N

N

Parallel Solutions of Three-Dimensional Compressible
Flows
Stephane Lanteri

» To cite this version:

Stephane Lanteri. Parallel Solutions of Three-Dimensional Compressible Flows. RR-2594, INRIA.
1995. inria-00074089

HAL Id: inria-00074089
https://inria.hal.science/inria-00074089
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074089
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel Solutions of
Three-Dimensional Compressible Flows

Stéphane Lanteri

N° 2594
Juin 1995

PROGRAMME 6

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

Parallel Solutions of
Three-Dimensional Compressible Flows

*

Stéphane Lanteri

Programme 6 — Calcul scientifique, modélisation et logiciel numérique
Projet Sinus

Rapport de recherche n° 2594 — Juin 1995 — 50 pages

Abstract: In this report, we present parallel solutions of realistic three-dimensional flows
obtained on the Intel Paragon, the Cray T3D and the Ibm SP2 MPPs (Massively Parallel
Processors). The solver under consideration is a representative subset of an existing indus-
trial code, N3S-MUSCL (a three-dimensional compressible Navier-Stokes solver, see Chargy|[3]).
It implements a mixed finite element/finite volume formulation on unstructured tetrahedral
meshes. Defining a good strategy for the parallelisation of an unstructured mesh based
solver is a challenge, particularly when one aims at reaching a high level of performance while
maintaining portability of the source code between scalar, vector and parallel machines. The
parallelisation strategy adopted in this study combines mesh partitioning techniques and a
message-passing programming model. The mesh partitioning algorithms and the generation
of the corresponding communication data-structures are gathered in a preprocessor in order
to introduce a minimum change in the original serial code. The portability from one message
passing parallel system to another may be enhanced with the use of a communication library
such as PVM.

Key-words: Computational Fluid Dynamics, Three-dimensional flows, Euler equations,
Navier-Stokes equations, Unstructured meshes, Parallel computing.

(Résumé : tsvp)

*INRIA Sophia-Antipolis, Projet Sinus, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis,
(FRANCE), e-mail : lanteri@sophia.inria.fr

Unité de recherche INRIA Sophia-Antipolis

Résolutions Paralleles
d’Ecoulements Compressibles Tridimensionnels

Résumé : Dans ce rapport nous présentons des résultats de simulations numériques d’écou-
lements tridimensionnels sur les calculateurs massivement paralleles Intel Paragon, Cray
T3D et Ibm SP2. Le solveur considéré est un sous-ensemble représentatif du code industriel
N3S-MUSCL (un solveur des équations de Navier-Stokes tridimensionnelles pour des fluides
compressibles, voir Chargy|[3]). Ce solveur est basé sur une formulation mixte éléments fi-
nis/volumes finis en maillages tétraédriques non-structurés. La parallélisation de solveurs
en maillages non-structurés constitue une tache non-triviale, en particulier lorsque la stra-
tégie adoptée doit conduire a ’obtention de bonnes performances tout en maximisant la
portabilité du code source résultant entre architectures séquentielles, vectorielles et paral-
leles. La stratégie de parallélisation adoptée ici combine des techniques de partitionnement
de maillages et une programmation dans un modele par transfert de messages. Par ailleurs,
la portabilité du code source résultant peut étre maximisée avec 1'utilisation d’une librairie
de communication standard telle que PVM.

Mots-clé : Mécanique des Fluides Numérique, Ecoulements tridimensionnels, Equations
d’Euler, Equations de Navier-Stokes, Maillages non-structurés, Calcul parallele.

Parallel Solution of Three-Dimensional Compressible Flows

Contents
1 Introduction

2 The FEM/FVM Navier-Stokes Solver
2.1 Governing Equations Lo
2.2 Boundary Conditions
2.3 Spatial Discretisation L L Lo
2.3.1 Convective Fluxes Computation
2.3.2 Viscous Fluxes Computation
2.4 Time Integration L e
2.4.1 Explicit Time Advancing Procedure
2.4.2 Implicit Time Advancing Procedure

3 Computational and Parallel Implementation Issues
3.1 Identification of the Main Computational Kernels
3.1.1 Edge Based Computations
3.1.2 Tetrahedron Based Computations
3.2 Parallelisation Strategy Lo oL
3.3 Parallel Algorithms Lo oo
3.4 Automatic Mesh Partitioning L o000

4 Performance Results

4.1 Parallel Platforms Description
4.2 Programming Languages and Environments
4.3 External Flow Around an ONERA M6 Wing

4.3.1 Computational Scalability For Increasing Size Problems

4.3.2 Steady State Computations 0L
4.4 External Flow Around a FALCON Jet
4.5 Internal Flow Inside an Engine Diffusor

5 Conclusion

RR n"2594

ury

O © © 0o O Uk NN

11

11
12
12
13
15

16
16
17
18
18
21
30
37

47

1 INTRODUCTION 1

1 Introduction

In the past ten years, computer technology has grown rapidly especially with regard to pa-
rallel architectures. Several configurations of massively parallel processors are today installed
worldwide [5], most of them being part of academic or research institute computing means.
In order for those parallel architectures to be widely adopted by the industrial community,
significant advances in software environments that facilitate the parallelisation step while
maintaining the portability, yet need to be achieved; on the other part, it is often necessary
to demonstrate the capabilities of such computing architectures on realistic large-scale ap-
plications. In the field of computational fluid dynamics, codes that solve the Euler or even
the full Navier-Stokes equations around or inside complex geometries are currently used in
production mode by aircraft or engine manufacturers. These codes are often based on fi-
nite element discretisations of the computational domain. In the present paper, we consider
the parallelisation of a representative subset of an existing industrial code, N3S-MUSCL (a
three-dimensional compressible Navier-Stokes solver, see Chargy[3] and also [23] for some
results on hypersonic flows) which runs on scalar and vector machines. The targeted parallel
architectures are of MIMD type. This work is complementary to what was previously pre-
sented in Loriot and Fezoui[17] and Fezoui et al.[13]. Other works in this direction can be
found in Johan et al.[14] and Morano and Mavriplis[19] for experiences on the Connection
Machine CM-5, Mavriplis et al.[18] for the parallelisation of a multigrid Euler solver on the
Intel Touchstone Delta.

Defining a way to implement a given serial algorithm on a parallel machine depends of
course on the level of parallelism of the algorithm as well as on some of the characteristics
of the selected machine, but also on some previously set objectives. As an example, in some
of our previous works (see Fezoui and Lanteri[10], Farhat et al.[6]), our main goal was to
achieve a maximum level of performance, thus accepting to introduce significant modifica-
tions in the original serial algorithm. This approach is considered feasible for “simple” code
which generally deal with the solution of two-dimensional problems. Distributed solutions of
three-dimensional problems using finite-element solvers based on fully unstructured meshes
clearly represents a more challenging task. As a first condition, we require to minimize the
programming effort on the original serial algorithm in order to be able to maintain and up-
grade the resulting parallel version of the code. Moreover, we expect the latter to be as little
processor architecture dependent as possible. That is, it must run on both serial and parallel
machines (at least of the same kind) with no further modification. From this viewpoint, the
highest efficiency to be achieved on any particular machine is left to an optimisation phase.

The main characteristic of N3S-MUSCL is that it is based on finite volume schemes using
finite element type grids (tetrahedra), which results in complex data structures. The conser-
vative form of the Navier-Stokes equations is discretised using a mixed finite element /finite
volume method on fully unstructured meshes. The convective fluxes are computed by means
of an upwind scheme which is chosen to be Roe’s scheme. Second-order spatial accuracy is
achieved by using an extension to unstructured meshes of the “Monotonic Upwind Scheme

2 S. Lanter:

for Conservative Laws” (MUSCL) method introduced by van Leer. A standard Galerkin
approximation is used to evaluate the viscous fluxes. Two strategies are considered for ad-
vancing the solution in time. An explicit formulation (a predictor/corrector scheme) can be
used for steady as well as for unsteady flow simulations. The second approach is best suited
to steady flow simulations; it makes use of a linearised implicit formulation.

The parallelisation strategy adopted in this study has been already successfully applied
in the two-dimensional case (see Fezoui et al.[11], Farhat and Lanteri[8]). It combines mesh
partitioning techniques and a message-passing programming model. The mesh partitioning
algorithms and the generation of the corresponding communication data-structures have been
gathered in a a special purpose software package in order to introduce a minimum change in
the original serial code. The portability from one message passing parallel system to another
has been enhanced through the use of PVM for the implementation of the communication
steps. However, depending on the targeted parallel system, we have also been interested
in testing the native communication library proposed by the constructor. In that case, a
small percentage of the code has required modifications in order to switch from PVM to the
corresponding communication library. Two partitioning approaches have been investigated
here. The first one makes use of overlapping mesh partitions; it contributes to minimize the
programming effort on the original serial algorithm but is characterized by redundant arith-
metic operations. The second strategy uses non-overlapping mesh partitions and demands
additional programming effort. As it has been already noticed in the two-dimensional case
(see Farhat and Lanteri[8] for more details), the latter strategy is the one that yields the
best scalability properties of the resulting parallel solver.

The remainder of this paper is organized as follows. Section 2 describes the mathemati-
cal model of the problem and the approximation methods involved in the numerical solution
algorithm. Section 3 identifies the main computational kernels, and motivates the selected
parallelisation strategy. Finally, Section 4 reports and analyzes the performance results ob-
tained on several parallel systems.

2 The FEM/FVM Navier-Stokes Solver

Here, we overview the spatial and temporal discretisation methods that are detailed in
Chargy([3] for the numerical solution of the full three-dimensional Navier-Stokes equations.

2.1 Governing Equations

Let Q C IR® be the flow domain of interest and T' be its boundary. The conservative law
form of the equations describing three-dimensional Navier-Stokes flows is given by:

oW - 1 = =
=+ VFW) = o V.RW) (1)

2 THE FEM/FVM NAVIER-STOKES SOLVER 3

where W = W (Z,t); ¥ and t denote the spatial and temporal variables, and:

T
Wz(p,pﬁ,E)T 7 62(8 0 8)

dx’ By’ 0z
and:
F,(W) R, (W)
F(W) = Fy(W) , R(W)= Ry(W)
F.(W) R.(W)
F,(W), F,(W) and F,(W) denote the convective fluxes and are given by:
U pU pw
pu2 +p pUv puw
W) =| e | R =] et | RD=| oo
puw pVw pw2 +p
u(E + p) v(E + p) w(E + p)

while R, (W), R,(W) and R,(W) denote the diffusive fluxes and are given by:

R,(W) = Tay

2k 02
Pr oz

UTyy + VTpy + WT,, +

0

Tay
Ry(W) = :yy
yz

vk Oe

UTpy + VTyy + WTy. + ﬁﬁ_y

R. (W) = Tyz
vk e

UTy, + UTy, + WT,, + ——

Pr oz

T

—

In the above expressions, p is the density, U = (u,v,w)" is the velocity vector, E is the
total energy per unit of volume, p is the pressure, ¢ is the specific internal energy, k is the

4 S. Lanter:

UoL
normalised thermal conductivity, Re = PO here po, Uo, Lo and py denote the charac-
Ho
C
teristic density, velocity, length, and diffusivity is the Reynolds number, and Pr = % is
0

the Prandtl number; 7,,, 74y, Tz, Ty:, Tyy and 7., are the components of the three-dimensional
Cauchy stress tensor. The velocity, energy, and pressure are related by the equation of state
for a perfect gas:

p=(-1(E- 3o T

where v is the ratio of specific heats (y = 1.4 for air), and the specific internal energy is
related to the temperature via:

2.2 Boundary Conditions

The boundary I' of the flow domain is partitioned into a wall boundary I',, and an infinity
boundary I'o.: I' = ', UT'.. Let 77 denote the outward unit normal at any point of I', and T,
denote the wall temperature. On the wall boundary I',,, a no-slip condition and a Dirichlet
condition on the temperature are imposed:

U=0, T=T, (2)

No boundary condition is specified for the density. Hence, the total energy per unit of
volume and the pressure on the wall are given by:

b= (7 - l)pC'UT'w , B =pC,T, (3)

The viscous effects are assumed to be negligible at infinity, so that a uniform free-stream
state vector W, is adopted as a representation of the solution on I'.:

1
T M2 (1)

Poo =1 (jm:(uoo,voo,woo) with ||(700||:1 , Poc

where « is the angle of attack, and M is the free-stream Mach number. This approach is ge-
nerally well suited to external flows around bodies, however for internal flows the interaction
between the body surface and the freestream boundaries can yield to the apparition of non-
physical oscillations. In that case an adapted definition of the above free-stream state vector
(for instance by taking into account a velocity profile) or a more sophisticated treatment of
the corresponding boundary conditions may be necessary.

2 THE FEM/FVM NAVIER-STOKES SOLVER 5

2.3 Spatial Discretisation

The flow domain Q is assumed to be a polyhedral bounded region of IR®. Let 7T;, be a
standard tetrahedrisation of €, and h the maximal length of the edges of 7;,. A vertex of
a tetrahedron T is denoted by S;, and the set of its neighboring vertices by K (7). At each
vertex S;, a control volume C} is constructed as the union of the subtetrahedra resulting
from the subdivision by means of the medians of each tetrahedron of 7, that is connected
to S; (see Fig. 1). The boundary of C; is denoted by 9C;, and the unit vector of the outward
normal to 9C; by 7; = (Vig, Viy, Viz). The union of all these control volumes constitutes a
discretisation of domain €:

Q= U C; , Ny : number of vertices of 7,

Figure 1: 2D control surface (left) and contribution to a 3D control volume (right)

The spatial discretisation method adopted here combines the following features :

¢ a finite volume upwind approximation method for the convective fluxes. Second order
spatial accuracy is achieved using an extension of van Leer’s[24] MUSCL technique to
unstructured meshes;

¢ a classical Galerkin finite element centered approximation for the diffusive fluxes.

Integrating Eq. (1) over C; yields:

/// da:+///V]—“ d:c_///ReVR (5)

Finally, integrating Eq. (5) by parts leads to:

6 S. Lanter:

—

///—dx + ¥ /]—"(W).ﬁido <1>

J€K()pCy;
+ [Fw)ido <2>
0C;NT'y, (6)
+ / FW).iido <3>
aC; ﬂI‘
= >/ / [Rw).¥nfaz <a>
Re T,S;€T

where 8C;; = dC;NOC;, and N = NF (z,y, z) is the P1 shape function defined at the vertex
S; and associated with the tetrahedron T'.
2.3.1 Convective Fluxes Computation
A first order finite volume discretisation of < 1 > goes as follows:
<1>= Wi WP+ At Y ex(W], W},) (7)
JEK(1)
where ®r denotes a numerical flux function such that:
r(Wi, W, 0) = [F(W)51do (8)
(,)Ci]'

Upwinding can be introduced in the computation of Eq. (8) by using Roe’s[20] approxi-
mate Riemann solver thus computing ¢ as follows:

L FW) 1 FW) (W, — W)
Qx(Wi, W,) = 5 Tig— | Ar(Wi, Wy, 75 | JT (9)
where Ay is Roe’s mean value of the flux Jacobian matrix 0F (W) 7

ow

Following the MUSCL technique, second order accuracy is achieved in Eq. (8) via a
piecewise linear interpolation of the states W;; and W, at the interface between control
volumes C; and Cj. This requires the evaluation of the gradient of the solution at each
vertex as follows:

Wi =W+ =(VW)..5:5; , W =W, — =(VW);.5:5; (10)

N =

~ - T
where W = (p , U, p) — in other words, the interpolation is performed on the physical

variables instead of the conservative variables. The approximate nodal gradients (6W)@ are

2 THE FEM/FVM NAVIER-STOKES SOLVER 7

obtained by means of a linear interpolation of the Galerkin gradients computed on each

tetrahedron of C;:
/ / VW |, dz
vol(T) ¢

AT 1 Y WL ONT

// dz _V01 ZC k=1,keT B (11)

The construction given by Eq. (10-11) results in a half-upwind (Fromm-like) scheme
which is spatially second order accurate but may present spurious oscillations in the so-
lutions, expressing a loss of monotony. One way to circumvent this problem is to make a
compromise between the first order scheme and the second order one by applying slope
limitation procedures. The one selected here consists in the following :

- in order to measure the upstream and downstream variations of the unknown on the edge

E;; = {5, S;}, we introduce fictitious values T/Vzg and Wf in addition to the nodal

values W; and W;; they are derived from the nodal gradlents (11) as follows :
S f = o -
Wi =W;=2(VW), 88 4+ (W; = W)
Wi =W, = 2AVW); 55, — (W; - W)

- approximate values of variations of the unknown W are then obtained by using the van
Albada limiter[25] which writes as :

dWi; = ave[(W; — W), (W; — W)))]
dWj: = ave[(W; = W;), (W; = W}))]

72

where :

a(b® +€?) + b(a® + £2)
ave[a,b] = a® +b? + €2

if a.b>0

0 else

Limited arguments for the numerical flux function ¢ are then computed by :

- - 1 - ~ ~ 1 -

8 S. Lanter:

When considering flows for which the viscous terms are dominant (small values of the
Reynolds number) the above limitation procedure is generally not necessary. Indeed, the se-
cond order upwind approximation obtained using Eq. (8-9) and Eq. (10-11) is characterised
by the introduction of an amount of numerical diffusion which can prevent a good representa-
tion of the viscous effects. One way to minimize the effect of the numerical diffusion consists
in combining centered and fully upwind slopes in the computation of the nodal gradients :

(VW)] = (1= B)(VW){ + B(VIW){ ™ (13)
where the centered gradient (V)¢ (3 = 0) is given by any vector that verifies:

(VW)Ce 8.5, = W, — W, (14)

Then a simple way to compute the upwind part (3 = 1) of the nodal gradient (13) goes
as follows :

(VW)IP" = 2VW))77 — (VI)Gen

where (§W)f:% is given by (11).

The second term < 2 > and the third term < 3 > of Eq. (6) include the contributions
of the boundary conditions and are evaluated as follows:

Wall boundary : the no-slip condition is enforced with a strong formulation and therefore
the corresponding boundary integral in < 2 > is not explicitly computed.

Inflow and outflow boundaries : at these boundaries, a precise set of compatible exterior
data that depend on the flow regime and the velocity direction must be specified. Here, a plus-
minus flux splitting is applied between exterior data and interior values. More specifically,
the boundary integral < 3 > is evaluated using a non-reflective version of the flux-splitting
of Steger and Warming[22]:

/ FW)itsdo = A (Wi, i) Wi + A~ (Wi, figoe) Wi (15)
9C;NT s
2.3.2 Viscous Fluxes Computation

The viscous integral < 4 > is evaluated using a classical Galerkin finite element P1 method.
The components of the stress tensor and those of VNI are constant in each tetrahedron.
The velocity vector in a tetrahedron is computed as follows:

and the viscous fluxes are approximated as follows:

2 THE FEM/FVM NAVIER-STOKES SOLVER 9

R(T) = [[[Row) 9N dz = vol(T) (RZ(T) o) o AT 8f]aV§T)

T

where R,(T), R,(T) and R,(T') are constant values on the tetrahedron 7.

2.4 Time Integration

Assuming that W (&, t) is constant over the control volume C; (in other words, a mass lumping
technique is applied to the temporal term of Eq. (6)), we obtain the following semi-discrete
fluid flow equations:

dw?

where W = W(&;,t"), t" = nAt™ and:

W) = > (Wi, Wi, U) + / F(W).udo + — > R{T) (17

JEK(D) 9C,MTa € r.seT

2.4.1 Explicit Time Advancing Procedure

A predictor-corrector can be selected for time integrating the semi-discrete equations Eq.
(16). This explicit scheme which is of second-order accuracy and cheap in terms of CPU
costs (this is often a requirement of industrial codes). First we predict a state Wnts using
the Euler equations :

S AW).(9W), (18)

Wi

2

_ 11/m
=W -

In the second phase (correction), the fluxes are evaluated using the predicted state:

D=

- ~ n+l 1 =
Win—l_l = Win - A" LZ q)(Wij—i— ’Wji+2) Vij) + E Z RL(T) (19)

je K (4) T,5;€T

2.4.2 TImplicit Time Advancing Procedure

Explicit time integration procedures are subjected to a stability condition expressed in terms
of a CFL (Courant-Friedrichs-Lewy) number. When one is interested in looking for steady
solutions of the Euler or Navier-Stokes equations, an efficient time advancing strategy can
be obtained by means of an implicit linearised formulation. Here, we briefly recall the main
ingredients of this approach which is described in details in Fezoui and Stoufflet[12]. A
Newton-like implicit linearised version of Eq. (16) writes as :

10 S. Lanter:

vol(C;)

ND SWrt Ly w(Wwrthy =0 , i=1,---,Ny (20)

where W/t = W™ — W». In Eq. (20), an elementary convective flux is computed as :
é}' :@F(Winawfyﬂimfin—i—awjn—kl’ﬁij)
(21)

0P 0
= (W', W}, 7;;) + l F] SWi T+ l =

. | swntt
owpr ¢ 8W;’] J

A similar expression can be written for the computation of an elementary diffusive fluxe.
Suppose now that the numerical flux function of Eq. (8) can be written as :

b -(U,V,7) = Hy(U,V,7)U + Hy(U,V, 0)V
(22)
H.(U,U,?)U + Hy(U,U,7)U = AU, 7)

where the first of Eq. (22) is a tentative linearisation while the second one is a consistency
property. For instance the Steger and Warming[22] flux-splitting is such that :

H\(U,V,0) = AT (U, D) , Hy(UV,7)=A(V,7)

In this study, we make use of a linearisation of Roe’s numerical flux function (9).
The derivatives of ® » may be very expensive to compute, therefore we introduce a sim-
plified linearised version which make use of Eq. (22) :

br = &)F(WZL?W/J?L7WZL+17I/V]?H—l’ﬁi]')
= QF(W, W}, Tiy)+ (23)

HI(WL‘”, an) Ijij)ém/'in-l-l + .HQ(W;L, W;L, Ijij)(SI/I/;L+1

The resulting scheme is in fact a modified Newton method where the exact Jacobians
arising in Eq. (22) are replaced by simpler expressions. As a consequence, we cannot ensure
that this formulation will yield a quadratically converging method for time steps tending to
infinity.

The resulting Euler implicit time integration scheme is given in matrix form by :

I .
PW™)sW™t! = <M + J(W")) SWHL = §Wn (24)

where J(W™) denotes the approximate Jacobian matrix and §Wn is the explicit part of
the linearisation of W(W™*!). The matrix P(W™) is sparse and has the suitable properties
(diagonaly dominant in the scalar case) allowing the use of a relaxation procedure (Jacobi

3 COMPUTATIONAL AND PARALLEL IMPLEMENTATION ISSUES 11

or Gauss-Seidel) in order to solve the linear system of Eq. (24). Moreover, an efficient way
to get second order accurate steady solutions while keeping the interesting properties of the

first order upwind matrix is to use the second order elementary convective fluxes based on
Eq. (10) in the right-hand side of Eq. (24).

3 Computational and Parallel Implementation Issues

3.1 Identification of the Main Computational Kernels

From the description of the proposed numerical solution algorithm, it follows that our fluid
solver contains essentially two types of elementary computations, one based on the mesh
edges (i.e. for the convective fluxes computation), and the other based on the mesh tetrahedra
(i.e. for the diffusive fluxes computation). Both type of computations can be described as
three-step sequences of the form Gather/Compute/Scatter.

3.1.1 Edge Based Computations

The evaluation of the second term of < 1 > in Eq. (6) using the numerical flux function ®#
of Eq. (8) with the second order approximation outlined in Eq. (10) can be summarized as
follows:

Hy = ®x(Wy, Wy, 7y) ~ / F(W).5do
oCy; (25)
where: U;; = / vido =11 + 1
aCy;

Essentially, one-dimensional elementary convective fluxes are computed at the intersec-
tion between the control volumes C; and C; . Each elementary flux contributes to a flux
balance at the boundary of the control volume C}. This balance involves the accumulation
over the set of neighboring vertices K(7) of all computed fluxes. From the second of Egs.
(25), it follows that only H;; needs to be computed in order to update the flux balances at
the two end-point nodal values of edge E;; = {5;, S;} . Therefore, the most efficient way for
evaluating the convective fluxes is to loop over the list of the mesh edges and compute as
follows:

12

S. Lanter:

Gather
Wj = W(5;)
Gather VWi = VW(Si)

¢, =@, + H;
Scatter B, — &, — Hy,

End Do

For each edge E;; = {S,,5;} of 7, Do

Compute H,; = ®x(W;;, Wj;, ;)

3.1.2 Tetrahedron Based Computations

In the last term < 4 > of Eq. (6), the elementary diffusive flux ﬁL(T) is constant in each
tetrahedron 7'. Its evaluation requires accessing the values of the physical state W at the four
vertices of tetrahedron 7. The values of R,(T'), R,(T) and R.(T") contribute to the diffusive
fluxes at all four vertices of tetrahedron 7'. Clearly, the most efficient way for evaluating the
diffusive fluxes is to loop over the list of the mesh tetrahedra and compute as follows:

Gather
Compute R,(T'), R,(T), R.(T)
Scatter

End Do

For each tetrahedron T;j; = {S;, S}, Sk, Si} of T, Do

W, =W(S,), W;=W(S))
Wy = W(Sy), W,=W(S)

Vi=Vi+Ri(T), V;=V;+R;(T)
V=W + Rk(T) , Vi=Vi+ RI(T)

The evaluation of the half-upwind nodal gradient of Eq. (11) follows the same computa-

tional pattern described above.

3.2 Parallelisation Strategy

The parallelisation strategy adopted in this study has been already successfully applied in
the two-dimensional case (see Fezoui et al.[11], Farhat and Lanteri[8]). Preliminary results in

3 COMPUTATIONAL AND PARALLEL IMPLEMENTATION ISSUES 13

the three-dimensional case are also presented in Loriot and Fezoui[17] and Fezoui et al.[13].
It combines mesh partitioning techniques and a message-passing programming model. The
underlying mesh is assumed to be partitioned into several submeshes, each defining a subdo-
main. Basically the same “old” serial code is going to be executed within every subdomain.
Modifications occured in the main time-stepping loop in order to take into account one or
several assembly phases of the subdomain results, depending on the order of the spatial
approximation and on the nature of the time advancing procedure (explicit/implicit). The
assembly of the subdomain results can be implemented in one or several separated modules
and optimized for a given machine. This approach enforces data locality, and therefore is
suitable for all parallel hardware architectures.

The reader can verify that for the computations described herein, mesh partitions with
overlapping simplify the programming of the subdomain interfacing module. However, mesh
partitions with overlapping also have a drawback: they incur redundant floating-point ope-
rations. On the other hand, non-overlapping mesh partitions incur little redundant floating-
point operations but induce additional communication steps. While physical state variables
are exchanged between the subdomains in overlapping mesh partitions, partially gathered
nodal gradients and partially gathered fluxes are exchanged between subdomains in non-
overlapping ones. In addition, special care must be taken in the treatment of the convective
fluxes in the case of non-overlapping mesh partitions (because of the possible differences
in the orientation of the interface edges which are not part of the original mesh but are
instead constructed during a preprocessing phase of the parallel algorithm). In other words,
the programming effort is maximized when considering non-overlapping mesh partitions.
We refer to Farhat and Lanteri[8] for a comparison of these two approaches in the context
of two-dimensional simulations. In the present study we will consider both one tetrahedra
wide overlapping and non-overlapping mesh partitions for second order accurate explicit and
implicit computations.

3.3 Parallel Algorithms

For an explicit time integration procedure and a one tetrahedra wide overlapping mesh
partition, the main loop of the parallel fluid solver described herein goes as follows:

14 S. Lanter:

Repeat step = step + 1

Compute the local time steps

Compute the nodal gradients and the diffusive fluxes
Exchange the nodal gradients

Compute the convective fluxes

Update the physical states

Exchange the conservatives variables

Until step = stepae

In the above pseudo code, step,,,, denotes the maximum number of time steps. For an
implicit time integration procedure, the update phase is repaced by the following two-step
solution procedure:

Forms the implicit matrix
For srl =1 to nsrl Do

Exchange the right-hand sides
Perform a Jacobi relaxation

End Do

where nsrl denotes the number of Jacobi relaxations that need to be done in order to
approximately solve the linear system arising at each time step. One can notice that a
global solution strategy has been selected through the choice of the Jacobi method which is
naturally parallelisable.

When a non-overlapping mesh partition is used, the explicit parallel algorithm becomes:

Repeat step = step + 1

Compute the local time steps

Compute the nodal gradients and the diffusive fluxes
Exchange the partially gathered nodal gradients
Compute the convective fluxes

Exchange the partially gathered nodal fluxes
Update the physical states

Until step = steppas

3 COMPUTATIONAL AND PARALLEL IMPLEMENTATION ISSUES 15

While for an implicit time integration procedure we obtain:

Forms the implicit matrix
Exchange the partially gathered diagonal blocks of the implicit matrix
For srl =1 to nsrl Do

Exchange the the partially gathered right-hand sides
Perform a Jacobi relaxation

End Do

We can therefore expect a lower communication cost for an implicit computation using
a one tetrahedra wide overlapping mesh partition as suggested by the additional communi-
cation step involving the diagonal blocks of the implicit matrix in the non-overlapping case.
On the other part, the above pseudo-codes only show local communication steps at artificial
submesh boundaries; indeed, global communication steps (reduction operations) are also ne-
cessary for the computation of the non-linear (time stepping loop) and linear residuals (linear
system resolutions).

3.4 Automatic Mesh Partitioning

For the time integration procedures considered in this study, an automatic mesh partitio-
ner should focus primarily on creating load balanced submeshes which induce a minimum
amount of interprocessor communications. This can be achieved by using a two-step proce-
dure. First, a fast and cheap partitioning scheme is used to derive an initial candidate; then,
an optimisation process is performed in order to realise the stated goals. While the former
step consists in a global operation (the overall mesh is concerned by this step), the latter
mainly concentrate on those mesh components that are neighbors of the artificial submesh
interfaces (local operation). Optimisation techniques that are used in this context include
(among others) simulated annealing and the Kernighan-Lin algorithm. Mesh partitioning
algorithms can exploit the mesh connectivity as it is the case for the Greedy algorithm (see
Farhat and Lesoinne[7]). This algorithm basically bites into the mesh in order to construct
every submesh. They can also be based on geometric informations such as the principal
inertia directions of the mesh. In that case, a direction is first specified (one of the principal
inertia directions). Next, the mesh vertices are projected (orthogonal projection) onto that
direction. Finally, the projected nodes are sorted along that direction then collected to build
the requested submeshes. Variations of the above algorithm can be obtained by applying
the project, sort and collect paradigm in a recursive manner. More sophisticated algorithms
are graph theory based such as the recursive graph bisection or the recursive spectral bisec-
tion algorithms (see Simon[21] for more details). We refer to Farhat and Lanteri[8] for an

16 S. Lanter:

evaluation of the influence of the mesh partitioning algorithm on two-dimensional parallel
simulations.

In the present study, the computational mesh is partitioned in a preprocessing step. We
have used two special purpose packages that implement several mesh partitioning algorithms
: MS3D (a Mesh Splitter for 3D applications, a description of a two-dimensional version of
this preprocessor with a set of experimental results may be found in Loriot[16] and Fezoui
et al[11]) for the construction of one tetrahedra wide overlapping mesh partitions, and
TOP/DOMDEC (a software tool for mesh partitioning and parallel processing of CSM and CFD
computations [9]) to generate non-overlapping ones.

4 Performance Results

4.1 Parallel Platforms Description

In this section, we discuss the parallel performance results obtained on various configurations
of the Intel Paragon, the Ibm SP2 and the Cray T3D parallel processors. We also give
results from experiments performed on a network of workstations. The main characteristics
of the targeted systems are briefly described below.

Intel Paragon : like its predecessors, the prototypical Touchstone Delta system and the
iPSC-860, the Intel Paragon XP/S is a distributed memory computer. Its architec-
ture supports Multiple Instruction Multiple Data stream (MIMD) and most notably
Single Program Multiple Data (SPMD) styled applications. The Intel Paragon pro-
cessing nodes are arranged in a two-dimensional rectangular grid. The system contains
compute nodes, service nodes and I/O nodes. Compute nodes are used for execution
of parallel programs; service nodes offer the capabilities of a UNIX system including
compilers and program development tools thus making a traditional front-end compu-
ter unnecessary; I/O nodes are interfaces to mass storage and Local Area Networks
(LANSs). The data network is constructued on the basis of Mesh Routing Chips (MRCs)
which are connected by high-speed channels. The network has a theoretical bidirectio-
nal bandwith of 175 Mb/s. Each processing node consists of two 1860XP RISC proces-
sors. One of them is working as the application processor, the other one as the message
processor. They share a common memory. The purpose of the message processor is to
relieve the application processor from the overhead work related to message-passing.
The message processor sends and receives messages from the other nodes via a net-
work interface. The i860XP processor runs at 50 Mhz. It has two pipes for floating-point
operations, an adder and a multiplier, each able to provide a result (64 bit IEEE arith-
metic) at every cycle. This adds up to 75 Mflop/s peak performance for a single 1860XP
processor.

Cray T3D : the Cray T3D massively parallel processing system is a scalable MIMD system
with a physically distributed, globally addressable memory. The Cray T3D compute

4 PERFORMANCE RESULTS 17

nodes are comprised of two processing elements each with a CPU, local memory and a
MCU (Memory Control Unit). These processing elements are coupled by an extremely
fast interconnection network with a transfer rate at 300 Mb/s per data channels. The
data channels are bidirectional and independent in each of the three dimensions z, y and
z. The Cray T3D network topology is a three-dimensional torus, i.e. a three-dimensional
grid with wrap-around connections. This topology ensures short connection paths as
well as a high bisection bandwith. The Cray T3D system employs the DEC Alpha pro-
cessor which operates at a clock speed of 150 Mhz (6.6 ns). This superscalar single
chip processor can initiate a floating-point operation, a load or a store, or an integer
operation in one cycle. Thus a nominal peak performance of 150 Mflop/s is achieved
for 64 bit IEEE format. The Cray T3D system is tightly coupled to a Cray Y-MP or a
Cray €90 system where development and compilation activities, as well as submition
of jobs take place.

Ibm SP2 : blending the best attributes of workstations and high performance computers, the
Ibm 9076 SP2 is designed to provide a parallel computing environment while being ef-
fective for serial workloads, for both batch and interactive applications. Based on the
Ibm RISC System /6000 66 Mhz POWER2 microprocessor, the SP2 can be configured with
thin or /and wide nodes. The primary differences between thin and wide nodes are 64Kb
versus 256 Kb data cache size, 64 bit versus 256 bit memory bus width and 128 bit ver-
sus 256 bit processor to data cache bus width. Because of these architectural differences,
codes may not achieve the same performance on thin and wide nodes even though both
are based on the same microprocessor. The 66 Mhz POWER2 microprocessor is capable of
266 Mflop/s peak performance (64 bit IEEE format). The SP2 offers a great flexibility
concerning the implemented communication strategy. Indeed, users are able to connect
to early every network they may have installed. Offering broader connectivity and hi-
gher communication speeds, the Micro Channel adapters of the SP2 include among
others HIPPI, FDDI and ATM. Based on a technology developed by Ibm, the High-
Performance Switch (HPS) is designed to provide efficient communication between the
SP2 nodes. It is designed such that the point-to-point inter-processor communication
time is independent of the relative location of the communicating nodes. A connection
between any two nodes supports a peak bi-directional bandwith of 40 Mb/s with a
hardware latency of 500 ns (up to 80 nodes) and 875 ns (80-512 nodes). An important
characteristic of the switch is that the bisectional bandwith is designed to scale linearly
to thousands of nodes, with an essentially constant latency per connection. Hence, the
necessary balance between inter-processor communication speed and the total system
compute power is retained as the number of processor nodes is increased.

4.2 Programming Languages and Environments

We emphasize the fact that essentially the same code is used on each of the above platforms
the main differences being the following :

18 S. Lanter:

e on the Intel Paragon, communication steps are performed using the NX native com-
munication library;

e on the Ibm SP2, the MPL native communication library is used;

e the Cray optimized PVM library is used on the Cray T3D.

Computations have also been performed on a group of Dec 3000/600 workstations. In
that case, communication steps are performed using PVM version 3.3, the tested workstations
being part of a larger Ethernet based local network. The Dec 3000/600 workstation is based
on a DEC Alpha chip. The programming language is Fortran 77. The compilation options
that have been used are -Mr8 -Mr8intrinsics -04 -Knoieee on the Intel Paragon, -01
on the Cray T3D and -qdpc -gstrict -qarch=pwr2 -qautodbl=dblpad -03 on the Ibm
SP2.

Timing measures concern the main parallel loops as depicted in the previous section. All
performance results reported herein are for 64-bit arithmetic; on the other part, the redun-
dant floating-point operations are not accounted for when evaluating the Mflop rate. Unless
stated otherwise, the reported CPU times always refer to the maximum of the individual
processor measures. In the following tables N, is the number of involved processors (sub-
meshes) while “Loc Comm” and “Glb Comm” respectively denote the local (send/receive
at artificial submesh boundaries) and global communication times. In the case of local com-
munication operations, the corresponding measures include the time spent in packing and
unpacking message buffers. On the other part, explicit synchronisation points have been in-
serted prior to entering the update phases at the artificial submesh boundaries; this allow a
precise timing of pure local communication operations without taking into account the idle
times due to computational load imbalance.

As a covention, we shall use the terms “linear iteration” and “linear residual” when
referring to the linear system solution phase in the implicit formulation (24); for the non-
linear iteration (the pseudo-time step iteration) the corresponding terms will be “non-linear
iteration” and “non-linear residual”.

4.3 External Flow Around an ONERA M6 Wing

We consider here the Euler low around an ONERA M6 wing. The angle of attack is set to
3.06° and the free stream Mach number to 0.84; parallel solutions for this test case are
presented in Morano and Mavriplis[19] and in Johan et al.[14]. Five meshes with increasing
sizes have been generated. Their characteristics are summarized in Tab. 1 where Ny denotes
the number of vertices, Ny the number of tetrahedra.

4.3.1 Computational Scalability For Increasing Size Problems

Parallel computational scalability (in contrast to numerical scalability) is evaluated for pro-
blems where the subdomain size is fixed, and the total size is increased with the number of

4 PERFORMANCE RESULTS 19

Table 1: Five meshes and their characteristics for an ONERA M6 wing

MESH Ny Ny
M1 2203 10053
M2 15460 80424
M3 31513 161830
My 63917 337604
M5 115351 643392

processors. Note that because we are dealing with unstructured meshes, some slight devia-
tions are inevitable.

We begin by computations performed on the Intel Paragon using the explicit pre-
dictor/corrector time advancing procedure (18)-(19). Tab. 2 summarizes the results obtained
with overlapping and non-overlapping mesh partitions. Timing measures have been obtained
for 100 iterations of the predictor/corrector scheme. Fig. 2 gives a graphic interpretation of
the evolution of the total CPU time versus the number of processors. As the number of pro-
cessors increase, one observe a 16.5% degradation of the scalability when using overlapping
mesh partitions; this figure reduces to 10.5% for non-overlapping mesh partitions. In the
former case, the communication time represents 2% of the total CPU time while it increases
to 4% in the latter case.

Table 2: Explicit Euler computations on the Intel Paragon : NX communication library
CPU for 100 iterations of the predictor/corrector scheme
Increasing problem size and overlapping (upper) and non-overlapping (lower) mesh partitions

MESH N, CPU Mflop/s Loc Comm Glb Comm

M2 8 2335s 50 3.0s 0.1s
M3 16 261.5s 89 4.0s 0.15s
My 32 266.5s 180 4.5s 0.2s
M5 64 272.0s 334 5.0s 0.25s

MESH N, CPU Mflop/s Loc Comm Glb Comm

M2 8 210.5s 55 4.5s 0.1s
M3 16 221.5s 105 7.0s 0.15s
My 32 226.5s 212 8.0s 0.2s
M5 64 232.5s 389 9.0s 0.25s

We proceed with scalability issues for the implicit time advancing procedure. Compu-
tations are now performed on the Cray T3D and Ibm SP2 systems. Note that, for a given

20 S. Lanter:
300 300

250 i] []] 250 T

200 200 | |

150 150

100 100

50 50

0 0

1 8 16 32 64 72 1 8 16 32 64 72

Figure 2: Scalability issues for explicit computations on the Intel Paragon

CPU (in s) for 100 iterations versus #processors

Comparsion between overlapping (left) and non-overlapping (right) mesh partitions

problem size, we have used half the number of processors on the Ibm SP2 than on the Cray
T3D; the results are however in favor of the former system. At each time step, we use 18

Jacobi relaxations for the approximate solution of the linear system resulting from (24). Ti-

ming measures are given in Tab. 3 to 4 for 10 non-linear iterations. A graphic interpretation
of the evolution of the total CPU time versus the number of processors is given on Fig. 3 for
the Cray T3D and 4 for the Ibm SP2.

Table 3: Implicit Euler computations on the Cray T3D : PVM communication library

CPU for 10 iterations of the implicit linearised scheme

Increasing problem size and overlapping (upper) and non-overlapping (lower) mesh partitions

MESH N, CPU Mflop/s Loc Comm Glb Comm
M2 8 440s 101 1.1s 0.05s
M3 16 48.5s 185 1.6 s 0.1s
My 32 50.0s 370 19s 0.2s
M5 64 52.5s 655 2.5s 0.45 s

MESH N, CPU Mflop/s Loc Comm Glb Comm
M2 8 380s 117 19s 0.05s
M3 16 40.5s 222 2.8s 0.1s
My 32 420s 440 29s 02s
M5 64 43.5s 791 5.0s 0.5s

4 PERFORMANCE RESULTS 21

The parallel solution algorithm based on non-overlapping mesh partitions demonstrate
very good scalability properties on both parallel systems. In that case, one can notice that
the communication time represents 7.5% of the total CPU time on the Ibm SP2 using 32
processors for mesh MJ5; on the Cray T3D the timing measures give 7% on 32 processors
with mesh M4 and 11.5% on 64 processors with mesh M5. In addition, the Mflop rates for
one processor, deduced from the figures obtained with N, = 4 and non-overlapping mesh
partitions, are 15 Mflop/s on the Cray T3D and 55 Mflop/s on the Ibm SP2 i.e. respectively
10% and 20% of the theoretical peak rates.

Table 4: Implicit Euler computations on the Ibm SP2 : MPL communication library
CPU for 10 iterations of the implicit linearised scheme

Increasing problem size and overlapping (upper) and non-overlapping (lower) mesh partitions

MESH N, CPU Mflop/s Loc Comm Glb Comm

M2 4 222s 200 0.7s 0.08 s
M3 8 242s 372 1.0s 0.1s
M 16 26.3s 703 1.1s 0.15s
M5 32 266s 1294 1.3s 0.18 s
MESH N, CPU Mflop/s Loc Comm Glb Comm
M2 4 203s 220 0.9s 0.05s
M3 8 208s 432 1.0s 0.07 s
My 16 21.0s 880 1.3 s 0.1s
M5 32 21.2s 1623 1.6 s 0.15s

4.3.2 Steady State Computations

We consider here steady state computations for the test case selected above. A partial view
of mesh M1 is shown on Fig. 5; Fig. 6 and 7 visualise the steady Mach lines for meshes M3
and MJ; the latter figure clearly shows the A-shock pattern on the wing surface.

Calculation of the parallel speed-up

We can write the total run time 75 of a serial program running on a single processor
node as composed of two parts :

s __ s s
Tl - Ts rial +

e parallel

where 7% .., and T ; respectively denote the serial execution time of the non-paral-

seria paralle

lelisable and the parallelisable part of the application. If we assume an ideal situation where
the parallel part can be parallelised by distributing equal shares among the processor nodes,

22 S. Lanter:
60 60
50 . [50
40] 40 £] i
30 30
20 20
10 10
0 0
1 8 16 32 64 72 1 8 16 32 64 72

Figure 3: Scalability issues for implicit computations on the Cray T3D
CPU (in s) for 10 iterations versus #processors

Comparsion between overlapping (left) and non-overlapping (right) mesh partitions

60 60
50 50
40 40
30 + 30
20 (-]]] 20 by 1
10 10
0 0
14 8 16 32 72 148 16 32

Figure 4: Scalability issues for implicit computations on the Ibm SP2
CPU (in s) for 10 iterations versus #processors

Comparsion between overlapping (left) and non-overlapping (right) mesh partitions

72

4 PERFORMANCE RESULTS 23

we can expect the total execution time TII\’,p for the parallel program running on N, processors
to be :

Ts
P parallel
TN Tsemal + Tpa'rallel serzal + N.

r

The parallel speed-up S(N,) can be expressed as :

TS
S(Np) = TI}
N,

The execution time of the parallel part T}, can be split into two terms :

TS
7 _ 7wy D _ “parallel P
Tpa'rallel - Tcmnp + comm — + comm
P
where 7%, and T%, .. respectively denote the computation time and the communication

time of the parallel part of the application. We obtain the following expression for the parallel
speed-up :
17 T
S(N) = - i
Tsemal + M + Tcomm (1 - p)Tf + Tpl + Tcomm

However, for large size problems, the total run time 77 of the serial program running on
a single processor node is generally not available because of memory limits. It is therefore
necessary to devise another expression of the parallel speed-up which doesn’t make use of
T7. While doing so, we assume that the application under consideration is such that p =1
so that 7% ., = 0 (which is a realistic assumption for the SPMD programming model we

SETIA
are using here) and T =T7. We will write the total execution time 77 as :

parallel —

Ty = N, x T%

comp

and the parallel speed-up takes the following form :
7 Ny xTF 1

S(N.) = — com,p “ NooX (——
’ tqe

This expression will be used in the sequel in order to evaluate the speed-up of the parallel
algorithms based on overlapping and non-overlapping mesh partitions.

Computations with mesh M3
We first present results of computations that have been performed on an Ethernet based

local network of Dec 3000/600 workstations used in a non-dedicated mode. The implicit
time advancing procedure is used with 36 Jacobi relaxations for the approximate solution

24

S. Lanter:

Figure 5: Mesh on the skin of on an ONERA M6 wing (mesh M)

4 PERFORMANCE RESULTS

Figure 6: Steady Mach lines on an ONERA M6 wing (mesh M3)

25

26

S. Lanter:

Figure 7: Steady Mach lines on an ONERA M6 wing (mesh M)

4 PERFORMANCE RESULTS 27

of the linear system resulting from (24). The pseudo-time step is computed according to
the law CFL=4 x it where it denotes the current non-linear iteration. The steady state
solution (initial normalized non-linear residual divided by 10°) has been obtained after 89
pseudo-time steps. Fig. 8 below depicts the non-linear and linear convergence curves. Tab. 5
compares the total CPU times for parallel solution algorithms based on overlapping (“Size
= 17) and non-overlapping (“Size = 0”) mesh partitions. We also report in this table the
minimum and maximum values of the local and global communication times. We obtain the
expected behavior with this kind of computing platform. Even though the communication
times represent only a small percentage of the total CPU times, the influence of the exchange
phase becomes more important as the number of workstations increases. However, a 20%
Mflop/s rate is approximately obtained on one workstation which suggests that with a faster
interconnexion network this type of computing platform can represent a serious alternative
to purely parallel systems. For comparison purposes, we give in Table 6 the results obtained
on 16 processors of the Intel Paragon.

Table 5: Implicit Euler computations on the ONERA M6 wing with mesh M3
Computations on a network of Dec 3000/600 workstations : PUM communication library

Total CPU times for steady state computations

N, Size CPU Mflop/s Loc Comm Glb Comm S(N,)
Min Max Min Max

2 1 3107.0s 37 12.0s 128s 2.6s 50s 2
0 2858.0s 40 11.0s 125s 2.6s 4.6s 2

3 1 2067.0s 56 11.3s 193s 36s 62s 295
0 1986.0s 58 28.0s 30.0s 28s 7.2s 295

Table 6: Implicit Euler computations on the ONERA M6 wing with mesh M3
Computations on the Intel Paragon : NX communication library
Total CPU times for steady state computations

N, Size CPU Mflop/s Loc Comm Glb Comm S(N,)
Min Max Min Max

16 1 1783.0s 65 23.0s 50.0s 2.5s 3.0s 155

0 1278.0s 90 16.0s 31.0s 25s 3.0s 13.5

28 S. Lanter:

-8
110 50 100 150 200

Figure 8: Implicit Euler computations on the ONERA M6 wing with mesh M3
Non-linear (straight line) and linear (dashed line) convergence

Computations with mesh M5

For the finest mesh tested, the steady state solution (initial normalized residual divided
by 10°) has been obtained after 196 non-linear iterations (the CFL law is still given by
CFL=4 x it while the number of Jacobi relaxations is equal to 36). Fig. 9 below depicts the
non-linear and linear convergence behaviors. Tab. 7 to 9 compare the total CPU times for
parallel solution algorithms based on overlapping and non-overlapping mesh partitions.

Table 7: Implicit Euler computations on the ONERA M6 wing with mesh M5
Computations on the Intel Paragon : NX communication library
Total CPU times for steady state computations

N, Size CPU Mflop/s Loc Comm Glb Comm S(N,)
Min Max Min Max
64 1 4348.0 s 223 455s 98.0s 80s 95s 62.5
0 2819.0s 344 57.0s 126.0s 8.0s 10.0s 61
128 1 2824.0 s 345 250s 66.0s 9.0s 11.5s 124
0 1572.0 s 619 36.0s 103.0s 9.5s 120s 118

We first remark that the estimated speed-up are always better when using overlapping
mesh partitions. This behavior is simply explained by the fact that between computations
with overlapping and non-overlapping mesh partitions the pure computational times de-

4 PERFORMANCE RESULTS

-8
110 50 100 150 200

Figure 9: Implicit Euler computations on the ONERA M6 wing with mesh M5
Non-linear (straight line) and linear (dashed line) convergence

Table 8: Implicit Euler computations on the ONERA M6 wing with mesh M5
Computations on the Cray T3D : PVYM communication library

Total CPU times for steady state computations

N,

p

Size CPU Mflop/s Loc Comm Glb Comm S(N,)
Min Max Min Max
64 1 1464.0 s 664 3000s 85.5s 145s 17.5s 60
0 1138.0 s 855 38.0s 153.0s 14.5s 16.0s 54
128 0 602.0 s 1615 245s 107.0s 28.0s 31.0s 99

Table 9: Implicit Euler computations on the ONERA M6 wing with mesh M5
Computations on the Ibm SP2 : MPL communication library
Total CPU times for steady state computations

N, Size CPU Mflop/s LocComm Glb Comm S(N,)
Min Max Min Max
32 1 726.0 s 1340 290s 43.0s 4.0s 5.0s 30
0 570.0s 1705 330s 50.0s 35s 4.5s 29
64 1 444.0 s 2190 19.0s 350s b5.5s 6.0s 58
0 316.0s 3077 240s b51.0s 45s bH.5s 55

29

30 S. Lanter:

crease while the communication times increase in such a way that the ratio between the two
figures is not favorable to an improved speed-up. Indeed, the pure computational times for
overlapping mesh partitions include redundant floating-point operations which means that
larger global problems are actually solved in this case. This suggests that techniques for
overlapping communication steps and purely computational ones should be investigated in
order to improve the performances of the parallel algorithm based on non-overlapping mesh
partitions.

For the case N, = 64 the total communication times for non-overlapping partitions (“Size
= 0”) are equal to 130.0 s on the Intel Paragon, 169.0 s on the Cray T3D and 56.5 s on the
Ibm SP2. These figures respectively represent 5%, 15% and 18% of the corresponding total
CPU times; this explains the higher speed-up figures obtained on the Intel Paragon.

Combined computational /numerical scalability assessment

Mesh M5 is approximately four times larger than mesh M3. Here, we make a simple
assessment of the combined computational/numerical scalability properties of the parallel
algorithms under consideration. In order to do so, we compare the required numbers of non-
linear iterations and total CPU times for steady state computations using these two meshes
on the Intel Paragon system. Tab. 10 summarizes the obtained results. We recall that
the CFL law is given by CFL=4 X it and the number of Jacobi relaxations is fixed to 36.
Switching from mesh M3 to mesh M5, the number of non-linear iterations is approximately
doubled (the effective ratio is 2.2); it is seen that the corresponding CPU time ratio for
overlapping mesh partitions is 2.4 while for non-overlapping mesh partitions it is equal to
2.2. Again the best scalability properties are obtained with the parallel algorithm based on
non-overlapping mesh partitions.

Table 10: Implicit Euler computations on the ONERA M6 wing
Computations on the Intel Paragon : NX communication library

Combined computational /numerical scalability assessment

Size MESH N, #1it CPU CPU/it
1 M3 16 89 1783.0s 20.0s
M5 64 196 1278.0s 22.2s
0 M3 16 89 4348.0s 14.3s
M5 64 196 2819.0s 14.4s

4.4 External Flow Around a FALCON Jet

The viscous flow (Re = 1000) around a complete configuration of a commercial FALCON
aircraft is computed for a Mach number of 0.85, an angle of attack equal to 1° and a yaw angle

4 PERFORMANCE RESULTS 31

equal to 1°. Two meshes have been generated; their characteristics are summarized in Tab. 11
below. Fig. 11 visualises the triangulation on the skin of mesh F'7. The implicit time advancing
procedure (24) is used to search for the steady state solutions of this external flow. At each
non-linear iteration, the pseudo-time step is computed according to the law CFL=MAX(it,
50) where it denotes the current non-linear iteration while the residual tolerance for the
linear system solution was fixed to 107°. A maximum of 72 Jacobi relaxations has been
used.

Table 11: Two meshes and their characteristics for a FALCON jet

MESH Ny Np
F1 30514 163732
F2 231036 1309856

Computations with mesh F1

For mesh F1, the convergence (initial normalized residual divided by 10°) has required 126
non-linear iterations. Fig. 10 below depicts the non-linear and linear convergence behaviors.
The steady pressure lines on the skin of mesh F7 are shown on Fig. 12.

1 100
0)
1 80
InWi V1T | 1 Y
: o 1
60
3 / U
50 |
4 /
40
30 /
6 20
-7 10
-8 1
110 50 100 150 1 10 50 100 150

Figure 10: Implicit Navier-Stokes computations on the FALCON aircraft with mesh F1
Left figure : non-linear (straight line) and linear (dashed line) convergence
Right figure : effective number of Jacobi relaxations

32

S. Lanter:

N
NS
WYY
W N
R Y, Y
N
00 7
W) ARSI
“‘A’/ /‘" > SO
%%ﬂﬂf/%f?‘wggs%;‘“gt%‘
VAT AZE s~
/] Y ﬂ"/"ﬁéﬁ{é:ét:%:?}ss\;“wﬂ
==
//” - v\§3€§§§§:§§§

—
—==

Figure 11: Mesh on the skin of the FALCON jet (mesh F7)

Here, we are also interested in assessing the influence of the partitioning algorithm on the

performances of the parallel solution algorithm. In order to do so we concentrate ourselves
on the case of non-overlapping mesh partitions obtained with the TOP/DOMDEC software tool
[9]. Mesh partitions have been obtained using the Greedy (GRD) algorithm (see Farhat and
Lesoinne[7]) and the recursive spectral bisection (RSB) algorithm (see Simon|[21]). Tab. 12
below reports the measured partitioning times for mesh F1. For the RSB algorithm the
size of the computational space has been set to 15000. Fig. 13 to 16 visualise both the

4 PERFORMANCE RESULTS

Figure 12: Steady pressure lines on the skin of the FALCON jet (mesh F7)

33

34 S. Lanter:

obtained repartition of the computational load (in terms of the number of vertices, elements
and edges) and the corresponding repartition of the communication load (in terms of the
number of neighboring submeshes and the maximal size of messages). The RSB algorithm
is clearly much more expensive than the GRD one, but, as suggested by the cost of the
optimisation phase, the initial partition is of better quality with regard to the repartition of
the computational load and the total interface size. We note that a recent work by Barnard
and Simon[1] has lead to a more efficient implementation of the RSB algorithm.

Table 12: Partitioning times for the FALCON aircraft using mesh F'1

Algo Decomp Time Optim Time
GRD 109 s 189.2 s
RSB 512.3 s 112.2 s

In TOP/DOMDEC, the user is asked to define the type of computational load he wants to
privilege in the optimisation phase. In the present case, the computational load part of the
objective function was only taking care of the element-wise operations. It is seen that both
partitioning strategies have been able to produce an optimal element-wise load balance.
However, the edge-wise load balance is clearly not following the element-wise one due to the
fully unstructured nature of the underlying meshes.

12000 12000
11500 11500
11000 11000
10500 10500
10000 L 10000 HNARIR AR RN HA AR N ARH AN
9500 9500
9000 9000
8500 8500
8000 8000
1234567 8 910111213141516 12345678 910111213141516

Figure 13: Mesh partitioning issues using non-overlapping partitions
Element-wise load balance
Left : Greedy algorithm (Min = 10233/Max = 10234)
Right : Recursive Spectral Bisection algorithm (Min = 10233/Max = 10234)
16 submeshes non-overlapping partition of a FALCON aircraft (mesh F7)

PERFORMANCE RESULTS

16000 16000
15000 15000
14000 | m ! 14000 | T M i
13000 | || i B O O T O 1 IR
12000 12000
11000 11000
10000 10000
9000 9000
8000 8000

12345678 910111213141516 12345678 910111213141516

Figure 14: Mesh partitioning issues using non-overlapping partitions
Edge-wise load balance
Left : Greedy algorithm (Min = 12848/Max = 14601)
Right : Recursive Spectral Bisection algorithm (Min = 12727 /Max = 14098)
16 submeshes non-overlapping partition of a FALCON aircraft (mesh F7)

16 16
14 14]
12 12]
10] 10|
8]]]] 8]]
6| 1A 6]]
4 4]
2 2
0 0
12345678 910111213141516 12345678 910111213141516

Figure 15: Mesh partitioning issues using non-overlapping partitions
Number of neighboring submeshes for each submesh
Left : Greedy algorithm (Min = 4/Max = 14)
Right : Recursive Spectral Bisection algorithm (Min = 4/Max = 15)
16 submeshes non-overlapping partition of a FALCON aircraft (mesh F)

36

S. Lanter:

500

450

400

350

300

250

200

150

100

123456 7 8 910111213141516

500

450

400

350

300

250

200

150

L

12345678 910111213141516
Figure 16: Mesh partitioning issues using non-overlapping partitions

Maximum message length for each submesh

Left : Greedy algorithm (Min = 177/Max = 324)

Right : Recursive Spectral Bisection algorithm (Min = 155/Max = 393)
16 submeshes non-overlapping partition of a FALCON aircraft (mesh F7)

The RSB algorithm seems to produce a partition with improved communication load.
This is actually confirmed by the experiment as it can be seen on Tab. 13 below. The
overlapping mesh partition has been obtained using the recursive inertia bisection (RIB)
algorithm implemented in MS3D[16] and a heuristic iterative optimiser is used in order to

obtain a good repartition of the computational load. Five steps of the simulated annealing
algorithm have been used in order to improve the initial decompositions.

Table 13: Implicit Navier-Stokes computations on the FALCON aircraft with mesh F1

Total CPU times for steady state computations

Computations on the Ibm SP2 : MPL communication library

N, Size Algo CPU Mflop/s Loc Comm Glb Comm S(N,)
Min Max Min Max

16 1 RIB 440.0s 734 17.0s 25.0s 3.5s 4.0s 149

0 GRD 368.0s 877 23.0s 36.0s 3.5s 45s 142

0 RSB 350.0s 922 180s 24.0s 3.0s 4.0s 14.7

4 PERFORMANCE RESULTS 37

Computations with mesh F2

For mesh F2, the convergence (initial normalized residual divided by 10°) has required
172 non-linear iterations. Fig. 18 below depicts the non-linear and linear convergence curves.
The steady pressure lines on the skin of mesh F'7 are shown on Fig. 17. Performance results
are summarized in Tab. 14 and 15. On 128 processors of the Ibm SP2 the steady flow field is
computed in about 15 mn with a communication cost that represents 10% of the total CPU
time. This figure reduces to less than 3% on 128 processors of the Intel Paragon.

Table 14: Implicit Navier-Stokes computations on the FALCON aircraft with mesh F2
Computations on the Intel Paragon : NX communication library
Total CPU times for steady state computations

N, Size CPU Loc Comm Glb Comm S(N,)
Min Max Min Max
128 1 8246.0s 75.0s 238.0s 145s 18.5s 124

Table 15: Implicit Navier-Stokes computations on the FALCON aircraft with mesh F2
Computations on the Ibm SP2 : MPL communication library

Total CPU times for steady state computations

N, Size CPU Loc Comm Glb Comm S(N,)
Min Max Min Max

64 1 1437.0s 64.0s 102.0s 11.0s 14.0s 59

128 1 843.0s 34.0s 69.0s 13.0s 18.0s 115

4.5 Internal Flow Inside an Engine Diffusor

The problem under consideration here is the simulation of the flow inside a model diffusor of
a jet engine. This part of the engine is surrounding the combustion chamber. The gas flow
enters the diffusor from one injection input and, after an expansion, goes into the chamber
through several ejection outputs. In practice the flow inside this geometry is subsonic and
turbulent. In the present case we consider a laminar flow for which the Mach number is set to
0.3 and the Reynolds number to 300. Due to the viscous character of this flow, the limiting
procedure (12) is not used.

Two meshes have been generated; their characteristics are summarized in Tab. 16 below.
Fig. 19 visualises mesh SI. The implicit time advancing procedure (24) is used to search for

38

S. Lanter:

Figure 17: Steady pressure lines on the skin of the FALCON jet (mesh F2)

4 PERFORMANCE RESULTS 39

1 100

0 90

1 80
70 l’
60

3 /
50
40

5| /
30 /
20

-7 10

-8 1

110 50 100 150 200 110 50 100 150 200

Figure 18: Implicit Navier-Stokes computations on the FALCON aircraft with mesh F'2
Left figure : non-linear (straight line) and linear (dashed line) convergence

Right figure : effective number of Jacobi relaxations

the steady state solutions of this internal flow. At each non-linear iteration, the pseudo-time
step is computed according to the law CFL=MAX(it, 100) where it denotes the current
non-linear iteration while the residual tolerance for the linear system solution was fixed to
1072, A maximum of 36 Jacobi relaxations has been used.

Table 16: Two meshes and their characteristics for a model engine diffusor

MESH Ny Np
S1 22515 114048
S2 165797 912384

Computations with mesh S1

Here, we are interesting in assessing the influence of the parameter 3 used in the com-
putation of the nodal gradient (13), on the accuracy of the computed solution. We therefore
consider two computations for which § = 1/2 and § = 1/6. For these two values of 3, the
convergence (initial normalized residual divided by 10%) has respectively required 140 and
265 non-linear iterations. Fig. 23 below depicts the non-linear and linear convergence beha-
viors. Fig. 20 and 22 visualise the steady Mach lines in a selected cut-plane. The physical
viscous effects are clearly dominating the computed flows; as a consequence, the influence of
the upwinding parameter is somewhat weakened in this case even though some slight impro-
vements are seen on the solution computed using the value § = 1/6 especially at the inflow

40

S. Lanter:

Figure 19: Mesh of the model engine diffusor (mesh S7)

4 PERFORMANCE RESULTS 41

boundary and in the neighbourhood of the vortices. Performance results are summarized in
Tab. 17 and 18.

Figure 20: Viscous flow inside a model engine diffusor
Steady Mach lines (8 = 1/2, mesh S7)

42 S. Lanter:

Table 17: Implicit Navier-Stokes computations on the model engine diffusor with mesh S7
Computations on the Intel Paragon : NX communication library
Total CPU times for steady state computations

N, Size p CPU Loc Comm GIb Comm
Min Max Min Max

32 1 1/2 13740s 7.0s 24.0s 45s b5.5s

1/6 2603.0s 13.5s 445s 85s 10.5s

32 0 1/2 939.0s 13.0s 30.0s 5.0s 6.0s

1/6 1777.0s 25.0s 56.56s 9.0s 11.0s

Figure 21:

Figure 22: Viscous flow inside a model engine diffusor

Steady Mach lines (8 = 1/6, mesh S7)

4 PERFORMANCE RESULTS

43

Table 18: Implicit Navier-Stokes computations on the model engine diffusor with mesh S71

Computations on the Ibm SP2 : MPL communication library

Total CPU times for steady state computations

N, Size p CPU Loc Comm Glb Comm
Min Max Min Max

8 1 1/2 438.0s 5.5s 135s 1.5s 20s

1/6 836.0s 12.0s 26.0s 3.5s 4.0s

8 0 1/2 363.0s 80s 16.0s 1.5s 2.0s

1/6 709.0s 16.0s 32.0s 3.5s 4.0s

44 S. Lanter:

1 1
0 0
P = N S N 0 RS
2 p Pyt \
3 -3
-4
6 -6
7 -7
-8 -8

110 50 100 150 200 250 300 110 50 100 150 200 250 300
Figure 23: Implicit Navier-Stokes computations on the model engine diffusor with mesh S

Non-linear (straight line) and linear (dashed line) convergence

1 1
Left figure § = 3" right figure g = g

Computations with mesh S2

For the finest mesh, the value of the parameter 3 is set to 1/2. At each non-linear
iteration, the pseudo-time step is still computed according to the law CFL=MAX(it, 100)
where it denotes the current non-linear iteration. However, the residual tolerance for the
linear system solution is now fixed to 1071. We consider two possibilities for the maximum
number of Jacobi relaxations, denoted in the sequel as nbrel,, .. First we set nbrel,,,, = 36
and the convergence (initial normalized residual divided by 10°) is obtained after 290 non-
linear iterations. Second we increase nbrel,,,, to 72 and the convergence is obtained after 254
non-linear iterations. The linear convergence behavior together with the effective number of
Jacobi relaxations are visualised on Fig. 24; the corresponding non-linear convergence curves
are given on Fig. 25.

Computations have been performed on 128 processors of the Intel Paragon. Tab. 19 de-
tails the performance results obtained with overlapping and non-overlapping mesh partitions
including the minimum and maximum times for the approximate solution of the linear system
(24) ; these times are given under the column “Matrix Inver”. With non-overlapping mesh
partitions, the linear system solution times are respectively representing 52% (nbrel .. = 36)
and 62% (nbrel,,q.. = 72) of the total CPU times. This result is not so surprising given the
relatively low numerical efficiency of the Jacobi method. The use of a more sophisticated
linear solver should clearly improve the above situation. This can be simply illustrated by
comparing the performances of the Jacobi method used here with those obtained with a more
efficient relaxation method such as the Gauss-Seidel method, in the context of a sequential

4 PERFORMANCE RESULTS 45

0 100
80
o~ .
-1 s == B0 [ty
40
-2 20 ‘J‘y‘
1

110 50 100 150 200 250 300 110 50 100 150 200 250 300
Figure 24: Implicit Navier-Stokes computations on the model engine diffusor with mesh S2
Left figure : linear convergence
Right figure : effective number of Jacobi relaxations
Dashed line : nbrel,,,, = 36 - Straight line : nbrel,, ., = 72

-8

110 50 100 150 200 250 300
Figure 25: Implicit Navier-Stokes computations on the model engine diffusor with mesh 52

Non-linear convergence
Dashed line : nbrel,,,, = 36 - Straight line : nbrel,,,q, = 72

46 S. Lanter:

computation. In order to do so, we come back to the simulation of the external flow around
an ONERA M6 wing (the Mach number is equal to 0.84 and the angle of attack is set to 3.06°).
We select mesh M2 (15460 vertices and 80424 tetrahedra). The pseudo-time step is computed
according to the law CFL=4 x it while the residual tolerance for the linear system solution
is fixed to 107, In each case (Jacobi and Gauss-Seidel methods), the convergence (initial
normalized residual divided by 10°) has required 87 non-linear iterations. The computations
are performed on a Dec 3000/700 workstation. Fig. 26 visualises the effective number of
relaxations necessary to achieve the imposed residual tolerance while Tab. 20 summarizes
the measures CPU times. These figures show a 20% reduction of the time spent in solving
the linear systems. Despite the fact that the Gauss-Seidel relaxation method is not paralle-
lisable (at least when it is used in the context of the approximate solution of linear systems
based on sparse and irregular matrices), it can be used as the subdomain solver within an
additive type of domain decomposition method such as the additive Schwarz algorithm stu-
died by Cai[2]. Indeed, any other intrinsically sequential and efficient solver (often a direct
elimination method) could play this role.

Table 19: Implicit Navier-Stokes computations on the model engine diffusor with mesh 52
Computations on the Intel Paragon : NX communication library, N, = 128
Total CPU times for steady state computations

nbrel,.. Size CPU Loc Comm Matrix Inver
Min Max Min Max

36 1 5600.0s 25.0s 98.0s 1867.0s 2974.0s
0 3805.0s 52.0s 143.0s 1880.0s 2015.0s
72 1 7071.0s 32.0s 128.0s 2531.0s 4697.0s
0 4324.0s 64.0s 178.0s 2518.0s 2697.0s

Table 20: Implicit Euler computations on the ONERA M6 wing with mesh M2
Computations on a Dec 3000/700 workstation
Total CPU times for steady state computations

Solver CPU Matrix Inver
Jacobi 3995.0 s 3399.0 s
Gauss-Seidel 3293.0 s 2703.0 s

5 CONCLUSION 47

100 100
90 90
80 v\ 80
70 \ 70
60 / \ 60

50 , x\“ 50

40/ 40
| (e

30 30
20 20 /
10 10
1 1
110 50 100 150 110 50 100 150

Figure 26: Implicit Euler computations on the ONERA M6 wing with mesh M2
Effective number of relaxations for an imposed tolerance of 1073
Left figure : Jacobi relaxations

Right figure : Gauss-Seidel relaxations

5 Conclusion

In this paper we have obtained solutions of realistic three dimensional flows using a pa-
rallelisation strategy which combines mesh partitioning techniques and a message passing
programming paradigm. Based on lessons drawn from previous works (Farhat and Lanteri[8],
Fezoui and Lanteri[10], Fezoui, Lanteri and Loriot[13]) we have implemented and assessed two
possible approaches : the first one makes use of overlapping mesh partitions; it contributes
to minimize the programming effort on the original serial algorithm but is characterized by
redundant arithmetic operations. The second approach uses non-overlapping mesh partitions
and demands additional programming effort.

In the experiments considered here, the approach based on non-overlapping mesh parti-
tions has always demonstrated better computational scalability properties. Despite the fact
that this approach is also characterized by higher communication loads (additional commu-
nication steps, increased message sizes due to the exchange of partially gathered fluxes and
gradient components instead of nodal physical values), the reduction of pure computational
times through the elimination of redundant arithmetic operations plays the major role in
this behavior. For all the tested message passing environments (PVM, NX, MPL), communica-
tion steps make use of blocking send calls. A substantial improvement in the treatment of
this part of the parallel algorithms could be achieved by implementing strategies for over-
lapping communication and pure computational steps through the use of non-blocking send
calls. Such strategies will be particularly interesting in the context of distributed simulations

48 S. Lanter:

over a network of workstations as it is suggested by the results presented in this paper for
computations performed on this kind of computing platforms.

As stated in the introduction, we have considered here the parallelisation of a represen-
tative subset of an existing industrial code, N3S-MUSCL[3] . The complete software package
which is able of simulating three-dimensional compressible reactive and turbulent flows, is
currently ported on several distributed memory MIMD parallel systems using the PARMACS
message passing environment. This porting activity is partially funded by the European
Comission as part of the EsPrRIT II11/EUROPORT-1 project[4].

Acknowledgments

Performance results obtained on the Ibm SP2 and on large configurations of the Intel
Paragon have been provided by Pr. C. Farhat (Center for Aerospace Structures, University
of Colorado at Boulder); the author addresses particular thanks to Pr. C. Farhat for having
allowed the publication of these results in the present report, as well as for his constant help
in the development of this work. Most of the results on small and medium configurations
of the Intel Paragon have been obtained on the system located at Irisa/Inria Rennes with
the help of Mr. H. Leroy. The author also wishes to thank Mr. J.-M. Fieni for giving him
access to the Cray T3D located at the CEA in Grenoble. Finally, the author thanks Mr. M.
Loriot from Simulog for his help in using the MS3D package.

References

[1] BARNARD S. and SIMON H., Fast Multilevel Implementation of Recursive Spectral Bi-
section for Partitioning Unstructured Problems, Concurrency: Practice and Experience,

Vol. 6, pp. 101-117, (1994).

[2] CAI X.C., An Additive Schwarz Algorithm for Nonselfadjoint Elliptic Equations, Pro-
ceedings of the Third SIAM Symposium on Domain Decomposition Methods for Partial
Differential Equations, Houston, Texas, March 1989, T.F. Chan, R. Glowinsky, J. Per-
iaux and O.B. Widlund Eds., pp. 232-244, (1989).

[3] CHARGY D., N3S-MUSCL : a 8D Compressible Navier-Stokes Solver, User's Manual,
Simulog (1993).

[4] DEGREZ G., GIRAUD L., LORIOT M., MICELOTTA A., NITROSSO B. and STOES-
SEL A., Parallel Industrial CFD Calculations with N3S, Proceedings of the High-
Performance Computing and Networking Europe Conference, Milan, Italy, May 1995,
B. Hertzberger and G. Serazzi Eds., Lecture Notes in Computer Science, Vol. 919, pp.

820-825, (1995).

REFERENCES 49

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

DONGARRA J.J., MEUER H.W. and STROHMAIER E., TOP500 Supercomputer
Sites, (1994).

FARHAT C., FEZOUI L. and LANTERI S., Two-Dimensional Viscous Flow Compu-
tations on the CM-2: Unstructured Meshes, Upwind Schemes and Massively Parallel
Computations, Comp. Meth. in Appl. Mech. and Eng., Vol. 102, pp. 61-88, (1993).

FARHAT C. and LESOINNE M., Automatic Partitioning of Unstructured Meshes for
the Parallel Solution of Problems in Computational Mechanics, Internat. J. Numer.
Meths. Engrg., 36, pp. 745-764 , (1993).

FARHAT C. and LANTERI S., Simulation of Compressible Viscous Flows on a Variety
of MPPs: Computational Algorithms for Unstructured Dynamic Meshes and Perfor-
mance Results, Comp. Meth. in Appl. Mech. and Eng., Vol. 119, pp. 35-60, also INRIA
Report No. 2154, (1994).

FARHAT C., LANTERI S. and SIMON H., TOP/DOMDEC : a Software Tool for Mesh
Partitioning and Parallel Processing and Applications to CSM and CFD Computations,
Comput. Sys. in Engrg., (To Appear), (1995).

FEZOUI L. and LANTERI S., Parallel Upwind FEM for Compressible Flows, Procee-
dings of the Parallel Computational Fluid Dynamics 91 Conference, Stuttgart, Germany,
June 1991, K.G. Reinsch, W. Schmidt, A. Ecer, J. Hauser and J. Periaux Eds., Elsevier
Science Publishers B.V., North Holland, pp. 149-163, (1992).

FEZOUI L., LORIOT F., LORIOT M. and REGERE J., A 2D Finite Volume/Finite
Element Fuler Solveur on a M.I.M.D. Parallel Machine, Proceedings of the High Per-

formance Computing Il Conference, M. Duran and F. El Dabaghi Eds., Montpellier,
France, Elsevier Science Publishers B.V., North Holland, pp. 283-294, (1991).

FEZOUI L. and STOUFFLET B., A Class of Implicit Upwind Schemes for Euler Si-
mulations with Unstructured Meshes, J. of Comp. Phys., 84, pp. 174-206, (1989).

FEZOUI L., LANTERI S. and LORIOT M., Strategies for Navier-Stokes solvers on
MPP machines, Proceedings of the International Workshop on Solution Techniques
for Large-Scale CFD Problems, CERCA, Montréal, Québec, Canada, September 1994,
W.G. Habashi Eds., to be published in a volume of Computational Methods in Applied
Sciences, John Wiley & Sons, (1995).

JOHAN Z., MATHUR K. K., JOHNSSON S. L. and HUGHES T. J. R., An Efficient
Communication Strategy for Finite Element Methods on the Connection Machine CM-5
System, Thinking Machines Technical Report No. 256, (1993).

LANTERI S. and FARHAT C., Viscous Flow Computations on M.P.P. Systems : Im-
plementational Issues and Performance Results for Unstructured Grids, Proceedings of

50

S. Lanter:

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]

[25]

the Sixth SIAM Conference on Parallel Processing for Scientific Computing, Norfolk,
Virginia, pp. 65-70, (1993).

LORIOT M., MS3D : Mesh Splitter for 3D Applications, User’s Manual, Simulog,
(1992).

LORIOT M. and FEZOUI L., A Parallel Compressible 3D Navier-Stokes Solver Using
Unstructured Meshes, CERMICS Report No. 93-19, (1993).

MAVRIPLIS D.J., DAS R., SALTZ J. and VERMELAND R.E., Implementation of a
Parallel Unstructured Euler Solver on Shared and Distributed Memory Architectures,
ICASE Report No. 92-68, (1992).

MORANO E. and MAVRIPLIS D.J., Implementation of a Parallel Unstructured Fuler
Solver on the CM-5, ATAA Paper No. 94-0755, ATAA 32nd Aerospace Sciences Meeting,
Reno, Nevada, January 10-13, (1994).

ROE P.L., Approzimate Riemann Solvers, Parameters Vectors and Difference Schemes,
J. of Comp. Phys., 43, pp. 357-371, (1981).

SIMON H., Partitioning of Unstructured Problems for Parallel Processing, Comput. Sys.
Engrg., 2, pp. 135-148, (1991).

STEGER J. and WARMING R.F., Flux Vector Splitting for the Inviscid Gas Dynamic
with Applications to Finite-Difference Methods, J. of Comp. Phys., 40, pp. 263-293,
(1981).

STOUFFLET B., PERIAUX J., FEZOUI L. and DERVIEUX A., Numerical Simulation
of 3D Hypersonic Fuler Flows Around Space Vehicles Using Adapted Finite ELements,
ATAA Paper No. 87-0560, AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, Ja-
nuary 12-15, (1987).

VAN LEER B., Towards the Ultimate Conservative Difference Scheme V : a Second-
Order Sequel to Godunov’s Method, J. of Comp. Phys., 32, pp. 361-370, (1979).

VAN LEER B., Computational Methods for Ideal Compressible Flow, von Karman Ins-
titute for Fluid Dynamics, Lecture series 1983-04, (1983).

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LESNANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

