N

N

Scheduling UET-UCT Series-Parallel Graphs on Two
Processors

Lucian Finta, Zhen Liu, Ioannis Milis, Evripidis Bampis

» To cite this version:

Lucian Finta, Zhen Liu, loannis Milis, Evripidis Bampis. Scheduling UET-UCT Series-Parallel Graphs
on Two Processors. RR-2566, INRIA. 1995. inria-00074115

HAL 1d: inria-00074115
https://inria.hal.science/inria-00074115
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074115
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Scheduling UET-UCT Series-Parallel Graphs
on Two Processors

Lucian Finta ZhenLiu loannisMilis Evripidis Bampis

N°® 2566
Mai 1995

PROGRAMME 1

apport
derecherche

4 INRIA

SOPHIA ANTIPOLIS

Scheduling UET-UCT Series-Parallel Graphs
on Two Processors*

Lucian Finta Zhen Liu JIoannis Milis Evripidis Bampis

Programme 1 — Architectures paralléles, bases de données, réseaux
et systemes distribués

Projet MISTRAL

Rapport de recherche n° 2566 — Mai 1995 — 24 pages

Abstract: The scheduling of task graphs on two identical processors is considered.
It is assumed that tasks have unit-execution-time, and arcs are associated with
unit-communication-time delays. The problem is to assign the tasks to the two
processors and schedule their execution in order to minimize the makespan. A
quadratic algorithm is proposed to compute an optimal schedule for a class of series-
parallel graphs, which includes in particular in-forests and out-forests.

Key-words: Scheduling, Makespan, Precedence Constraint, Series-Parallel Graphs,
Complexity, Optimal Algorithm.

(Résumé : tsvp)

*Correspondence: Zhen LIU, INRIA, Centre Sophia Antipolis, 2004 route des Lucioles, B.P.
93, 06902 Sophia-Antipolis, France. e-mail: liu@sophia.inria.fr

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)

Ordonnancement de graphes séries-paralleles
UET-UCT sur deux processeurs

Résumé : Le probleme d’ordonnancement de graphes de taches sur deux proces-
seurs est analysé. Les temps de calcul des taches sont unitaire, ainsi que les durées
de communication associée aux arcs. Le probleme est d’affecter les taches aux pro-
cesseurs et d’ordonnancer leur exécution de maniere a minimiser la durée d’ordon-
nancement. Un algorithme optimal de complexité quadratique est proposé pour une
classe de graphes séries-paralleles, classe qui inclut en particulier les arborescences.

Mots-clé : ordonnancement, durée d’ordonnancement, contrainte de précédence,
graphe séries-parallele, complexité, algorithme optimal.

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 3

1 Introduction

A notoriously difficult problem in the scheduling theory of parallel computation has
been the minimization of makespan (i.e. schedule length) of set of partially ordered
tasks with unit-execution-time (UET) tasks and unit-communication-time (UCT)

delays on m (identical) processors [2].

A general description of the problem is the following. There are m identical
processors and a set of n tasks to be run on those processors. The executions of
the tasks are subject to precedence constraints (and communication delays) that
are described by a weighted directed acyclic graph G = (V, E), referred to as task
graph, where the set of vertices V' corresponds to the set of tasks and the set of
arcs FE the precedence constraints. The weight of task ¢« € V, denoted by p;, is its
execution time. The weight of arc (¢,j) € E, denoted by c;;, is the communication
time between tasks ¢ and 7, provided they are assigned to different processors. The
communication time is considered to be negligible if two communicating tasks are
assigned to the same processor. A task can start execution on a processor only if all
its predecessors have completed execution and the interprocessor communications

(if any) have completed.

According to the three-field notation scheme introduced in [4] and extended in
[16] for scheduling problems with communication delays, such a problem can be

denoted as m | prec, ¢;j, p;j | Crax, Where Cpax represents the makespan.

A special case of the problem is UET-UCT: m | prec, ¢;; = 1, p; = 1 | Ciax,
which was shown to be NP-hard in [9]. Even when the task graph is a tree, the
problem remains NP-hard [15]. A list algorithm was proven optimal for interval-
order task graphs [8]. For fixed m > 2, the only results reported in the literature
are on trees (except the interval-order graphs). In particular an O(n*™~1) optimal
dynamic programming algorithm is presented in [13], while an O(n) approximation
algorithm computing a schedule whose length exceeds the optimum by no more than

m — 2 units is presented in [7].

A challenging open problem is the two-processor scheduling with UET-UCT:
2 | prec, ¢;; =1, pj =1 | Cyax, for which the complexity is unknown. If, however,
the tasks are a priori assigned to two processors, the problem is NP-hard for arbitrary
task graphs [15, 3]. When the task graph is a tree, both results mentioned above for

m > 2, [13] and [7], yields optimal polynomial solutions, while two more algorithms

RR n" 2566

4 L. Finta, Z. Liu, I. Milis, E. Bampis

were proposed in [5] and [14]. Although four algorithms are known for scheduling
UET-UCT tree task graphs on two processors, no algorithm is known for more

general classes of graphs.

In this paper, we provide a quadratic algorithm to compute an optimal schedule
for a special class of task graphs, referred to as series-parallel-1 (SP1) graphs, denoted
by G. This class of graphs includes as particular cases the opposing forests and series-

parallel-11 (see definition below) graphs.

In the next section we define the class of SP1 graphs and present some of its
properties used in the paper. In Section 3 we present the (recursive) scheduling
algorithm and prove its optimality and time complexity. In Section 4, we conclude

with some remarks on future research.

2 Series-Parallel Graphs

All graphs considered in the paper, unless otherwise stated, are directed graphs
(digraphs). The class of series-parallel graphs is known as a class for which several
scheduling problems are polynomially solvable [1, 6, 11], while the same problems
are NP-complete for a general graph. Here, we are interested in a subclass of series-

parallel graphs which we call series-parallel-1 graphs.

We define the class and subclasses of series-parallel graphs using a quadruple
notation, G = (V, E,I,T) for a graph G, where V, E, I, T are respectively the sets
of vertices, arcs, initial vertices (with no predecessor) and terminal vertices (with no

successor).

Definition 1 The class of series-parallel graphs is defined as follows.

e The single vertex graph is a series-parallel graph.

o If G, = (V1,E1,I1,T1) and Gy = (Va, Es, I, Ts) are series-parallel graphs, so

are the graphs constructed by each of the following operations:

Series composition : G =G S Go = (Vi UV, By U Ex U (T X L), 1, T).
Parallel composition : G =G P Go = (V1 UVa, By U Ey, [U I, Ty U Th).

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 5

In the above definition, if the series composition applies only when |7;]| = 1 or
|I;] = 1, then we obtain the class G of series-parallel-1 (SP1) graphs. It is clear
that the class of SP1 graphs includes in-forests, out-forests and opposing forests as

special cases. An example of an SP1 graph is illustrated in Figure 1(a).
Another subclass of series-parallel graphs which are frequently studied in the
literature is series-parallel-11 (SP11):

Definition 2 The class of SP11 graphs is defined as follows.

e The single vertex graph is a SP11 graph.

e If G, =(V;, E;, I, T;) are SP11 graphs, 0 < ¢ < g + 1, so is the graph

=0 2=0

g+1 g+1 g g
¢ = (U v, U Eiu(To 9 uzi)u (Un xfg+1), I, Tg+l).
=1 2=1

It follows from the definition that any SP11 graph has a single initial vertex and a
single terminal vertex. Hence, the class of SP11 graphs is a subclass of SP1 graphs.

The following fact will be useful.
Lemma 1 If G = (V,E) € G, then |E| < 2|V| — 2.

Proof. We prove the following inequality by induction on the number of vertices in
the graph:
B < 2[V]—[I] - [T],

which implies the assertion of the lemma.

If |V| = 1, then the result trivially holds. Assume there is n > 2 such that the
inequality holds for all SP1 graphs with |V| < n. Let G = (V, E) € G be such that
|V| = n. Assume G is obtained from a series or parallel composition of SP1 graphs
G1 = V1, Eq, 11, Ty) and Gy = (Va, Eo, I, Ts). Clearly |Vi| < n and |V3| < n. Then,
by inductive assumption, |E;| < 2|Vi| — |L| — |Ti|, i = 1, 2.

If the composition is parallel, then I = [; U I, and T' = T7 U T5, so that

B = |Ex| + |Bo| < 32 2|Vi| = L] = |Ti| = 2|V] = 1] - |T].

i=1,2

RR n" 2566

6 L. Finta, Z. Liu, I. Milis, E. Bampis

If the composition is series, then £ = F1 U E; U (Ty X I), I = I; and T = T, so
that

|E| = |B1|+|Eo| +max(|T1], | L|) < [Ta|+|La|+ Y 2|Vil—|L]| = |Ti| = 2|V|-|I|-|T],
i=1,2

where the first equality comes from the fact that |73| = 1 or |I;] = 1, and the
inequality comes from the fact that for all positive numbers z and y, max(z,y) <

T+ y.

Thus, by induction, the result holds for all SP1 graphs. |

The composition of a series-parallel graph GG can be represented by a binary tree
T, referred to as decomposition tree. Each leaf of 7 represents a vertex in G; each
internal node is labeled S or P and represents the series or parallel composition
of the series-parallel-1 subgraphs which are in turn represented by the subtrees
rooted at the children of the node. By convention, we assume that in the series
compositions the left child precedes the right one. Thus, the decomposition tree
is ordered. However the order between children of a parallel composition has no
importance. Clearly, decomposition trees are not unique, as it is possible to have

ties between successive compositions of the same type.

In [12] a linear time algorithm was presented for recognizing the general class
of series-parallel graphs and constructing a binary decomposition tree. However,
their algorithm breaks ties between successive compositions of the same type in an
arbitrary way. Another algorithm was presented in [10] for the construction of a
decomposition tree of a given SP1 graph. Although the algorithm applies only to
the subclass of SP1 graphs, it breaks ties between successive series compositions
in a particular way which is convenient to our scheduling algorithm (ties between

parallel compositions does not affect our algorithm).

More specifically, we require that the series composition of G is such that G is
minimal, in the sense that there is no other series decomposition of G into G and
G, such that G is a proper subgraph of G;. Such a decomposition tree for the SP1
graph of Figure 1(a) is illustrated in Figure 1(b).

We present here a new algorithm for the recognition of SP1 graphs and the
construction of decomposition trees with minimal series decomposition. Our algo-

rithm has a smaller time complexity than that of [10].

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 7

02 O3

N/

P O4

S O5 o7 O8

5 33 05 O6 N/ N/
P 09 06 P
5/\$ N/ N/
4 708 S S
N

o1 P

09 \/
S

(a) (b)

Figure 1: (a) Example of an SP1 graph and (b) the corresponding decomposition

tree.

For each vertex v € V' we define the following sets. A(v) is the set of all predeces-
sors (ancestors) of v, D(v) is the the set of all successors (descendants) of v, inclu-

ding v itself, and S(v) is the set of the immediate successors of v. Let a(v) = |A(v)],

@ = (a(v), v € V), and d(v) = |D(v)|, d = (d(v), v € V).

Our algorithm will use the following facts in order to recognize and construct
the decomposition tree of G = (V, E).

e If |I| = 1, then the single vertex in I is in series composition with the remaining

graph.
e If |I| > 1 and G is not connected, then it is composed in parallel.

e If |I| > 1 and G is connected, either it is composed in series or it is not an
SP1 graph.

When |I| > 1, in order for G to be an SP1 graph provided by a series composition
of G; and G5, G; must have a single initial vertex. Let y be such a vertex. It then
satisfies the equality A(y) U D(y) = V. Since the sets A(y) and D(y) are disjoint,

we obtain

a(y) +d(y) = |V].

RR n" 2566

8 L. Finta, Z. Liu, I. Milis, E. Bampis

If such a vertex does not exist, then clearly G does not belong to the class of SP1

graphs.

When |I| > 1 and G is connected, there may be several vertices y satisfying
a(y)+d(y) = |V]. Since G is acyclic, a topologically sorted numbering of its vertices
can be provided so that v € A(v) implies that v < v. Thus, the minimality of
series decomposition is guaranteed by choosing y to be the smallest vertex satisfying
the equality above. This way of series decomposition gives a priority to successive
series decompositions (top-down in the initial graph) which will be crucial for our

scheduling algorithm.

Our algorithm, referred to as Decomp, is formally summarized below in a recur-
sive manner. Before the algorithm is called, the following preprocessing is performed
on the graph G = (V, E), where the variables S(v) are global variables in the recur-

sive algorithm, while the others are local ones.
o Relabel the vertices in accordance with the partial order of the graph.
e Compute the set I of initial vertices.
¢ For each v € V' compute a(v), d(v) and S(v).

In the algorithm Decomp, we denote by R(T') the root of a tree. When G' = (V', E')
is a subgraph of G = (V, E), we assume that E’ is a restriction of £ on the vertices

of V'. Similarly, (V') and d(V') denote the restrictions of the vectors @ and d to

the vertices of V.

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 9

Procedure Decomp (@, I, @, d); {returns the tree T(G) }
begin
If V|=1 (V ={z}) then 7(G) :=
else If |[I| =1 (I ={z}) then
Vo=V —{z}; I := S(z);
For each v € V5 do a(v) := a(v) — 1,
R(T(G)) == S;
left-child:=z;
right-child:=Decomp(Ga, I, @(V3), d(V2))
else
Find the connected components, G}, G2, ... of G;
If GG is not connected then
G =G4 Vo=V -V, L1 =1V, Iy:=1—1;
R(T(G)) := P;
left-child:=Decomp(Gy, I, @(V1), d(V1));
right-child:=Decomp(Gy, I, @(Va), d(V5))
else {i.e. G is connected }
Find the smallest vertex satisfying a(y) + d(y) = |V[;
If such y exists then
Vi={veViu<yh Vo:={veVv>y}
L :=1; I, :={y}k
For each v € V; do d(v) := d(v) — d(y);
For each v € V; do a(v) :=a ;
RT(G) = 5,
left-child:=Decomp(G1, I, d(V1), (1));
right-child:=Decomp(Ga, I, @(Va), d(V2))
else return G ¢ ¢

end

Lemma 2 The procedure Decomp recognizes whether a given graph G = (V, E)

is SP1 and if it is, then constructs the decomposition tree in O(n?) time, where

n=|V|.

Proof. The procedure Decomp is called recursively O(n) times. In each call O(n)
time is enough for the computations, even for finding the connected components,
since by Lemma 1, |E| < 2|V| — 2, that is |E| = O(n). The complexity of the algo-
rithm is therefore O(n?). Since the preprocessing step can also be implemented in

O(n?) time units, the complexity of the whole recognition/decomposition algorithm

is O(n?). |

RR n" 2566

10 L. Finta, Z. Liu, I. Milis, E. Bampis

3 Scheduling

3.1 Preliminaries

We define a schedule as a function o : V' — IN, x {1,2}, i.e. o(u) = (t,, p.) Where
t, is the time slot and p, the processor on which task w is scheduled. A schedule is
feasible if:

e for all u,v € V, u # v implies (ty,pu) # (tu, Pv);

o if (u,v) € E then t, + 1+ 1(p, # p,) < t,

where 1(0) is the indicator function.

The reverse function o !(¢,p) gives the task scheduled on processor p in time
slot t. In what follows we say that a schedule ¢ has an idle in time slot ¢ if one of
the processors is idle during this time slot. In this case we consider as if the idle
processor is executing a fictive task, labeled 0. Processors are denoted by P1 and
P2. By M we denote the makespan (length) of a schedule, that is the last time slot

some task is executed on any processor:
M =max{t| o t,1)#0or o '(t,2) #0}.

An idle in the time slot 1 (resp. M) of o is called left idle (resp. right idle). Both left
and right idles are called extremal idles; other idles in a schedule are called internal

idles.

Roughly speaking the idea of the algorithm is to combine recursively the sche-
dules of the subgraphs into which G is decomposed, following its decomposition tree.
In a series composition (G = Gy S Gs), it is clear that all tasks of G are prede-
cessors of all tasks of (G and therefore the schedule of G will be a concatenation
of the schedules of Gy and Gs. In a parallel composition (G = Gy P G3) there is
no precedence relation between tasks of G5 and tasks of GG5. The idea is to “merge”
the schedules of G; and G5 by, in general, using the schedule of one graph and then
filling-up the idles of this schedule with the tasks of the second graph, executed
sequentially.

In what follows, we will consider a subgraph of an SP1 graph in its decomposition

tree. In particular, we shall construct schedules of the subgraph by taking into

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 11

account the next (series or parallel) composition to be operated on it, i.e. its father
in the decomposition tree. For all G € G, the pair (G, O), where O € {ST,87,P},
denotes the type of next composition (S or P) to which graph G participates. The
sign denotes that G is a right (+) or left (-) child in a series composition. In a parallel

composition interchanging children does not make any difference.

By the definition of the series composition (G = Gy S Gs) either |Ti| = 1 or
|I3] = 1 and therefore either o, has a right idle (if |71| = 1) or o, has a left idle
(if |[Is] = 1). These idles are the key point in the development of our scheduling
algorithm.

Definition 3 A schedule ¢ of G is said to be nice with respect to (G, Q) if all the
following hold:

(i) In each time slot, at least one processor is busy: o 1(¢,1) + o 1(¢,2) # 0,
1<t< M.

(ii) In any two consecutive time slots P1 cannot be idle in the first if P2 is idle in
the second or vice-versa, i.e. 07 (¢,i) + o (¢t + 1,(¢ mod 2) + 1) #0,i =1,2.

(i) If O = P, then o is an optimal schedule of G with the most possible extremal

idles. Moreover,

— if o has only one extremal idle and at least one internal idle then there

is no optimal schedule with the extremal idle in the opposite side, and

— if 0 has no extremal idle and at least one internal idle then there is no
schedule of length M + 1 with two extremal idles.

(iv) If O = & (resp. 8T), then o is the shortest schedule with a right (resp.
left) idle, and if possible, a left (resp. right) idle, i.e. o either is optimal
or has the length of the optimal schedule plus one provided that there is no
optimal schedule with a right (resp. left) idle.

Note that the shortest schedule in (iv) may not be an optimal schedule as we
required an extremal idle. In our scheduling algorithm, we will recursively compute
nice schedules and combine these schedules according to the composition operations.
To this end, we will use often two symmetric operations stretch-right and stretch-
left. Given a schedule o of length M satisfying properties (i) and (ii) of Definition 3,
each of these operations increases the length M to M +1, provided that M +1 < |V|,
by stretching o right (resp. left) and preserving the same properties.

RR n" 2566

12 L. Finta, Z. Liu, I. Milis, E. Bampis

Lemma 3 Every schedule o of a graph G = (V, E) with length M < |V|, satisfying
properties (i) and (ii) of Definition 3, can be stretched to a schedule of length M +1,

where M + 1 < |V|, preserving the same properties. These stretch operations can be

done in O(|V]) time.

Proof. We prove the lemma for the stretch-right operation, the stretch-left being

symmetric.

Consider first the case [= 1. Since M < |V, there is at least one time slot where
both processors are busy. Let ¢ be the last time slot where both processors are busy.
By properties (i) and (ii) of Definition 3, one processor is always idle and the other
always busy after time slot ¢. Assume without loss of generality that processor P1

is always busy after time ¢.

Let u, v be the tasks executed on P1 and P2 in time slot ¢. The stretched schedule
is identical to ¢ until time slot ¢ — 1. If P1 is idle in the time slot ¢ — 1, then tasks
u, v are executed on P2 in the time slots ¢t and ¢ + 1 respectively. All the other tasks
executed on P1 during the time slots t + 1,t 4+ 2,---, M, are moved to P2 and they
are executed during the time slots ¢t + 2,¢t + 3,---, M 4 1. Otherwise, if P1 is not
idle in time slot ¢ — 1, we execute u,v on P1 in time slots ¢t and ¢ + 1 respectively.
All the other tasks on P1 are shifted right one time slot.

The resulting schedule is clearly feasible and satisfies properties (i) and (ii) of

Definition 3. The time complexity of this operation is O(n).

Consider now [> 1. Since M +1 < |V, there are at least [time slot where both
processors are busy. Let t; < 15 < ... < t; be the right-most time slots where both
processors are busy. Then, we start the above rearrangement and shift operations
from t;. The tasks scheduled after ¢; and before ¢;,; are shifted right ¢ time slots,
1 =1,2,...,l, where t,,; is defined by convention as M + 1. Again the time com-

plexity of the whole operation is O(n). |

In the next two subsections we compute a nice schedule of a graph G given
the nice schedules o; and o5 of the graphs G; and G5 to which G is decomposed
according the decomposition tree 7. Following Definition 2, it is clear that in order
to decide about the nice schedule of a composition we have to take into account the

next composition operation to which G participates.

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 13

3.2 Schedule of a parallel composition

Consider first the case G = G1PGs, where Gy = (V4, F1) and Gy = (Va, Es). Let
o1 (resp. 02) be a nice schedule of Gy (resp. G3) with respect to (Gy,P) (resp.

(G2, P)) which results in a makespan of M; (resp. Ms). Let M’ = ['Vlgﬂw, where

[z] denotes the smallest integer greater than or equal to z.

Since G; and G, participate in a parallel composition we can interchange the
indices without loss of generality. Thus, we assume that |V3| > |V3|. Note that in this
case, My < M' (otherwise, |Vi| > |Va| > My > M' +1 so that |Vi| + V2| > 2M' + 2,

which is a contradiction with the definition of M").

The algorithm SchPar below constructs a nice schedule o for the graph G with
respect to (G, 0), where O € {S,8™, P}. Note that the input arguments o; and
o5 allow one to compute the set of vertices V5 and V5 without having knowledge on

the graphs G; and Gs.

RR n"2566

14 L. Finta, Z. Liu, I. Milis, E. Bampis

procedure SchPar (oq, 02, O); {returns a nice schedule 0.}
begin
If O =8 (resp. §T)
If |V1| = |V3| then
If |Vi| = |V2| = 1 then schedule V; and V; sequentially on P1
else {i.e. V4| =|V2| > 1}
Schedule G sequentially on P1 in time slots 1,2, ..., M’ and
G2 on P2 in the time slots 2,3,..., M’ + 1
else {i.e. V41| > |V2|}
If 01 has no right (resp. left) idle then
stretch-right (resp. stretch-left) oy to My + 1, My := My + 1,
If M' > M, then
If |Vi| + | V2| is even then
stretch-left (resp. stretch-right) o; to length M’ + 1; My := M' + 1;
else {i.e. V1| + |Va| is odd }
If M' > M, then
stretch-left (resp. stretch-right) oy to length M'; M, := M,
Fill-up backwards (resp. forwards) the idles of oy with tasks of V5
starting from the (M; — 1) (resp. 2"¢) time slot ;

else {i.e. O =P}
If |V1| = |V2| then Schedule sequentially G on P1 and G on P2;
else {i.e. V1| > |V2|}

If M’ > M, then stretch-left oy to length M'; My := M’;
If |V1| + |V2| is odd or M; > M' then
Fill-up forwards the idles of o; with tasks of V5 starting from the 2"¢ time slot
else {i.e. V1| + |V2| is even and M, < M'}
Fill-up forwards the idles of oy with tasks of V5 starting from the 1** time slot
end

Lemma 4 Given the schedules o1, oo of task graphs G1, Gy € G which are nice with
respect to (G1, P) and (G, P), the algorithm SchPar computes a nice schedule o of
G = G1PGy with respect to (G,0), O € {§7,87, P}, in O(|V]) time. The length

M of o s given as follows:

e IfO =P, then M = max(M;, M").

e IfO =S8 (resp. 8T), then

M = [max (Ml, \4A —; |Vg|> N 1(oy has a right 2(resp. left) idle)

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 15

Proof. Note first that unless in trivial cases, the schedule o constructed in algo-
rithm SchPar is based on ;. Since any feasible schedule of G has length at least
max(My, M'), we start with an intermediate schedule ¢’ which is identical to oy (if
My > M) or o1 stretched to length M’ (if My < M'). When M; < M', the number
of idles in o’ is

[Vo| +1, if [V3] + |Va] is odd

r_ =
2M = |V { |Val, if V1] + |V2] is even.

When M; > M', the number of idles is at least |V2|+2. Since the schedule ¢’ satisfies
properties (i) and (ii) of Definition 3, all tasks V5 can be scheduled sequentially in
these idles. Thus ¢’ is an optimal schedule of G.

However, as we are searching for a nice schedule of (G, O), we have to fill up the

idles in particular way, and stretch further this schedule when necessary.

Consider first the case O = P. The algorithm SchPar clearly provides an
optimal schedule of length M = max(M;, M') with the most possible extreme idles.

Moreover, algorithm SchPar provides a nice schedule of (G, P). Indeed, if |V;| +
|V2] is even and M; < M’ (which includes the case |V;| = |V3]), no optimal schedule
allows idle. Thus, ¢ is optimal and nice schedule of G with respect to (G, P).

If My < M’ and V4| + |V is odd, i.e. |Vi|+ V5| = 2M' — 1, then there is exactly
one idle in any schedule with length M'. Consider schedule ¢’ with length M’ which
is identical to oy or obtained after a stretch-left operation from oy. There are two
subcases: (1) o' has at least one extremal idle, (ii) ¢’ has no extremal idle. In case
(i), schedule o preserves either the left or the right extremal idle of ¢’. In case (ii),
no stretch operation is performed on 0y to obtain ¢’ (otherwise extremal idles would
be created). Since oy is a nice schedule of Gy (which implies that there is no feasible
schedule of Gy with length M’ + 1 and two extremal idles), o constructed by the

algorithm is optimal and nice with one internal idle.

If My > M' it is easy that the total number of idles of oy is at least |Va| + 2,
thus there is at least one internal idle in oy. It is clear that the schedule o of
G constructed by the algorithm uses no extremal idles (if any) of oy. Thus, the
niceness of oy with respect to (G, P) guarantees the niceness of o with respect to
(G, P). More precisely, if the optimal nice o7 has two extremal idles, it is clear that
schedule ¢ of GG is of length M; with two extremal idles, and is therefore nice. If o4

has only one extremal idle and since it is nice, it follows that there is no optimal

RR n" 2566

16 L. Finta, Z. Liu, I. Milis, E. Bampis

schedule with one idle in the opposite side neither for G; nor for G. In this case o
constructed by the algorithm is optimal and nice with one extremal idle and at least
one internal idle. If the optimal nice o; has no extremal idle, one can easily see from
the niceness of oy with respect to (Gy, P) that there is no feasible schedule neither
for GGy nor for G with length M; with some extremal idle, and there is no feasible
schedule neither for G nor for G with length M; + 1 with two extremal idles. Note

however that in this case ¢ has at least two internal idles.

Consider now the case O = §~ (resp. §7). In order for o to be nice it must
have a right (resp. left) idle. When |V;| = |V4], it is simple to see that the schedule

o has the required properties. Assume now |V;| > |V3|.

If My > M’ then o4 has at least |V3|+2 idles, thus at least one internal idle. Since
o1 is optimal for G, there is no feasible schedule for G; PG5 with length strictly less

than M;. Consider the following subcases.

o If 0y has two extremal idles then schedule o constructed by the algorithm has
length M; and two extremal idles, and is therefore optimal for G and nice with

respect to (G,87) (resp. (G,ST)).

e If oy has a right (resp. left) idle, but not the opposite one, then, since oy
is nice with respect to (G, P), it is clear that there is no feasible schedule of
length M; for G with neither two extremal idles nor left (resp. right) idle
and no idle in the opposite side. Thus, the algorithm constructs an optimal
schedule of length M; for G with a right (resp. left) idle and at least one
internal idle, which is therefore nice with respect to (G,87) (resp. (G,ST)).

e If 0y has a left (resp. right) idle, but not the opposite (needed) one, since
01 is nice with respect to (G1,P), it is clear that there is no feasible schedule
of length M; for G with a right (resp. left) idle. In this case the algorithm

constructs a nice schedule o of length M; + 1 with two extremal idles.

e If 0y has no extremal idles, then, a similar argument as in the previous case
implies that the algorithm constructs a nice schedule of length M; + 1 with

only one (the needed one) extremal idle and at least one internal idle.
If M; = M’ then o7 has at most |V5|+1 idles, thus any schedule of G with length

M’ (if any) cannot have more then one idle. If |V |+ |V5| is odd, then oy has exactly
[V2| + 1 idles. Consider the following three subcases.

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 17

e If oy has a right (resp. left) idle, i.e. either it has two extremal idles or right
(resp. left) idle and no left (resp. right) one, the algorithm constructs an

optimal and nice schedule of G with one right (resp. left) idle.

e If oy has left (resp. right) idle and no right (resp. left) one, since oy is nice
then there is no feasible schedule of G with length M’ and one right (resp.
left) idle. Schedule o constructed by the algorithm has length M;+1 with two
extremal idles, and is therefore nice with respect to (G,87) (resp. (G,ST)).

o If 0y has no extremal idles, since it is nice, then it is clear that there is no
feasible schedule of length M; +1 for G with two extremal idles. The algorithm
constructs a schedule of length A/; + 1 with the needed extremal idle.

If, however, |Vi|+|V2] is even, i.e. |Vi|+|V2| = 2M’, then any schedule of G of length
M' contains no idle. Thus any nice schedule of G with respect to (G,S™) (resp.
(G,87)) must have length at least M’ + 1. If oy has at least one extremal idle, the
algorithm constructs such a nice schedule o with two extremal idles. If o; has no
extremal idle, since it has internal idles and is nice with respect to (Gy, P), there
is no schedule of length M’ + 1 with two extremal idles either for G; or for G. The
algorithm constructs a nice schedule o of length M’ + 1 with a right (resp. left)

idle and no idle in the opposite side.

If M; < M'. consider first the case when |V;| 4 |V2| is odd. Then any schedule
of length M’ have exactly one idle. Our algorithm constructs an optimal and nice
schedule o of length M’ with one right (resp. 1left) idle and no idle in the opposite
side. If |V;| + |V2| is even, ie. |Vi| + |V2| = 2M’, then there is no schedule of G
of length M’ containing some idles. The algorithm constructs a nice schedule o of
length M’ + 1 with two extremal idles.

Finally, consider the time complexity of procedure SchPar. It depends on
the stretching and filling-up operations executed. Both operations can easily im-
plemented in O(n) time by a simple traversal of the schedules involved. Thus, the

algorithm SchPar has linear time complexity. |

RR n" 2566

18 L. Finta, Z. Liu, I. Milis, E. Bampis

3.3 Schedule of a series composition

Consider now the case G = G1S8Gs, where Gy = (V1, E1) and Gy = (V2, E»). Again,
let o1 (resp. 02) be a nice schedule of Gy (resp. G3) with respect to (G1,S87) (resp.
(G2, S8™)) which results in a makespan of M (resp. M3).

By the niceness assumption of o; and o5, 07 has a right idle and o5 a left one.
We suppose that the right idle in o; and the left idle on o5 are in the same processor

(otherwise a renumbering of the processors in one of schedules yields the desired

property).

The algorithm SchSer below constructs a nice schedule o of G with respect to
(G, O). Note that our decomposition tree provides minimal series composition. Thus
we only need to consider the cases O € {P,S1}.

procedure SchSer (o4, 02, O); {returns a nice schedule o.}
begin

o is the concatenation of oy and oy;

If O = 8T and o has no left idle then stretch-left o;

end

Lemma 5 Given the schedules o1, 05 of task graphs G1, G5 € G which are nice with
respect to (G1,87) and (G2,8™), the algorithm SchSer computes a nice schedule o
of G = G18Gy with respect to (G,0), O € {S*, P}, in O(n) time, where n = |V|.
The length M of o is given as follows:

o IfO="P, then M = M, + M.

o IfO =S8, then M = My + My + 1(0o1 has a left idle).

Proof. In a series composition (G = G; § (y) all tasks of G; are predecessors of all
tasks of Gio. Thus any schedule of graph GG contains at least two internal idles. Since
01 and o5 are nice, o7 has a right idle and o, a left one. Note also that at least one
of the schedules oy and o5 is optimal due to the fact that either 7} or /5 is singleton.

We will show that the concatenation of oy and o, yields an optimal schedule of G.

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 19

Consider first the case O = P. If both schedules 01, 05 are optimal, then clearly
the concatenation is optimal. We show below that the simple concatenation also

yields a nice schedule.

e If 0; and o, have both two extremal idles then clearly ¢ has also two extremal

idles and thus is a nice schedule of G.

e If 0 has two extremal idles and o9 only one (which is necessarily the left idle),
since 0y is nice with respect to (G2,87), we can conclude that there is no
optimal schedule with length M; + M, for G with one right idle (otherwise
there is a subschedule in ¢ for G5 with two extremal idles and length M5).

e If 05 has two extremal idles and oy only one (which is necessarily the right
idle), by similar arguments one can conclude that there is no optimal schedule
for G with one left idle.

e When both schedules 01,0, have only one extremal idle, since oy (resp. 03)
is nice with respect to (G1,87) (resp. (G2,87)), it is clear that there is no
optimal schedule for Gy (resp. G3) with two extremal idles, thus there is no
schedule for G of length My + M+ 1 with two extremal idles (otherwise there
exists a subschedule in o either for Gy of length M, or for G5 of length M,

with two extremal idles).

If only one of the schedules o; and o5 is optimal, we consider the case oy is
suboptimal. The case that o5 is suboptimal can be tackled in an analogous way.
Owing to the fact that oy is a nice schedule with respect to (Gy, S™), it follows that
there is no optimal schedule for (G; with one right idle. Thus all optimal schedules
of G; which have length M; — 1 should end with both processors busy in the last
time slot. Due to the interprocessor communications between the terminal tasks of
GGy and the initial task of GG5, the concatenation of any optimal schedule of G; with
an optimal schedule of G5 (e.g. 03) results in an idle at time slot M; so that the
total optimal schedule of G has length M; 4+ M>. Since the concatenation of nice
schedules o7 and o, yields the same makespan, this concatenation is also optimal
for GG. Using now similar arguments as in the previous case, one concludes that this

simple concatenation of nice schedules yields also a nice schedule with respect to

(G, P).

Consider now the case O = 8. In the algorithm, we first construct ¢ as before
with length M = M; + M. This schedule is nice with respect to (G,S*) whenever

RR n" 2566

20 L. Finta, Z. Liu, I. Milis, E. Bampis

o1 has a left idle. When o7 does not have a left idle, we make a stretch-left operation
on o to create a left idle on o. In order to prove the resulted schedule is nice, we

consider two subcases.

e If 0 has a right idle, one knows that there is no optimal schedule with a left
idle from the P case. Thus any schedule with left idle should have length
My + M5+ 1. Then it is enough to stretch-left o and the resulted schedule will
be nice (with two extremal idles) of length M = M; + M, + 1.

e If 0 has no right idle, one knows that there is no schedule of length M;+ Ms+1
with two extremal idles from the P case. Since the next composition is ST the
shortest schedule with one left idle must have length M = M; + M, + 1. Tt is
clear that the required left idle can be created by stretch-left o.

The complexity of the SchSer procedure is O(n) since only a traversal of the

schedules and possibly a stretch operation are needed. |

3.4 Main Result

Given the decomposition tree 7 (G) of a series-parallel graph G, we recursively apply
algorithms SchPar and SchSer to provide nice schedules of subgraphs of G, and
finally an optimal schedule of G. This procedure is described in the algorithm Sched

below. The optimal schedule of G is obtained using the arguments 7 (G), P, i.e.,
Sched(7 (G), P).

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 21

Algorithm Sched (7, 0); {returns a nice schedule of an SP1 graph represented by T .}
begin
If R(7) € V then return the optimal schedule of the single task on P1;
else If R(7) = S then
o1 := Sched(left-child, S~);
o4 := Sched(right-child, S%);
o := SchSer(o1, 02, 0);
else {i.e. R(T) =P}
o1 := Sched(left-child, P);
oy := Sched(right-child, P);
o := SchPar(oy, 02,0);
end.

We prove the following theorem.

Theorem 1 For every UET-UCT series-parallel-1 task graph G with n tasks, there

is an O(n?) algorithm to find an optimal schedule of G on two processors.

Proof. It is easily seen, and also simply shown by induction on the number of tasks
of an SP1 task graph, that the algorithm Sched provides nice schedules. As a nice
schedule of a graph with respect to a parallel composition P is an optimal schedule
of the graph, we conclude that Sched(7(G), P) provides an optimal schedule of G.

Since the time complexities of the procedures SchPar and SchSer are linear, and
since there are at most n compositions in 7 (G), the time complexity of the algorithm
Sched is clearly O(n?).

Given also that the time complexity of the recognition/decomposition algorithm
Decomp is also O(n?), it follows that the complexity of the whole problem remains
O(n?). |

We complete this section with an illustration of the algorithms. In Figure 2, we
present some intermediate nice schedules and the final optimal schedule for the task
graph of Figure 1(a). Note that the dashed part in the schedule of (g) is the stretched
schedule of that of (d).

RR n" 2566

22 L. Finta, Z. Liu, I. Milis, E. Bampis

A A
P2(0]0 P2 |0]|0
P1[2|3 . P1[7]8 .
12 Time-slot 12 Time-slot
(a) (e)
A A
P2({0]|0|0 P2 0|0]0
P12]3[4 ~ P1(6|7[8 ~
123 Time-slot 123 Time-slot
(b) (£)
A A
P2|0[5]0 P2(0[(6|7]8]0
P1(2/3]4 _ P1[2[3[5[4]9 _
12 3 Time-slot 12345 Time-slot
(c) (g)
A A
P2|0|5/0]/0 P2(0(0|6|7|8|0
P1|2[3]4[9] P1(1]2]3]5]4]9] _
1 2 3 4 Time-slot 123456 Time-slot
(d) (h)

Figure 2: Intermediate nice schedules for the subgraphs of the task graph in Figure
1.

4 Concluding remarks

We have presented a quadratic time algorithm for the optimal schedule of SP1 graphs
with UET-UCT on two processors. This result is a generalization of previous work

on tree task graphs.

Note that our algorithm works also for graphs whose transitive reduction is an
SP1 graph. In this case we have to find the transitive reduction of the given graph
first, and then test if it is SP1, and finally apply the scheduling algorithm.

A remaining open question is the NP-hardness of the scheduling of general task
graphs with UET-UCT on two processors. We conjecture however that this problem
is polynomial when the task graph belongs to the class of general series-parallel

graphs (without the restriction in the series composition).

INRIA

Scheduling UET-UCT Series-Parallel Graphs on Two Processors 23

References

[1] H. M. Abdel-Wahab, T. Kameda, “Scheduling to Minimize Maximum Cumu-
lative Cost Subject to Series-Parallel Precedence Constraints”, Operations Re-
search, 26, (1978) 141-158.

[2] P. Chretienne, C. Picouleau, “Scheduling with Communication Delays: A Sur-
vey”, In Scheduling Theory and Its Applications, P. Chretienne et al. (Eds.), J.
Wiley, 1995.

(3] L. Finta, Z. Liu, “Scheduling of Parallel Programs in Single-Bus Multiprocessor
Systems”, Rapport de Recherche INRIA, No. 2302, 1994, Submitted.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, K. Rinnooy Kan, “Optimization
and Approximation in Deterministic Scheduling: A Survey”, Ann. Disc. Math.,
5 (1979), 287-326.

[6] F. Guinand, D. Trystram, “Optimal Scheduling of UECT Trees on Two Pro-
cessors”. Technical Report APACHE RR-93-03, IMAG, Grenoble, 1993.

[6] E. L. Lawler, “Sequencing Jobs to Minimize Total Weighted Completion Time
Subject to Precedence Constraints”, Annals of Discrete Mathematics, 2 (1978),
75-90.

[7] E. Lawler, “Scheduling Trees on Multiprocessors with Unit Communication
Delays”. In Proc. Workshop on Models and Algorithms for Planning and Sche-
duling Problems, Villa Vigoni, Lake Como, Italy, June 14-18, 1993.

[8] C. Picouleau, Ftude des problémes d’optimisation dans les systémes distribués,
Ph.D. Thesis, Université Pierre et Marie Curie, France, 1992.

[9] V. J. Rayward-Smith, “UET Scheduling with Unit Interprocessor Communica-
tion Delays”, Disc. Appl. Math., 18 (1987), 55-71.

[10] R. A. Sahner, K. S. Trivedi, “SPADE: A Tool for Performance and Reliability
Evaluation”, In Proc. Modelling Techniques and Tools for Performance Analy-
sis’85, Ed. N. Abu El Ata, (1986) 147-163.

[11] K. Takamizawa, T. Nishizeki, N. Saito, “Linear-Time Computability of Com-
binatorial Problems on Series-Parallel Graphs”, JACM, 18, (1982) 623-641.

RR n” 2566

24 L. Finta, Z. Liu, I. Milis, E. Bampis

. Valdes, R. E. Tarjan, E. L. Lawler, e Recognition of Series Parallel Di-
12| J. Valdes, R. E. Tarj E. L. Lawler, “The Recogniti f Series Parallel Di
graphs”, SIAM J. of Computing, 11, (1982) 298-313.

[13] T. Varvarigou, V. P. Roychowdhury, T. Kailath. “Scheduling In and Out Forests
in the Presence of Communication Delays”. In Proc. Intern. Parallel Processing
Symposium, Newport Beach, CA,(1993) 222-229.

[14] M. Veldhorst, “A linear Time Algorithm to Schedule Trees with Communication
Delays Optimally on Two Machines”. Technical Report COSOR 93-07, Dep. of
Math. and Comp. Sci., Eindhoven Univ. of Technology, 1993.

[15] B. Veltman, “Multiprocessor Scheduling with Communication Delays”, Ph.D.
Thesis, CWI-Amsterdam, (1993).

[16] B. Veltman, B. J. Lageweg, J. K. Lenstra, “Multiprocessor Scheduling with
Communication Delays”, Parallel Computing, 16 (1990), 173-182.

INRIA

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

