.2 induces (25) for |I| = 1.

The conclusion is then obtained by successive differentiations from (26). W
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20 Philip PROTTER , Denis TALAY

4.2 An upper bound for A;+ A3 = |Eg(X7)— Eg(X7)|+ |Eg(X}) —
Bg(X7").

The objective of this subsection is to prove:
Proposition 4.4 Suppose (H1) and (H2). Then

Ay -+ Ag < Agll gy (1 — exp(~h(m)T) (27)
where the function h(-) is as in (7).
Proof. For m > 0 define

T" :=inf{t >0 : ||[AZ| > m} . (28)
One has, since X" = X, fort < T,
Ay = |E[(g(Xr) — g(XF)) Dignen)|

/gl (s P(T™ < T)

B [(9(X7™") = Bg(X3)) Lypuc|
2091l (et P(T™ < T) .

IN

As

IN

The conclusion follows from the next Proposition. W

Proposition 4.5 Let L be a Lévy process with Lévy measure vy. Set

T™ =inf{t >0 : ||AL] >m} .

For all m > 0, it holds that

P(T™ > T) =exp(—Tvr{z; ||z| > m}) . (29)

Proof. We recall that T is a fixed non-random time denoting the endpoint of our time
interval.

We truncate the jumps of L from below. For m > 0 and 0 < § < 1 we define

L™= 3" AL, Nyar,|>sm) -
0<s<t

Set R R
7™ = inf{t > 0;||ALI™|| > m} .
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Then, A
PIT™ > T) = P[T°™ > T] .

Theorem 3.1 implies that L™ is a compound Poisson process with jump arrival rate
A= v {a; ||z|| > ém} .

We set -
2§ §
Ltm = Z Ui m ]l[T.iEmSt]
i=1

and .
me = Z ]]'[Tfmﬁt] .
2=1

Thus N°™ is a standard Poisson process with arrival rate A\*™. Set

1
o™ = P|UI™ < m) = gmvife;m < |z <m) .

Aﬁm
Thus,
P[I">T] = Y P[0k, U5 < m|Ng™ = k] PINZ™ = K]
k
5 A«SmT k
= 2P [ﬂfﬂHUf’"H < m] exp(—)ﬁmT)%
k .

aﬁmAﬁ'mT k
= exp(—\""T) > %

= exp(—\"T(1 — a™™))
= exp(=Twiiz;|[z]| > m}) ,

which is independent of the choice of §. B

Note that in this subsection the boundedness of the function g(-) was essential. This
is not surprising: except when the jumps of Z are bounded or have finiteness properties
reflected by v having finite moments, in general the law of X7 has no moments. A
contrario we will not use the boundedness of g(-) to bound A, from above.

4.3 An upper bound for A, = |Eg(X7}) — Eg(X7™")|.
The objective of this subsection is to prove the following

Proposition 4.6 Assume (H1), (H2) and (H3) hold.
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22 Philip PROTTER , Denis TALAY

Letm € IN, m > 1, and p € IN. Then for some increasing function K(-) depending
only on Xy, the dimensions d, 7 and on the L*>-norm of the partial derivatives of f(-)
and g(-) up to order 4, one has

V(m,n) € N — {0} x N — {0} , Ag = | Eg(X}) — Bg(xpm)| < ™) g0,

n
where the function ngr)s(:) is as in (6).

Proof. Tt is useful (see [18], [20]) to modify the original approximation problem in the
estimation of the difference Ev™(T, X®) — Ev™(T, X;"") in terms of

E’Z}m(T - T/”? X’;}—T/n) - E’l}m(T - T/”? qul?:%/n) :

It can be checked using the Meyer-1t6 formula that the function v™(¢,-) defined in (24)
solves
(Gpv™ + A™)v™(t,z) =0, 0<t<T,
(31)
v™(T,-) =9() ,
where A™ is the infinitesimal generator of the process (X;*): A™ is of the type (2) with
™ instead of v.

In view of (31), Ogv™(t,z) = —A™(A™v™(t,z)), so that, by (25),
||300@m(t,-’F)”Loo([o,T]de) < 77K(T),8(m) ‘
Therefore, one has
1L, T m VLM T m VN ) m,mn

Ev™(T, Xp™") = Ev™(T —T/n,Xp"™) + —Eov™(T —T/n, Xp™") + Ry 7,

n
— T —
= Ev™(T-T/n,X7") - —EA™™(T —T/n, X7"") + R;”’_"T/H(SQ)

n

with (m)
m,n Nk (T)8\M
Ry | < O

We now are going to expand the right side of (32) around X7, /n 10 Order to prove:
B0 (1, X") = Bu™(T — Tfn, X% ) + Si
with

1577l <

If Z™ were a Brownian motion, this could be done by simply making a Taylor expansion
using the fact that, for p > 1, E|Wr — WT_T/n|2p is smaller than n~2. In the general case,
this does not apply: any moment of Z7' — Z7* . /n 18 of order 1/n (otherwise Z would of
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necessity have continuous paths by Kolmogorov’s lemma). We proceed in a different way,
using the Markov property of Z™.

Let Z™ denote the Lévy process (Z&r 10— 27 7> 0 < s <T/n)andlet G™ denote
its infinitesimal generator. For any function %(-) of class CZ([R?), Dynkin’s formula holds:

By(Z,) = ¢(0)+/0; EG™(7™)ds

. ; 1 E _
= ¥(0)+ Zﬁ /0 BEO(Z}")ds + 3 ZZ,;(M*)} /0 Eo,9(Z™)ds
B /0; /R { Y2 +y) Z 0%(Z)y; ]1[|y|<11} V" (dy)d433)

Now, each subexpression of the right side of the above equality is considered as a
function of Z™ and, supposing that 1)(-) is of class C#(R?), we make a first-order Taylor
expansion around 0; remembering the definition (5), we observe that

mze<s (1014 [ () < ol (34)
J[1<]]2]|[<m]
and that ~
E|\Z™|? < pa(m)(s + s°) . (35)
We thus obtain T
Ey(Z3),) = ¥(0) + —G"9(0) + R™" | (36)
with ( )
= m.n NK(T)2\M
E|R™"| < D22 S 1009 poe (e (37)
1<|1|<4

for some increasing function K(-) uniform with respect to ¢(-), 5, o, v and n.

Choose
P (2) 1= o™ (T—T/n,X:'F" ’f_p/ +f( ;”;‘/n) ) :

This function %™ (-) of course is of class Cf(R?) as a consequence of the hypotheses,
and (36) can be used. We get:

_ T

BEv™ (T —T/n,X3") = Ev™ (T — T/n, X;"’;/,L)Jr EA™™ (T = T/n, X3, )+ Ry,
(38)

with (we use (25))

Nk (r)2(m) m nxr)s(m)
E|RT T/n| < 2 Z 10r0™(T — T/n, )|z () < — 5 -
n 1<|1]<4 n
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We now come back to (32), use (38), make a first-order Taylor expansion around 0 of
z — A™™ (T —T/n, X7" vt f ( T 7}/1) z)
and use (34), (35). We obtain:
Ev™(T, X;'") = Ev™(T — T/n, X;”}/ )+ Sr2r

with
?7K(T),8(m)

Syl < TS

Proceeding in the same way to expand Ev™(T —T'/n, X7"" 7/s) around
Ev™(T — 2T /n, X’?_’%T/n), and so on, one finally gets

n—1

Eg(Xp™) = Ev™(T,X7")=Ev™(0,Xi"") + Y Sig),
k=0

n—1
= Bv(0,X))+ Y Sp
k=0

n—1
= Ev "L(T X;L + ZSkT/n
k=0

= Eg(Xp) +Zsmn, (39)

with ( )
NK(T),8
S| < TOEZ

Thus, one has

m v L,N 77 ; m
Bo(xy) - Bg(Xpm)| < T@slm)

5 Proof of Theorem 2.2

5.1 Preliminary remarks.

We start by two lemmas.

The following lemma is given in Bichteler and Jacod [3] in a more general context.
Due to its importance for our results, we include it here.
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Lemma 5.1 Letp € IN, p > 2. Suppose that [ ||z]|Pv(dz) < oo and that f(-) is Lipschitz.
Then the solution X of (1) is in LP(Q)) and

B[ sup I X.|1] < nicry(0o)(1 + Bl Xall) (40)

Proof. We know by the general theory (see, e.g., [14]) that equation (1) has a solution
and it is unique. Let X denote the solution with the convention X, = 0 and define

TF :=inf{t > 0; || X:|| > k} .
Let
)(?ki 3:.X¥ ]1<7% +')6Tk7 ]12Tk'

Then X™*~ = X on [0,7%) N [||Xo|| < k] and moreover the T*’s are increasing with
limy,_,.. T" = 0o a.s.

The hypothesis on v allows us to apply Lemma 4.1 to deduce

[ e yaz,

Bl X7 = ¢, (B[ su
0<s<t

0<s<t

p
+ Bl X
T E_
< pyloo) [ BIFCXE)Pd0 + CpB| Xl

where the right side is finite, because || X7"~|| < k, and f(-) is continuous. Since f(-) is
Lipschitz, . .
17N < e (IF )+ 1XE7))

and applying Gronwall’s lemma we have

E [sup X7 17| < micrrp(00)(1 + B Xa?)

0<s<t

The right side is independent of k, so Fatou’s lemma gives the result. W

In view of the preceding lemma, our proof of Corollary 4.3 can be rewritten to get:

Corollary 5.2 Assume (H1’), (H2’) and (H3’) (resp. (H2”) and (H3”)).
Set
v(t,z) == FEp9(X7r—4) . (41)

Then, there exists an increasing function K(-) such that for any multi-index I with |I| < 4
(resp. 8),
10r0(t, 2)| < ngeryae(1+ [|2]") (42)

with M* = max(2M’,2|1|) (resp. max(2M",2|I|)).
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Lemma 5.3 Assume that [ ||z]|*’v(dz) < oo for some integer p > 1 and that f(-) is
Lipschitz. Then there exists an increasing function K(-) such that, uniformly in n one

has

max B Xy, [ < maeery ap(00) (1 + B Xo#) (43)

Proof. For p =1, one has
B\ X{syrnll® < BllXizll? + BN f(Xizn)(Zasvyrm = Zizga) -

The Lévy-Khintchine formula provides an analytical expression for the characteristic
function of Zr7/,; since Z7,, has moments of orders up to 2p, differentiation under the in-
tegral sign of [ (1 —exp(i < u,z >) 41 < u,z >) Iy, <1v(dz) permits the computation
of these moments. Under (H1), one can then check that

1) T Cp2 (OO)T2
E|| Xzl < Bl X l? + pT

for some constant C' depending only on f(-). One then sums over k to obtain the result
for p = 1. One then proceeds by induction. N

We are now in a position to prove (9).

5.2 Proof of (9)

In this subsection we suppose (H1’), (H2’), (H3’). We follow the guidelines of Subsec-
tion 4.3.

Let Z denote the Lévy process (Zgsr—1/m — Zr—1/m » 0 < 5 <T/n) and let G denote
its infinitesimal generator. Consider functions v in C*(R?) such that

> 1org(z)] < Cy(1 +[12]1M) (44)

1<|11<4

for some positive real number Cy and some integer M, > 2. Consider Dynkin’s for-
mula (33) with Z instead of Z™ and v instead of v™. Make a Taylor expansion to get the
approximate Dynkin formula, similar to (36):

E(Znp) = 9(0) + - Go(0) + ", (45)

with (c0)
~ (o0
E|Rn| S nK(T)vﬂiv
n2
and furthermore the increasing function K(-) is uniform with respect to 3, o, v and n,
and depends on ¥(-) only through the constants C, and M, appearing in (44).
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Choose ) )
1/)(2) = (T - T/’nﬂX;—T/n + f ( ’_?[E—T/n) Z) :
This function 9(-) is of class C*(R?) and satisfies (44) with M,, = M* = M"* = max(2M’, 8)
(remember that M"™ appears in (H3’) and use (42)). Thus (36) can be used. We get:
N N T T DN
Ev (T -T/n,X3) = Ev (T —T/n, X} 1,,) + —EAv (T —T/n, X3 1) + By 1)

(46)

with (we use (42) and (43))

pn NK(T ,M'*(Oo)

B|R} g, < 75020
n

Proceeding as in (39) with X™ instead of X™" and v(-, -) instead of v™(-, ), we deduce:

NK(T),M'

[By(Xz) - Eg(xXp)| < 2

for any function g(-) satisfying the hypothesis (H2’).

5.3 Proof of (10).

To obtain the expansion of the Euler scheme error (10), we must now refine the strategy.
From now on, we suppose (H1”), (H2”), (H3").

It can be checked using the Meyer-Ité formula that the function v(t,-) defined in (41)

solves

(v + A)v(t,z) =0, 0<t<T,
{ (47)

o(T,) =9(),
where A is the infinitesimal generator of the process (X;) (see (2)).

In view of (47), Gypov(t,z) = —A o Ao Avu(t,z). The estimate (42) shows that, for an
increasing function K(-),

:
10000 (t, )| < Ny, aa: (00) (1 + ||| )
where Mt = 2M + 12.

Instead of (32), we now write:

_ _ T _
Ev(T,X3) = Eo(T ~T/n,X})+ ~Edw(T —T/n, X})

2

-|- E&O()U(T —_ T/TL,X%) + R%

2n?
_ T _
= FEvT-T/n,X};)— —FEAu(T —T/n,X7)
n

2

i _
+2n2EA(Av)(T —T/n,X7})+ Ry (48)
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with (we use (43))
nK(T)’MII*(w)

Ry| < KO

(49)

In order to expand the right side of (32) around X%_T/n, we need an “approximate
Dynkin formula” more precise than (36).

Suppose that ¥(-) is of class C°(R?) and that

> 0r(z)] < Cy(1+ 12)1M) (50)

1<|11<6

for some positive real number Cy, and some integer M,. Apply Dynkin’s formula twice:

- T - T/n  ps ~ - -
Ev(Zayn) = $(0) + —Gu(0) + /0 /O EG o Gy(Zs)dods .
We make a Taylor expansion of Z, around 0; we obtain:

E(Zn)2) = 9(0) + —C(0) + 3G 0 Gu(0) + " (51)

with
pK(T)aMdv (OO)
n3

E|R"| <

and furthermore the increasing function K(-) is uniform with respect to 3, o, v and n,
and depends on () only through the constants C;, and M, appearing in (50).

Choose
P(z) = v (T —T/n, X;_T/n +f (X';_T/n) z) :

This function 3(-) is of class C3(R?) and satisfies (50) with M, = M* = max(2M",12)
(use (42) again). Thus, we can apply (51).

Then apply (36) to

,(/)(Z) = Av (T - T/”?‘)Z%—T/n + f ( _%—T/n) Z) )
and finally make a Taylor expansion around 0 for

z— Ao Av (T - T/n,X;_T/n +f ( _;_T/n) z) )

As in the preceding subsection, easy computations lead to:

2

_ _ T _
EU(T7 X%) = EU(T - T/”? X%fT/n) + EEQS(T - T/In”X;fT/n) + S’%*T/'n

where
77K(T),max(2M,12)(00)

|S’_’%7T/n| < n3
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and where the function ¢(-,-) is defined as follows:

1 = = —~
¢(ta$) = §A2U(t,l‘) GoGo vtvz(o) +Go A,Ut,:z;(o)

l\Dll—\

where
v (2) == u(t, z + f(z)z) .
We conclude as in [20]: consider now ¢(t,-), 0 < ¢t < T, instead of g(-) in (9); &(t, )
satisfies (H2’) with M"™* = max(2M", 16), so that
2

_ _ T
EU(T’ X%) = EU(T o h’? X'_?[EfT/'n) + E‘E(JS(T B T/n7XT_T/'”-) + U’.’?*T/n )

with
K (T),mr(00)

|U’_'1[£—T/n| < nd

Proceeding as in (39), we obtain:

2 n—1 n—1
Ev(T,X}) = Ev(T, X7) + — Z E¢(kT [n, Xpr/n) + Z Uk /n -
Finally, we observe that

T2 n—1 T T
— Z E¢(kT/n, Xiz/n) = 5/0 Ed(s, X,)ds +

with ( )
n nK(T),M"* 0

|T | S T

Thus,
— T 1%
Eg(Xr) — Eg(X2) + ;/é E¢(s, X,)ds ’7K<T>+®°) .

n
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