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UNE THEORIE DE FONCTIONS SEQUENTIELLES

Résumé : Nous présentons ici, une généralisation des fonctions stables (définies par Berry):
les S-fonctions qui ne requierent pas que leurs domaines soient distributifs. Nous montrons,
qu’avec les S-domaines, qui sont une généralisation des domaines concréts de Kahn et Plot-
kin, elles constituent une catégorie cartésienne close qui est “order-enrichie ” par l’ordre
point-a-point. Pour finir, nous montrons que cette catégorie est un rétract de la catégorie

des domaines et des fonctions continues et nous fournissons un algorithme séquentiel pour
calculer les éléments finis des S-domaines.

Mots-clé : S-fonctions, S-domains, order-enrichie A-categorie
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1 Introduction

The purpose of this paper is twofold: first it aims at generalising the notion of stable func-
tions introduced by Berry in [Ber79], in order to construct a Acategory whose homsets are
extensionally ordered (ie: using a pointwise order) like in [Gam92]; and secondly at obtai-
ning models for languages like PCF (a typed Acalculus together with arithmetic and boolean
operators, augmented with a fixpoint operator) whose terms are sequentialy computable, so
as to construct fully-abstract models.

It is known that the sequentiality problem is highly related to “the fully-abstraction ques-
tion” for Xcalculus based languages. In [Mil77] Milner posed the problem in the following
form : “ One would like to find a concept of sequential continuous functions and show that
the model of sequential functions exists and yields a fully-abstract intrepretation ”. Actually
the sequentiality problem was originally raised in its most typical form and shown difficult
by Plotkin in [Plo77]; there the model derived from Scott’s of continuous functions was
shown to be non fully-abstract for the language PCF. Indeed Plotkin exhibited two PCF
terms which are operationally equivalent but which are denoted by to functions differing on
an argument which is undefinable in the language. Such an argument is typically the “pa-
rallel or” function, a binary boolean function which yields value true, as soon as one of its
arguments is true. The reason of this failure of full-abstraction is essentially an inadequate
treatment of sequentiality: it is well known that PCF-like languages can be evaluated se-
quentialy; therefore in order to provide fully-abstract models for such languages, one should
restrict to sequential continuous functions (since it is known that the model of continuous
functions is complete). On this way, Milner and Vuillemin proposed two different definitions
of sequentiality (see[Mil77] and [Vui74]); unfortunately their definitions rely on the product
structure of the input space of functions and are adequate only for first order functions (not
for functionnals).

In order to solve the problem, Kahn and Plotkin(see [KaP78]) proposed a more general
definition which abstracts from the product structure of the input domains. Their proposi-
tion relies on an axiomatisation of the notion of the place of an argument in a particular
class of domains called concrete domains; nevertheless it cannot be used to provide the fully-
abstract model of PCF since the category of concrete domains and sequential functions (as
defined by Kahn and Plotkin) is not cartesian closed. Notice however that subsituting the no-
tion of sequential algorithm for that of function and relaxing the extensional order, allow to
provide PCF with a fully-abstract but non order-extensional model(see [Cur86] and [Ber79]).

Attacks on the problem led Berry to define the notion of stable function (see [Ber79]).
Intuitively, stable functions are continuous functions together with a particular minimality
property. Formally, a function f is stable if for any element z and for any approximant b
of f(x), there exists an approximant m(f,z,b) of # s.t. : for any approximant y of z, b
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4 Boubakar GAMATIE

approximates f(y) if and only if m(f, z, b) approximates y. A typical example of a non stable
function is the parallel-or function since m(por, (tt,tt),tt) does not exist.

These functions together with distributive and finitary domains, provide a cartesian closed
category which cannot be order-enriched by the pointwise-order and thus cannot provide
the fully-abstract model of PCF. Indeed Milner(see [Mil77]) showed that the function-based
fully-abstract model of PCF is unique(up to isomorphim) and is ordered extensionally.
Actually the stability notion was introduced as an approximation of that of sequentiality;
but in sight of Milner’s results it is clear that the fully-abstract functions-based model cannot
have distributive domains; one can immediately convince oneself of the non distributivity
of domains of sequential functions (as far as the extensional order is used): for example,
considering the domain [T?—T], where T is the domain of thruth values, let:
fi=((Ltt)=1t), fo=(tt,L)=1tt) & g=((FH = tt);

then fiVfao=2Axtt and gA(fiV ) =g but (gAfLi)V(gAfa2) =z L

In the meantime it is clear that functions f; , fs and g are sequential and PCF defi-
nable. More crucially, Berry left the problem open by exhibiting a function which is stable
but non sequential; such a function is the least continuous 3-ary boolean function f such
that f(tt, ff, L) = f(ff, L, tt) = f(L,tt, ff) = tt.

Indeed this function has no sequentility index at (L, 1, 1).

Following this way, Bucciarelli and Ehrhard(see[BuE93] and [Ehr93]) proposed the no-
tion of strong stability, but their proposition also relies on the distributivity of domains.
Finally, Abramsky, Jagadeesan and Malacaria(see [AJM93]) proposed strategies in a game
model but their strategies are not a functional model and the description of the fully-abstract
model still leaves to be desired.

To sum up, what we want is to relax the distributivity of domains and to use the pointwise
order, in order to semantically reach Milner’s model.

After some notations, given in section II, we introduce in section III S-domains, which are
structures provided with a partial order relation together with a preorder relation. The two
relations are intended to “compare” the behaviour of individuals both extensionally and in-
tensionally. The intensional preorder does not impose any significant structure on domains,
it only allows to generalise Kahn and Plotkin’s notion of the place of an argument in a wider
class of domains(not only the concrete ones). In section IV, we use the intensional preorder
and define the S-functions which are continuous functions together with some intensional
conditions. In section V, we show that S-domains together with S-functions constitute a
cartesian close order-enriched pointwisely category. Finally, we compare our model to the
Scott’s model of continuous functions, we show that our model is a retract of Scott’s, and
we define sequential algorithms for computing the finite elements of S-domains.

INRIA
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2 NOTATION

In this section we introduce the stuctures used through out the paper and we precise our
terminology and notations:

Let D=< D, <> be a partial order (po); D is a complete lattice if any every subset X of D
has a least upper bound denoded \/ Xand a greatest lower bounded denoded A X. A subset
X C D is directed if it is non empty and is s.t.: Vo, B € X, v € X 1a<y> (.

An element z of D is finite( or isolated ) if for any directed subset X of D,
(z<VX)= (FaeX  :z<a).

We denote B(D) the set of finite elements of a complete lattice D and we call it the base of
D; B(z) represents the set of finite elements dominated by z. If for all finite element z, B(z)
is finite, then D is said to be finitary.

A complete lattice D is algebraic if for any element 2 , B(x) is directed and has lub z ;
if B(D) is denumerable, then it is w-algebraic. Notice that a complete lattice has a least
element ( we shall denote it L ) and top element ( denoted T).

Henceforth, we refer to finitary w-algebraic complete lattice as domains.

We now introduce S-domains :

3 S-DOMAINS

3.1 definition : S-domains are triples D = < D, <, < > s.t.:< D, < > is a domain and
the relation “ < ” is a preoder on D. [ |

The partial order “< ” is called eztensional. The intensional preorder (denoted “<”)
does not impose any significant structures on S-domains, it is only used to define their
morphisms.

The whole class of S-domains will be inductively constructed from basic (flat) domains,
using the product and exponentiation operation.

For this class, the intensional preorder is defined as the following:

3.2 definition : let D be an S-domain; then

r3yiff VeeB(D),(aLy&afty = (aLz& afz); where

rfyiff 3ze B(D)/A —< z : 2 <z >y;where

Z —<ziff Y<2&Vz Y <e<z—=zxz=Zorz=nz2. ]

3.3 proposition : relation “ < 7 is a preoder on D .

proof : reflexivity: <z :Va € B(D) ,(a Lz &aftz)=> (e Lz & af )
transitivity: <y <z=>z < z:
VaeeBD),(aLy&afty=(agz&ata)&
VaeB(D),(aLz&aftz)=>(afy&aty)) =

RR n”2589



6 Boubakar GAMATIE

VaeB(D),(aLz&aftz)=> (afy&afty = (afz&afa) ]

3.4 proposition : let D be an S-domain then:
Ve,yeD,(z 2y&zfty)=>z<y.

proof : suppose z,y € D and let z < y but z £ y;
then Ja € B(D) : o < 2 & « £ y in this case either :

e o fI y which is excluded since a £ y & a ft y but a < z or

e —(a ft y) which is excluded since a <z & z 1y . [ |

3.5 collary : let D be an S-domain then:
Ve,yeD,(z 2yz&afy)=>z=y

From now on we denote “ a2 ” the equivalence induced by the preorder “ <7 . [ |

The proposition (resp. the collary) above shows that the domain partial order (resp. the
equivalence) has been broken into two part: first the intensional preorder (rep. the intensio-
nal equivalence) and secondly the relation “}” on elements.

Intuitively, & y can be interpreted as follows: considering any piece of information, if it
can be used to significantly increase the information contained in z then it can be made
so with y and vise versa. The attempt here, is to generalise the notion of “the place of an
argument” of a function so as to leave away any reference to the product structure of the
input domain.

Let us go further and illustrate on examples the relation between the notion of place and our
definition. We want to show here, that our intensional equivalence allows to verify whether
or not two sequences of arguments are defined on the same components. That is to say that
we are able to deal with arguments’ places without counting them.

Define domain D = N* where k € N and finite and where N is the flat S-domain of
integers: the extensional relation is the discrete one and the intensional relation is defined
as indicated above. The elements of D are sequences of integers with lengh k, and they are
ordered componentwisely, using the product order. Is is immediate that D is an S-domain.
There are particular finite elements (the completely prime elements) which are sequences
which contain only element 1 except for a unique component. Such completely primes can
thus be represented by pairs (p,v) , where 1 < p <k and v € N.

Now we claim: if @ = (pq,vq) and b = (ps, vs) are two completely prime and intensionally
equivalent elements, then p, = ps.

Indeed, letting ¢ = (p,v) , be a complete prime element, it is easily seen that
(afrc&cga)iffl ((pa=p)=(va=0))& ((pa#porve#v));

ie:amx b= Vp,p#p,iff p# py and thus p, = ps.

We can therefore talk about arguments’ positions in a list of arguments.

Now we can get confidence that our definition introduces a much more general notion of
place in domains which are abstract than concrete domains. Before we proceed, let us illus-
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trate it on some more examples:

ezample 1 : Let D be the integer domain N ordered s.t.:
n<miff n=morm=Torn=_Lthen: Ve,y# T, (e#L#Yy = z=uy.

example 2: Set D =T? ordered with the product order, T is the flat domain of boolean
values; then :

(L 1) % (1, L) ~ (£, 1)
2. (tt, 1) 2 (L, 1)

since : (tf, 1) # (L, f£) # (L.tt) & (L.ff) 1 (1, 1)
but —((L, £) t (L, t) .

4 S-FUNCTIONS

First of all, let us recall that a function f from domain D to domain E is said to be conti-
nuous iff : Yo € D,VG € E: Bisolated & 8 < f(x),Ja € D s.t.: « isolated &
a <z & < fla).
Equivalently f is continuous iff it preserves lubs of directed subsets. Thus in domains, a
continuous function is completely characterized by its values on the finite elements. There-
fore, while considering continuous functions, we shall rectrict to finite elements only, without
any lost of generality. We only consider as programs, those continuous functions having as
image, the flat domains.

Now, given two S-domains D and E, we are interested only in those continuous functions
from D to E which satisfy the following condition (S):

Ve, z€D:x<zVBEE (f(z) 2B £ f(x)=Iu(fzB)€D:

z>u(fe,B) L &
VyeD, (x<y & y<z & B=2f(y)=ufz,8)=y.

Intuitively, a function verifies condition (S) iff any increase of information in its result
necessitates the increase of an intensionaly predefined information in its argument. Indeed
this idea is a generalization of Kahn and Plotkin’s definition of sequential functions. By
the way, u(f,z, ) can be viewed as the index of f in x, for value 3; one thus see, as al-
ready noticed by Vuillemin, that this index is not necessarily unique. Henceforth, we write
[D = E] for the set of continuous functions from D to E which satisfy the (S)-condition
and we call them S-functions.

Before pursuing, let us verify that S-functions exist and that together with S -domains, they
form a category.

RR n~2589



8 Boubakar GAMATIE

4.1 proposition : the identity funclion 1p € [D — D] s.i.:
Ve € D, 1p(xz) ==, is an S-function.
proof : One immediately verifies that we can set u(1lp,z,5) = 8 [ |

4.2 proposition : given two S-functions: f € [D - E] and g € [E - F] , their
composition go f € [D — F], is an S-function.
proof :let z,2€ D: <z el & gof(z)>BLgof(x): then
Fpr=plg, f(2),B) €L f(z) > m £ f(z) &
VyeE, (flz)<y & y<[f(z) & B=29(y) = m 2 y;
and thus Ja e F:a<u; &
f(z) > a £ f(z) hence s < pi(fiz,0)eED: zf <z &
VyeD (x <y & y<z & a=xf(y)=u 3y
Now, letting u(g o f,x,8) = pa = p, we get:
1. z2pu<z

2. VyeD,(x<y & y<z & f<gof(y)=>u=y. ]

The above results allow to speak of the category whose objects are S-domains and whose
arrows are S-functions. We shall call it SD.
Actually, our intent is to show that SD is a A -category. Before, let’s examine more closely
S-functions and some of their properties.

Fact 1 : S-functions, which are different from the identity, do exist:
an example of S-function is the least function f s.t.:
f:T—T st f(L)y=1, f(&t)=f(ff) =tt.
Indeed, it is easily verified that we can set u(f, L,tt) =1t .
Another example of the existence of S-functions is given by the following:

4.3 proposition :Let d and e be two finite elements of S-domains D and E then the function
[ denoted (d =>¢€) and s.t.: f(x) = if x > d then e else L, is an S-function from D to E.
proof : function f 1is continuous since d and e are finite elements.

Now u(f,z,/) is definable only if 8 < e and if (z 2 d) & (3 z >z s.t.: 2z > d);

but in that case one immediately verifies that u(f, z, ) can be set to d. [ |

Corollary any constant function is an S-function.

Fact 2 : S-functions are not divided in strict versus constant continuous functions: for
example, function f: T? — T? s.t.:
f(x) = if & > (L, tt) then (¢t,t1) else (¢, 1),
is an S-function which is neither strict nor constant.

INRIA
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Fact 3 : S-functions are strictly included in continuous functions :
1. The paradigmatic “parallel or” function is not an S-function
since p(por, (L, L),#t) does not exist; indeed (L,#t) A (¢, L) A (L,#) .
2. Berry’s function is not an S-function : It is the least continuous function
[ T3 — T st f(tt,ff, L) = f(ff, L, tt) = f(L, ¢, ) = t.
We can now remark that A u(f, (L, L, 1), %) .
3. The Curien’s examples in proposition 4.4.2 [Cur86] are not S-functions; let us look for
example the function A :
Al is characterised by :
Al(a}) =tt, Al(al) = ff, where a},a} are themself characterized by:

at(tt, L) =1tt, ai(ff,tt) =tt, ai(ff,ff)=fF

al(L,tt) =tt, ai(tt,ff) = tt, al(ff,f)=AF
Since a} which s.t.: a}(L, L) =#t, and «i(ff,ff) = T which is greater than
al : ai(ff,f)=f and aj(ff,¢t) = ¢t and a}(tt,f) = ¢t and
Al(al) =L and A'(a}) = T but there those not exist an index for the value a} at value tt.

Fact 4 : absence of indexes are not nessarily detected in L:
define f to be the least continuous function € [T? — T] s.t.:
fle)y =t iff «> @, ;L) or x> (tt,L,ff); then
f is not an S-function since A u(f, (tt, L, L), tt) thought 3 p(f, (L, L, L), tt) .

Now we relate S-functions to stable functions.
In fact S-functions are stable functions; the difference between them is that S-functions are
also “intensionally stable” in particular in domains, where elements could be intensionally
preordered without being extensionally ordered.
For example, considering the function f € [ T® — T] s.t.:
fle) =t iff =>(t,tt,L) or > (ff, L, #t) then f is an S-function, though it cannot
be exhibited an element ¢ which could be put for p(f, (LLL),#t) and s.t.: tt < f(e).

A first result of section is the following:

4.4 theorem : the function set of S-functions between two S-domains s an S-domain, where
greatest lower bounds are taken pointwisely. Its finite elements are those lubs of finite set
of elements of the form {(d; = ¢;)/i € I} (where d and e are finite elements of the two
S-domains) which verify condition (S).

We use the following lemma:

lemma: let be two S-domains D and E; then their set of S-functions is a lower-complete
lattice where glb are taken pointwisely:

proof: the constant function Az.1 € [D - E] is trivialy the bottom

in [D - E] . Now let § = {fi/i € I}; then 3f € [D — E] s.t.: f = AS.
We now proof that fis € [D o E] .

RR n~"2589
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Let z,z€D:x<z and BE€ F s.t.:
f@) 2 B< f(z) te {\fi(x)/i€ I} 2 B < {Afi(z)/i € I} and thus
Afio €S st fig(2) 2 8 < fio(z) then 3 p= u(fiy,z,8) st
r2u<lz &
VyeD (y>z & y<z & Bf(y) = n=y .
the proof of the theorem:
let be two S-domains D and E ; then of S-functions ( [D v E] ) is a lattice, since its is a

lower complete lattice and the constant Az.T is trivially its greatest element.

Function: f = \{(d; = ¢;)/i € I} with I finite, and d; € B(D) and e; € B(FE), are finite

elements in [D — EJ; so, as soon as they verify condition (S), they are also in [D - E].

It is trivial that [D - E] is finitary. [ |
Let us now examine the category SD.

5 THE ACATEGORY SD

First of all, recall that a A-category is a cartesian closed category which is order-enriched,
together with some additional continuity properties.

5.1 theorem : SD is cartesian closed.
proof : we verify that SD has products and exponentials.
1)  product:

i) The cartesian product of a denumerable family of domains is a domain. This is
a well known fact. It’s partial order is the product of the orderd of the domains. Now to get
an S-domain, we define the intensional preorder to be also the product of the intensional
preorders of the domains.

ii) The projection functions ; : [(D1 X D) — D;] for i = 1,2 are S-functions:
It is easy to verify that for any 8 € D;, i = 1,2 and for
r =< x1,ry>,2=< 21,29 >€E D1 x Dy :x <z one can set:
u(my, e, B8) =< B,L > and p(me, 2z, f8)=<L,8>.

i) If felF —8—>D] & gel[F —5—>E] then < f,g >€ [F Y DxE]:
one can easely verify that u(< f,¢g >,z,5) can be set to u(f,z,71(5)) or to u(g, z,m(3)) .

2) exponential :

i) function app : [< [D = E] xD >— E] is an S-function:
Let < f,z >, < h,z>e< [D = E] xD >st.: < fiz><<h,z>,
and let 5 € E : h(z) > B £ f(x); we have to exhibit u(app, < f, 2z >,5) =

INRIA
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pe< [D —8—»E] xD> sti<hz>2> p £ <fe> &
V<g,y>e<[D o El] xD> (< fia><<gy><<hz> &3=29(y) =
1 =< g,y > various cases:
—Jz>y L e:B< f(y) in this case there exist u(f, z,3) s.t.:
z2p(fz,B) Lz &
Vy:i(y>z &z>y & B=2f(y) = ulf,z,8) 2y.
In this case < f, u(f, =, ) > is a possible value for p .

—Vy >z, 8L fy)
In this case, < (z = ),z > can be put for p .

il) function curry is an S-isomorphism of S-domains:
A)  consider an S-function f € [ D x E vy F] : we want to show that function f, €
[E — F] st Vb e E, fu(b) = f(a,b), verifies (S).
Let 2,z € E : z > x and let § € F and suppose fo(2) 2 5 < fa(z) then we have:
(a,2),(a,2) E DX E :(a,z)<(a,z) & feF & f(a,x) % 5< fa,z);
thus 3 u(f, (a,2),8) = psta(a,z) p<(a,z)&V(a,y) €D x E:
((a,2) < (a,y) & (a,y) < (a,2) & B = fla,y)) = u = (a,y)
We can set u(fq,z, ) = ma(p).
B) considering the function curry itself, we have to show:
Vigel[DxE —Fl:g>f Vée[D — [F—F]],
curry(f) 2 ¢ < curry(g) Ipulcurry, f,é)=p st fru<g &
VA, (F<h<g &6 =< curry(h)) = u < h.
It trivial that a suitable value for p is the function ¢’ € [ D x E v F] s.t.
V<a,y>€Dx E,¢'(<z,y>)=o(x)(y)
To end the proof, notice that curry is an isomorphism of domains and thus it is an isomor-
phism of S-domains by its definition and the above. [ |

A significant result is the following:

5.2 theorem : SD is an order-enriched A-category whose objects are S-domains in which
every finite element s computable in a sequentialy way .

proof : the fact SD is an order-enriched Acategory, comes from the above theorem; notice
that we do not need to worry about continuity, since we are using the pointwise partial
order.

The finite elements of an S-domain are lub of finite subset F' = {(d; = ¢;)/i € I} which
verify axiom (S), s.t.: given « € D, its image is

f(x) = V{ei/(di = ¢;) € F & d; < 2} . A sequential algorithm for computing this value is
then the following:

Suppose # s.t.: f(z) # L. Assume that f is not a constant. Then must exist an element

u(f, L, f(z)). Either f(u(f, L, f(2))) = f(z) and the process stops, or
we choose u(f, L, f(z)) < @ ( which must exist!) and we itterate the process: u(f, u(...), f(z));
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since our S-domains are finitary, the sequence must stop, yielding the value f(z) . [ |

Now, considering the case of PCF ( which we modify by adding a constant represen-
ting T7 at all types o), we can claim, using the algebraicity lemma (see[Mil77]) that the
model is fully-abstract. And considering Milner’s results, it is unique (up to isomorphism).

For finishing, we relate S-functions to the continuous ones

5.3 theorem : Let< D, <> where D = [Dy — Ds] be the sel of continuous functions
from Dy to Dy; and suppose their S-functions < Dy, <> where Dy= [D; ry D5] we want
to show that they constitute a retraction.
proof : we want to show that the mappings s : D — D, defined by
s(f) = AN{g € Ds/f < g} is a projection, and the mapping i : Dy — D defined by
i(g9) = g, (which is an injection) constitutes a retraction.

It is immediate to see that s is a projection ( f1 < fo = s(f1) < s(f2) :
fi<fo=Vg€D;, 9> fo=g€D;,9>fi = s(fi) <s(fa)

s(f) > f is immediate .

sos(f) =/f:fi=s(f) = N{g €D,/f <g}; and thus

sos(f) =s(f1) = fisince fi isin Dy. )

That ios(f) > f is trivial since s(f) > f.

To see soi(g) = g is immediate, since soi(g) =s(g) = A{¢y' €Ds/g<g¢'} =9. ]

6 CONCLUDING REMARKS

In this paper, we generalize the notion of stable function, getting intensionally stable func-
tions, which can be combined to S-domains, to get an order-enriched Acategory. We provide
sequential algorithm to evaluate the finite elements of S-domains. Thus we can imagine that
our model is the same as Milner’s model ( which is fully-abstract and unique).
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