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Abstract

We study a problem of classification of linear homogeneous second-
order ODE’s with polynomial coefficients based on qualitative prop-
erties of singularities. The corresponding combinatorial problem of
counting the number of classes is then solved in terms of the initial
number of singularities.

Un probleme combinatoire en classification
des EDO linéaires du second ordre

Résumé

Nous étudions un probléme de classification d’équations linéaires
homogénes du second ordre & coefficients polynomiaux fondée sur des
propriétés qualitatives des singularités. Le probléme combinatoire
consistant & compter le nombre de classes dans la classification est
ensuite résolu en fonction du nombre initial de singularités.
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We study a problem of classification of linear homogeneous second-
order ODE’s with polynomial coefficients based on qualitative properties
of singularities. The corresponding combinatorial problem of counting
the number of classes is then solved in terms of the initial number of
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1 Introduction

Classes of special functions arising as solutions of ODE’s with polynomial co-
efficients are subject to a comprehensive study in modern mathematics [3, 6].
But even the hypergeometric class, studied on a non-structured basis, looks
like a zoo where many peculiar animals named after great mathematicians are
parked at random. The first structural problem that arises is an enumeration
one. How many types of specific equations can be distinguished in the hy-
pergeometric class? How many distinguished equations lie in the next class
in complexity—the Heun class? How many equations in the next, unnamed,
class whose equations originate from the Riemann-Hilbert problem and isomor-
phic deformation approaches to the Painlevé class of nonlinear equations? How
many distinguished equations arise as specialized and confluent equations from
the third order hypergeometric equation?

In this note, we answer these questions in two steps. First we give a theoret-
ical basis for a classification which, as is natural, involves the order of the equa-
tion and qualitative and quantitative characteristics of its singularities. Quan-
titative characteristics of types of singularities make it possible to distinguish
between types of equations.



As a second step we solve the combinatorial problem of enumerating the
number of types of equations per class under this classification. This enumera-
tion is important because it will provide a basis for future structured studies of
phenomena related to linear differential equations.

2 Classification

As a starting point we consider second-order Fuchsian equations with n singu-
larities one of which is at infinity. The canonical form for these equations is
represented by the symbol 7¢—a polynomial in two variables z and D

T%(2,D) := Py_1(2)D? 4+ P,_o(2)D + P,_3(2), (1)

where D is the differentiation operator and z is the independent variable, Py
denotes a polynomial of degree k and furthermore, P,_1(z) has only simple
roots.
Let v(z) be a solution of the first-order associated Fuchsian equation related
to the symbol
U(z,D) := An_1(2)D + Ap_2(2). (2)

The function v(z) has an explicit form in terms of a product of power-type
monomials (z — z;)*7. Changing the unknown function in (1) by multiplying it
with v(z) induces a s-homotopic transformation

Sy T(z,D) v [v(2)] "' T(z, D)v(z). (3)
The following well-known lemma holds.

Lemma 1 There exists a s-homotopic transformation transforming the canon-
ical form TC of the Fuchsian equation into its normal form with the symbol

TN (z,D) := Sy(T€) = Qan—2(2)D* + Qan—-a(2), (4)
Q2n-2(2) having double zeros at the n — 1 regular singularities.

The singularities are located at infinity and at the roots of (2,-2. By
changing values of parameters in the coefficients of the polynomials (2, _2 and
Q2n—4 we can move the singularities without changing their type. When two
singularities coalesce we get a new equation with possibly new degrees of the
polynomials in (4) and different from the original types of singularities, by so-
called confluence.

Another type of transformation which can be performed on this equation
consists in modifying its parameters so that the singularities do not move, but
one of them degenerates (by cancelling the leading term of the local behaviour
of the leading coefficient) resulting in a change in the type of the singularity.
Both processes lead to an equation that in general can no more be regarded as



Fuchsian and should be called a confluent Fuchsian equation. Below we consider
symbols that arise from a given equation (4) as a result of the processes discussed
above.

The practical classification of types of singularities may be performed either
on the basis of the notion of the s-rank of the singularity [7], or on the basis of
a treatment of singular properties of the zeros of the symbolic indicial equation

™ (z,D) = 0. (5)

The difference between these approaches is not so crucial and is mainly due to
historical reasons. The s-rank definition is based on the notion of elementary
irregular points which, according to Ince [5], constitutes a special case of regular
singular points. Both approaches give the same formulation of Theorem 1 below
and here we focus on the second one.

Since equation (5) is of degree 2 in D, its solutions can be represented in the
neighbourhood of singularities by Puiseux series of the following types

o0

Dm(z) = Cmj(z—2)"" Y he(z— %), Cmj #0,

k=0

Crmooz"= "2y “hpz™" oo # 0.
k=0

Dy (c0)

with integer or half-integer y; satisfying

<p; <n-—1 (6)

N | —

The first term of these expansions gives the behaviour of the logarithmic deriva-
tive of the solutions related to (4) in the neighbourhood of the corresponding
singularity:

[Inw(z)| < K|z — z|" for p; > 1, (7
with an appropriate constant K determined by the coefficients of the polyno-
mials in (4). In the special case pu; = 1/2 this inequality becomes

[Inw(z)] < Kz — 7, (®)

where K depends only on z;.
It is important to stress that for generic singularities g; = 1, corresponding
to regular singular points.

Proposition 1 The p;’s behave subadditively in case of confluence.

Proof. Completely similar to the proof in [7] (see also [5]). O

When our y;’s are integer, they differ by one from the Poincaré rank of the
singularity. This difference is crucial in the above proposition.



We can now define the classification.
Definition. The set of values {u1, pia, ..., poo } is called the s-multisymbol of
the differential equation. Two equations have the same type if and only if they
have the same s-multisymbol.

The Fuchsian equation with n singularities corresponds to a multisymbol

with n times 1. By specialization of the coefficients any u; can be made equal
to 1/2. In the case of confluence of two singularities, the s-multisymbol is
changed by a decrease of one element and the corresponding two pu;’s give rise
to a new one equal to the sum of the original ones. Now, starting from a
Fuchsian equation with n singularities, the question is “How many distinct
equations (w.r.t. this classification) can be obtained by specializations of the
coefficients?”.
Example. We start from the hypergeometric equation with three regular sin-
gularities at 0, 1 and infinity: it corresponds to the s-multisymbol {1,1,1}.
Reductions to s-multisymbols {1/2,1,1}, {1/2,1/2,1}, {1/2,1/2,1/2} can be
regarded as subsequent specifications of parameters ¢, b, a for this equation. Un-
der confluence of the points z = 1, z = co one obtains the confluent hyperge-
ometric equation with s-multisymbol {1,2}. Reductions of this equation with
s-multisymbols {1/2,2}, {1,3/2},{1/2,3/2} can be regarded as confluent hyper-
geometric equations with fixed parameter ¢, Bessel equation, or Bessel equation
with fixed index respectively. The equation resulting from the next confluence
with s-multisymbol {2} is the equation for the parabolic cylinder functions while
its reduction to the s-multisymbol {5/2} is the Airy equation. Thus from the
Fuchsian equation with 3 regular singular points, we get 10 distinct equations.
In our next section, we show how this number can be computed in an algorithmic
way.

In terms of y; we can redefine our classification as follows. Suppose we
have a set of n unities, corresponding to the regular singularities of the initial
equation. Two operations are allowed: each of these unities can loose one-half
and two unities can be added to each other. The question is: How many distinct
sets can be obtained, under the assumption that that those sets which can be
obtained from n — 1 unities do not count ?

It is possible to give a physical formulation of the problem. Suppose that
there is a set of particles each of which can be characterized by a number taking
two values 1 and 1/2. (The particles could be considered as bosons and fermions
and the number is their spin). Suppose that these particles can be combined in
clusters for which spins are summed so that clusters are distinguished only by
their spin and not by the particles. By quantum ensemble we mean the union
of single particles and clusters. How many ensembles is it possible to obtain
starting with n particles?

The problem can be generalized to higher-order equations or systems of first-
order equations. The crucial difference from what we have studied is that for
the second-order equation the set of y;’s is valid for both solutions, whereas for



higher-order equations we need to characterize different solutions by different
sets.

3 Enumeration

We shall prove the following.

Theorem 1 The number of distinct equations obtained by specializing the Fuch-
sian second-order equation with n singularities for n > 3 under the classification
of Section 1 is the nth Taylor coefficient at the origin of

9,3
exp ﬁ = 14224522 4102542024 +362°+652°+11027+185254+0(2°).
—~ j(1 -z
J>0
Proof. The proof is based on generating function techniques and we select

to present it using the framework of [4]. The generating function of a class of
combinatorial objects C is
C(z) = Z en 2",

n>0

where ¢, denotes the number of objects of size n in C (it is assumed here that
all the ¢,’s are finite). Combinatorial constructs on classes of objects have
direct translations into generating function equations. The simplest instance is
provided by disjoint union: obviously the generating function of a class A whose
elements are either elements of B or elements of C, B and C having no common
element is B(z)+ C(z). Similar reasoning shows that the generating function of
the cartesian product B x C is B(z)C(z). A classical lemma gives the generating
function of multisets (sets where repetition is allowed) (see [2, 4]).

Lemma 2 Let A be the class of multisets of elements of B, B having no element
of size 0. Then the generating functions A(z) and B(z) of A and B are related

by
A(z) = exp Z @

From the combinatorial viewpoint, the classification of Section 1 translates
directly into the following combinatorial specification, using a classical combi-
natorial language (see for instance [2, 4]):

Unity = Atom(1),
minusone_half = Atom(0),
Integer = Sequence(Unity, card > 0),
Integer_minus_one_half = Prod(Integer, minus_one_half),
A = MultiSet(Union(Integer, Integer_minus_one_half)).



This reads as follows: a “unity” is an atomic object of size 1, while “mi-
nus_one_half” is an atomic object of size 0. From these atoms, we build more
complicated objects. The first one is an integer, which is simply a sequence of
unities. Then comes an integer minus one half, obtained in the obvious way.
Finally, we consider sets of integers of both types. The reason for using such a
description is that it directly translates into generating function equations. We
thus obtain (using the same symbol for the generating function and the class it
enumerates):

Unity(z) = -z,
minus_one_half(z) = 1,
Integer(z) = z/(1— z) = Integer_minus_one_half(z),
22¢
>0

a

It is also possible, but slightly more complicated, to reach the same result
using the physical interpretation given above. Note that under this latter de-
scription, the sequence can be recognised as the combinatorial object “partitions
of n into parts of two kinds”, which is the name under which it is listed in [8].
From partition theory, it is also easy to see that an alternative form for the

generating function is
1
H (1 _ Zn)2 :

n>0
From this, one sees that the nth coefficient ¢, in the series is related to the
number p, of partitions of the integer n by

n
Cp = EPkPn—h
k=0

The Hardy-Ramanujan theorem on partitions [1] then leads to the conclusion
that asymptotically

Cn ~ I—‘zeW”, K= i, L =27/V3.
n 12

The reason why Theorem 1 is not valid for n = 0,1,2 lies in Liouville’s
theorem on the nonexistence of analytic functions with “extremely simple” be-
haviour.
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