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Abstract: A global checkpoint of a distributed computation is a a set of local checkpoints
(local states), one per process. Determining consistent global checkpoints is an important
problem for many distributed applications (e.g. fault-tolerance, distributed debugging, prop-
erties detection, etc). This paper focuses on such determinations. A precedence relation on
checkpoint intervals (such intervals are sets of events produced by processes between two
successive local checkpoints) is introduced and analyzed. It is shown that a local checkpoint
is useless (i.e. it cannot participate in any consistent global checkpoint) iff some pattern
occurs in this precedence relation. Then an adaptive checkpointing algorithm is introduced.
This algorithm, assuming processes take local checkpoints independently, requires them to
take (as few as possible) additional checkpoints in order that none of local checkpoints be
useless. It is based on the prevention of the previously mentioned pattern. In some sense,
this algorithm combines advantages of both coordinated and uncoordinated checkpointing
algorithms without inheriting their drawbacks.
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Les points de controle dans les systemes répartis

Résumé : Dans une exécution répartie, un point de controle global est un ensemble
de points de contrdle locaux (états locaux), un par processus participant a I’exécution. La
détermination d’un point de controle global cohérent est un probléme important dans de
nombreux domaines concernés par les applications réparties (résistance aux défaillances,
mise au point répartie, détection de propriétés, etc.). Cet article est consacré & la capture
de tels ensembles cohérents.

Une relation de précédence sur les intervalles est introduite (un intervalle est I’ensemble
des événements produits par un processus entre deux points de controle locaux consécutifs).
On montre qu’un point de controle local est inutile (c’est-a-dire ne peut appartenir &4 aucun
point de controle global cohérent) si et seulement si un certain motif apparait dans cette
relation.

Puis un algorithme adaptatif de calcul de point de controle est construit. Sachant que
des points de controle locaux peuvent étre pris indépendamment par les processus, ceux-
c1 peuvent étre forcés a prendre des points de controle supplémentaires afin de maintenir
invariante la propriété suivante : aucun point de contréle local n’est inutile (le principe
consiste & éviter l'occurrence du motif sus-mentionné). De plus, le nombre de points de
controle locaux forcés est aussi faible que possible. Enfin & chaque point de controle local est
associé, dynamiquement, un vecteur local définissant un point de controle global cohérent. En
ce sens, cet algorithme combine les avantages des algorithmes coordonnés et non-coordonnés,
sans en avoir les inconvénients.

Mots-clé : Points de controle cohérents, Algorithme adaptatif, Causalité, Communication
par messages, Précédence causale.
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1 Introduction

The notion of consistent global checkpoint (also referred to as consistent global state) is
fundamental to many important areas of distributed systems such as parallel and distributed
debugging ([3], [11]), distributed computing ([1], [5], [7]), fault-tolerance ([6], [13], [14], [16],
[17]), detection of stable properties ([2], [4]), etc. A local checkpoint is a local state of process
and a global checkpoint (or global state) is a set of local checkpoints, one from each process
constituting the distributed computation. A global checkpoint is consistent if, for all its local
checkpoints, no one happens before ([9]) another, i.e. there are no messages (or sequence of
messages) sent after a local checkpoint and received before another one. Informally, a global
checkpoint is consistent if the computation might have passed through it. Formalizations of
the notion of consistent global checkpoints can be found in [2], [8] and [12].

Many algorithms have been proposed to determine consistent global checkpoints. Ba-
sically each process P; is associated with a controller C'T; that selects some local states
of P; as being local checkpoints. These checkpointing algorithms can be divided into two
classes according to the way local checkpoints are determined to constitute consistent global
checkpoints.

RR n~ 2564
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e In the class of coordinated algorithms, determination of local checkpoints by controllers
is synchronized in such a way that the resulting global checkpoint is guaranteed to be
consistent ([2], [6]).

e In the class of uncoordinated algorithms, each controller C'T; determines, whenever it
wants, local checkpoints of process F;. Then, when a consistent global checkpoint is
required, it has to be constructed from the available set of local checkpoints. This task
is achieved by an additional protocol, that can be centralized if local checkpoints are
sent to a global manager, or distributed if each controller keeps its local checkpoints.
The periodic checkpointing algorithm and Russell’s algorithm ([14]) are well-known
examples of such a class.

Algorithms of the first class guarantee, a priori, that all the local checkpoints will be
useful (i.e. any local checkpoint taken by a controller will be member of a consistent global
checkpoint). This is obtained by a cooperation between controllers: when they take check-
points they synchronize their actions; such a cooperation involves additional control messages
and delays. Algorithms of the second class avoid this synchronization but, when a consis-
tent global checkpoint is required, it has to be built by piecing together local checkpoints
previously taken. If some local checkpoints have not been taken (or equivalently messages
have not been logged) there is no certainty that a consistent global checkpoint can be ac-
tually built; in fact, some local checkpoints may be wuseless in the sense that they cannot
belong to any consistent global checkpoint (in the context of fault-tolerant systems, based
on backward recovery, this drawback is called domino effect ([13])).

In this paper we are interested in determining consistent global checkpoints of distributed
computations by using an adaptive method. In such an approach, controllers may take or not
local checkpoints in an arbitrary way by using an uncoordinated checkpointing algorithm
(in fact, in a real use, these algorithms depend on the aim of the checkpointing: recovery,
detection of properties, etc). In consequence, according to causal dependences on these un-
coordinated local checkpoints, some of them can be useless. The adaptive checkpointing
algorithm forces then controllers to take (as few as possible) additional local checkpoints in
order that all the local checkpoints be useful. The adaptive method presented in this paper
is based on a necessary and sufficient condition characterizing useful local checkpoints. This
condition is expressed in terms of a precedence relation defined on checkpoint intervals (a
checkpoint interval is the set of all events issued by a process between two successive lo-
cal checkpoints): the occurrence of a specific pattern into this relation indicates whether a
local checkpoint is useless or not. An adaptive distributed checkpointing algorithm is then
designed from this necessary and sufficient condition; it ensures that, the pattern mentio-
ned above will never occur in spite of arbitrarily taken checkpoints by the uncoordinated
algorithm.

An important point of the algorithm lies in the fact that it associates, on-the-fly and
without delay, with each local checkpoint (taken by the uncoordinated or by the adaptive
checkpointing algorithm) a vector of local checkpoint numbers that define a consistent glo-
bal checkpoint to which the local checkpoint belongs. In that sense, the adaptive algorithm
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provides the same advantage as those belonging to the class of coordinated algorithms.
However, this algorithm neither uses additional control messages nor adds synchronization
to the underlying computation. It only requires messages of the computation to piggyback
control information. In that sense, it provides the same advantages as uncoordinated algo-
rithms, while ensuring no local checkpoint is useless. Thus, the proposed algorithm complies
exactly with the property characterizing useful checkpoints. To our knowledge, this is the
first distributed checkpointing algorithm achieving this goal.

The paper is divided into two main parts. First, Section 2 introduces a formal framework
to study consistency of global checkpoints: a precedence relation on checkpoint intervals
is defined and the necessary and sufficient condition characterizing useless checkpoints is
stated and proved. Then, Section 3 presents the adaptive checkpointing algorithm that
requires processes to take additional checkpoints and associates, with each local checkpoint,
a consistent global checkpoint to which it belongs; this Section gives also a correctness proof
of the algorithm.

2 Consistent Sets of Checkpoints

2.1 Distributed Computations

A distributed computation consists of a finite set P of n processes {Py, Po, ..., P,} that
communicate and synchronize only by exchanging messages. We assume that each ordered
pair of processes is connected by an asynchronous reliable and directed logical channel
whose transmission delays are unpredictable but finite. Each process runs on a processor
and processors do not have a shared memory, there is no bound for their relative speeds and
they fail according to the fail-stop model ([15]).

A process can execute internal, send and delivery statements. An internal statement does
not involve communication. When P; executes a send statement send(m) to P; it puts the
message m into the channel from P; to Pj. When P; executes the statement delivery(m), it
is blocked till at least one message directed to P; has arrived; then a message is withdrawn
from one of its input channels and delivered to P;. Executions of internal, send and delivery
statements are modeled by internal, sending and delivery events.

Processes of a distributed computation are sequential, in other words, each process pro-
duces a sequence of events. This sequence of events is called the history of P;, and it is
denoted by h; = ele} .. .€f, ... where e is s-th event executed by P; (¢! is a fictitious event
that initializes P;’s local state). Let A denote the partial history of P; till the event ef;
hs = €%} ... ef is a prefix of h;.

Events local to a process are totally ordered. However, as each process progresses at
its own speed, message transmission delays are unpredictable and there is neither a shared
memory nor a global time function, the best that can be known on the the respective event
occurrences is only a partial order. Let “—” denote the causal precedence (happened-before)
partial order defined as follows ([9]).

Definition 2.1 : Relation —.

RR n~ 2564
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Figure 1: Example of distributed computation

k3
€;

—>e§» if and only if :
1.i=jandt=s+1, or

2. 1 # j and €} s the sending event of message m and e} s the delivery event of m, or

3. there is an event e} such that e] — e} Nej — e]t».
Let H be the set of all the events produced by a distributed computation; this computation
is modeled by the partial order H = (H,—). Let € be an event H; the causal past of e is the
subset of H including all events e’ such that e/ — e.

2.2 Checkpoints
2.2.1 Local and Global Checkpoints

A local state of P; is a mapping from the set of its local variables identifiers to a set of values.
Let O'ZQ be the initial state of process P;. The event e moves P; from the local state Uf_l
to the local state oj. The local state o] corresponds to the local history hj; by definition
ef belongs to o} if ¢ = j and z < s. Figure 1 shows a distributed computation in the usual
space-time diagram where local states of processes are depicted by rectangular boxes.

A local checkpoint C is a local state of a process and the set of all the local checkpoints

is a subset of all the local states. Whether a local state is or not a local checkpoint does not
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depend on the computation itself; checkpoints are determined by controllers of underlying
protocols which are superimposed on the computation (We will assume in Section 3 that
controllers may or not take some checkpoints following some uncoordinated algorithm, while
remaining checkpoints are taken by the adaptive algorithm).

In the following we consider a distributed computation H and a set of local checkpoints
Cﬁ defined on H. C¥ represents the z-th checkpoint taken by process P; and corresponds
to some local state o with < s. Figure 1 shows a correspondence between local states
and checkpoints of process P;. We assume that each process takes an initial checkpoint C?,
corresponding to o?, when it starts.

A message sent by process F; to process F; is called orphan with respect to the ordered
pair of checkpoints (C?, C]y) if its delivery event belongs to C]y and its sending event does
not belong to C¥. An ordered pair of checkpoints is consistent if and only if there are no
orphan messages with respect to this pair. For example, Figure 1 shows the pair (C%,le) is
consistent, while the pair (CZ?,C]»Z) is inconsistent.

It is easy to see that if a message m is orphan with respect to an ordered pair of check-
points (C7, ij) then, it is also orphan for all the ordered pairs of checkpoints (C?, C;)
such that s < x and t > y. Thus, if the ordered pair (Cf,C]y) is not consistent, none of the
ordered pair (C?, C]t) (with s < 2 and t > y) can be consistent.

A global checkpoint is a set of local checkpoints one for each process. For example,
{C!,C},Cp} and {CF,CF,Cy} are two global checkpoints depicted in the Figure 1.

Definition 2.2 A global checkpoint is consistent if all the distinct pairs of checkpoints are
consistent.

For example, Figure 1 shows that {C},C},Cé} is a consistent global checkpoint, while
{CF,C7,C} is not consistent.

2.2.2 Checkpoint Intervals

Using an abstraction level defined by local checkpoints, any two successive local checkpoints
CY and Cf'H of process P; define an interval. We call checkpoint interval ST the set of events
produced by process P; between C{ and Cf‘H (including the event that produced the local
state corresponding to C¥). In Figure 1 intervals are depicted as rectangular boxes with
dotted lines.

From this definition, it is easy to see that, if a message m is sent in a checkpoint interval
S7 and delivered in a checkpoint interval S;»/ then m is orphan with respect to the ordered
pair of checkpoints (Cf,C]yH) (and thus with respect to all ordered pairs (Cf,C]t») with
s<zandt>y+1).

2.2.3 Precedence Relation on Checkpoint Intervals

This Section introduces a precedence relation on checkpoint intervals, denoted <. This rela-
tion shows a causal dependence on checkpoint intervals and constitutes the formal framework
from which the algorithm of Section 3 is designed.

RR n~ 2564
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0 1 2
Sk Sk Sk

Figure 2: Precedence relation

Definition 2.3 : Relation <.
S¢ precedes S{ (denoted Sf < SY) if and only if:

1.i=jandy=x, or
2.i=jandy=2x+1, or

3. (3 message m): the sending event of m belongs to S¥ and the delivery event of m
belongs to S]y, or

43z 3k SF<S; A Sp= S

Note that the relation < is not a partial order (although reflexive and transitive, it is not
antisymmetric) and then it can have cycles including distinct checkpoint intervals. As an
example, Figure 2 shows the relation < of the computation of Figure 1 where, for clarity’s
sake, we do not consider precedences due to transitivity (point 4. of Definition 2.3).

2.2.4 Sequences of Messages

When S¥ < Sj»/ holds, there is a sequence Sf = S;° < S7' < ... < qu" = Sj»/ (if ¢ # 4,
then necessarily ¢ > 1) where each pair ka" =< Sf:;l is due to one of points 1., 2., or 3.
of Definition 2.3. Due to the possibility of cycles, the elements of this sequence are not
necessarily distinct. However, with ¢ > 1, a subsequence including only distinct intervals,
starting at S and ending at S;»/, can be extracted; so, we can always consider, without loss
of generality, the case where elements of this sequence are distinct (except may be the first
and the last one). For each k (0 < k < ¢ — 1) we have S* < Sf::ll, where < is due to part
2. or 3. of the definition 2.3, i.e.:

e either ¢ = tf41 and sp41 = s + 1

INRIA
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® or i # ixy1 and there is a message m sent in S;* and delivered in S;**!
1k Tk41

These messages form a sequence (my),—1, ., (if ¢ # j then necessarily p > 1). Such a
sequence of messages, involved in the definition of S7 < S;»/, is called a winding sequence
of messages, abbreviated as msg-winding. For example, the msg-winding ms, my shown on
Figure 1 corresponds to the pair SY < S} shown on Figure 2 .

Two types of msg-windings can be distinguished: causal and non-causal msg-windings.

1. the msg-winding is causal if the delivery event of each message of the sequence (except
the last) occurs before the send event of the next one (sequences my, my and my, ma,
shown on Figure 1 are examples of causal msg-windings from S? to S} and from S?
to Si respectively).

2. the msg-winding is non-causal if at least two consecutive messages are such that the
delivery event of the first occurs after the send event of the second, although, by defi-
nition, these two events belong to the same checkpoint interval (the sequence mg, ms
shown on Figure 1 is an example of non-causal msg-winding from S} to S}).

As usual, the operation of concatenation of two msg-windings (u) and (u’) will be denoted

(1) - (1)

2.3 Characterizing Consistent Sets of Local Checkpoints

This Section states and proves a necessary and sufficient condition to determine whether
an arbitrary set of local checkpoints can belong to some consistent global checkpoint. This
theorem is based on the precedence relation defined on checkpoint intervals. Another neces-
sary and sufficient condition has been described in [12]; it is expressed in terms of a relation
(called zigzag) defined on the set of local checkpoints. Both conditions are equivalents from
a theoretical point of view. The additional interest of the formulation based on checkpoint
intervals lies in the framework it offers to design a distributed adaptive checkpointing algo-
rithm as we shown in Section 3.

Theorem 2.1 LetZ C{l,...,n} and LC = {C{*};cz be a set checkpoints of C5. Then LC
1s a part of a consistent global checkpoint included in Cqy if and only if:

(P) Vi, Vj : i€Z,j€T = —(S <5f1—1)

Proof
Sufficiency. We prove that if P is satisfied then £C can be included in a consistent global
checkpoint. Let us consider the global checkpoint defined as follows:

e if i € Z, we take C}%;

e ifi ¢ 7, for each j € T we consider the integer m;(j) = min{y | =(SY < ijj_l)} (with
m;(j) = 0 if this set is empty). Then we take CI'* with #; = minjez(m;()). Thus, by
definition, Vj € T 1 —(S7* < Sfj_l) and dk €T :: —|(Sf’_1 =< Szk_l).

RR n~2564



10 Roberto Baldoni, Jean Michel Helary, Achour Mostefaoui, Michel Raynal

We show that {C7*,C5?, ..., CEn} is consistent. Assume the contrary; there exists 7 and
j and a message m such that send(m) ¢ C{* and delivery(m) € ij (i.e. m is orphan with
respect to these local checkpoints) and thus, from point 3. of Definition 2.3, we have:

T xj—1
St =S; (1)
Four cases have to be considered:
1. i €Z, j € I. Relation (1) contradicts the assumption =(S;* < S;j_l);
2. 1 €7, j ¢71. By definition of z; follows that: 3k : k€Z = S]»xj_l =< S,f"_l.

By transitivity (using Relation (1)) we have S;* < S,f"_l which contradicts the as-
sumption P;

3. i¢ 7, jeT. Relation (1) contradicts the definition of z; ;

4. 1 ¢, j ¢ I. By the definition of z;, 3k : k€ Z = S;j_l =< S,f"_l.

By transitivity (using Relation (1)) we have S;* < S,f"_l which contradicts the defi-
nition of z;.

Necessity. We prove that if there is a consistent global checkpoint {CT*,C5?, ..., C%n}
including £C then property P holds for any Z C {1,...,n}. Assume the contrary: there

exist i € 7 and j € 7 such that S7* < Sfj_l. From the definition of Relation <, there exists
a msg-winding my, ma, ..., mp such that :

send(my) € S7*,

delivery(my) € S¥* send(my) € S} with y; < z1

21 )

delivery(my_1) € Sf:__ll, send(m,) € Sfp”__ll with yp_1 < zp_1
delivery(m,) € Sfj_l

We show by induction on p that V¢ > z;, C7* and C;» cannot belong to the same global
checkpoint.

Base step. p = 1. In this case, send(mi) € S;* and delivery(m;) € ijj_l thus my is
orphan in all ordered pairs (C*, C}) with ¢ > z;.

Induction step. We suppose the result true for some p > 1 and show that it holds for
p+ 1. We have:

INRIA
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send(mq) € S7*,

delivery(m,) € Sf:, 1 send(mpy1) € SZZ: with y, < z,
. &L —

delivery(mpy1) € S’

From the assumption induction applied to the sequence my,..., m,, we have : for any ¢ >

yp + 1, C7" and Cfp cannot belong to the same consistent global checkpoint. Moreover,

send(mp41) € SZZ: and delivery(mp41) € Sfj_l imply that, for any u < z, and for any
t > xj, Cl?‘p and C]t» cannot belong to the same consistent checkpoint. Since y, < z,, it

follows that no checkpoint in process P;, can be included with C;* and ij to form a global
consistent checkpoint. a

This Theorem has also an interesting corollary which allows to decide if a local checkpoint
can be a member of any consistent global checkpoint, in other words whether it is useful or
not.

Corollary 2.2 A checkpoint Cf can belong to some consistent global checkpoint if and only

iof
~(SF <577

Local checkpoints that verify Corollary 2.2 are called useful. A non-useful (or useless)
checkpoint cannot belong to any consistent global checkpoint. Checkpoints C}, le and C}
shown in Figure 1 are examples of useful checkpoints, whereas C? and C? are useless. So, the
existence of a non useful checkpoint (C¥) means that a checkpoint interval (S¥) precedes
another one (Sf_l) that belongs to its past. As an example, the checkpoint C? shown
in Figure 1 corresponds to the precedence S? < Si, transitive consequence of Sz < SZ
SZ < S} and 5]1 < Si (Figure 2). This simple consideration constitutes the basis from which
the checkpointing algorithm of the next Section is designed.

3 An Adaptive Checkpointing Algorithm

This Section presents an adaptive checkpointing algorithm. Controllers are supposed to take
local checkpoints in an arbitrary way following an uncoordinated algorithm. The adaptive
checkpointing algorithm forces controllers to take (as few as possible) additional checkpoints
in order that no checkpoint be useless.

The decisions about when and which controllers have to take these additional local
checkpoints is based on the relation < defined on checkpoint intervals, introduced in Section
2.2.3: there will be no checkpoint interval S¢ such that S* < S2~1 or, equivalently (as
shown in Section 2.3), all the checkpoints will be made useful. The strategy ensuring this
property is developed in Sections 3.1 and 3.2.

The algorithm adds no synchronization and no control messages to the computation and
uses only the piggybacking of control information on messages of the computation in order

RR n~" 2564
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cs ce
P, — P, —
= =
P, o
m m'
Py = = Py =
8 8
% %
a. Preventing 57 < Sf b. Preventing 55 < Sf_l
/\/ msg-winding { 3 : Additional checkpoint to break Sg < Sf_l

Figure 3: Rewinding paths on C

to take consistent decisions. Moreover, when a checkpoint is taken by a controller (either
independently or forced by the algorithm) it is associated by the algorithm with a vector of
checkpoint numbers, one per process, defining a consistent global checkpoint. This important
feature is developed in Section 3.4 where the correctness of the algorithm is proved.

For the sake of simplicity and without loss of generality, through this Section, we will
merge controllers C'T; with their associated processes F; .

3.1 Principle of the Algorithm: Avoiding Rewinding Paths

As shown in the previous section, a checkpoint C¢ is useless if and only if S < S¥~!. But
this relation is equivalent to:

b cb#a (ST <S)A(S) <827

Definition 3.1 : Rewinding Paths.
A path, in relation <, from S to S~ is called a rewinding path on C2.

In order to make the checkpoint C¢ useful, the associated rewinding path must be broken.
This can be done by breaking either the path S% < 55 or the path 55 < Sa-1

1. 8¢ < Sbﬁ is broken if P; takes at least one additional checkpoint between the sending
of the message m and the delivery of the message m’ as described in Figure 3.a: in
that case, the interval Sf will not include the delivery of m’ and thus S& < Sf will
not hold.

2. When the msg-winding from Sf to S¢~1 is not causal, 55 < S2~1 is broken by
requiring some process involved in this msg-winding to take a checkpoint (see Figure

3.b).

INRIA
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P, [

Fe = \;CJ =
" _ \

0P
Ob

Figure 4: Non-causal msg-winding

These two strategies are discussed in Sections 3.2.1 and 3.2.2, respectively.

3.2 Strategies to Avoid Rewinding Paths

Practically, the strategy will be selected according to the information available at each pro-
cess. This information is updated by control values piggybacked on computation messages,
and depends on the nature of the msg-windings involved in rewinding paths: causal or not
causal (recall that, for each (a, @) and (b, 5), when S§ < 55 (with a # b) holds, there is at
least one msg-winding from P, to P;).

Definition 3.2 : Relation <.
S& <¢ 55 if and only if there exists at least one causal msg-winding starting in S and

finishing in 551, with o' < a and 3 < 3.
Clearly, the relation <¢ is included in the relation <, but the converse is not true.

Definition 3.3 : Breakable msg-winding.
A msg-winding is said breakable by a process P. if it is non-causal and if the delivery event
of a message occurs on P, after the send event of the next message.

As an example, the msg-winding depicted on Figure 4 is breakable by P,.. This means
that P. can break the non-causal msg-winding by taking a checkpoint between the send and
the delivery event (depicted by a dotted box on Figure 4).

Definition 3.4 A rewinding path S < S~1 is causal if there exists b, b # a, such that
S¢ <¢ 55 and 55 <c S2~1. Otherwise, the rewinding path is non-causal.

Figure 5 describes a causal rewinding path S¥ < S2~!. Let us remark that the only
way for processes to ”learn” new information concerning other processes is the receipt of
messages. For example, a process P, can ”learn” that another process P, has reached its
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Figure 5: Causal rewinding path

checkpoint interval number S¢ if there is a causal msg-winding from P, to P, starting in
this interval, and if the messages carry the information (a, «). On the other hand, Py can
”learn” that this information is new if the previous knowledge that it had about P, was an
interval number o such that o < a. In other words, as Pj learns the interval number « of
P,, there exists a causal msg-winding from P, to P, starting in the checkpoint interval S¢.

3.2.1 Preventing Causal Rewinding Paths

Such a rewinding path S < S2~1! is depicted in Figure 5. It can be detected by Py, thanks
to information carried by the message m;,. This information must indicate to P, that:

L. my is the last message of a causal msg-winding starting from itself in the same check-

point interval, namely 55 (and so 55 < 55)

2. one of the processes involved in this msg-winding has taken a checkpoint between the
delivery of a message and the sending of the next one (P, in Figure 5).

The first information necessary to detect a causal rewinding path can be piggybacked on
messages: each process P; keeps an array of interval numbers current_ckpt;, such that, for
all j (1 <j < n), current_ckpt;[j] is the current interval number of P;, to the knowledge

of P;. Clearly, the following invariant holds : (Vi)(Vj)S;u”em'c}cpt'm ~<c Sfurrem'c’cpt’[l].
When PF; sends a message, current_ckpt; is piggybacked on the message. Thus, when a
message m, sent by P,, arrives at Pj, this message carries a vector current equal to the
value of current_ckpt, when m was sent. In particular, current[b] is the current inter-
val number of P, to the knowledge of P, when the message m has been sent. Conse-

quently, this message completes a path in the relation <¢ starting from and returning to
Sgu”em'c’cptb[b] if and only if current[b] = current_ckpt;[b] (in this case we have 55 =<c 55

with 8 = current_ckpty[b]). When m is delivered, each entry current_ckpt;[j] is updated to
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Figure 6: Causal msg-windings

max(current_ckpty[j], current[j]), the updated current interval number of P; to the know-
ledge of Pj.

The second information necessary to detect causal rewinding paths will also be pig-
gybacked on messages. Let us remark that each causal msg-winding may include or not
intermediate checkpoints, as shown on Figure 6. More precisely, we will say that S <¢ Sjﬁ

is compound if and only if there exists a pair (k, v) such that S¢ <¢ S} /\SZ_"1 < Sf (Figure
6.a). If S <¢ Sf is not compound, it is simple (Figure 6.b). But, the path 55 < 55 is a
causal rewinding path if and only if 3@ : a # b :: (55 < SeTHA(SY =<c Sbﬁ) Thus, P, has
to determine whether 55 <c 55 is compound or not. At this end, each process P; keeps an
array only_simple; of booleans, such that, for all j (1 < j < n), only_simple;[j] is true if, to
the knowledge of P;, the relation S;urrem_dcpt’[j] <c Sfurremikph[i] is simple. In other words,

up to that point, none of the causal msg-windings issued in S;urrem'dcpt’[j]

Sfurrem'c’cpt’[i] includes intermediate checkpoints. The consistency of only_simple; is main-

tained by P; as follows: when P; takes a checkpoint, it resets all the entries only_simple;[j]
(with i # j) to false, only_simple;[i] remaining {rue. When it sends a message, P; appends
only_simple; to it. Thus, when a message m, sent by P,., arrives at P, this message carries the

and finishing in

vector simple equal to the value of only_simple, when m was sent. However, by definition,
the value of only_simple.[b] is false if and only if at least one of the causal msg-windings is-
sued in Sf and arrived at P, includes a checkpoint. As a consequence, the relation Sbﬁ <c Sbﬁ
completed by the arrival of m (and detected by the validity of current[b] = current_ckpty[b])
is compound if and only if the value of simple[b] is false. The array simple is also used to
update only_simpley in order to maintain it correct.

To summarize, when a message (m, current, simple) arrives at Py, this process checks
the condition

C1 = ((current[b] = current_ckpt;[b]) A —simple[b])

If this condition holds, then the message m completes a causal rewinding path. The
algorithm will force Py to take a checkpoint before delivering the message m.
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Figure 7: Non-causal rewinding path

3.2.2 Preventing Non-causal Rewinding Paths

The strategy used in the previous Section was a “last opportunity strategy” in the sense that
a causal rewinding path is prevented just before its completion. Indeed, forcing the process
Py to take a checkpoint was the last chance to prevent it. This strategy works because it
relies only on the knowledge by P; of events belonging to its causal past. In the case of
non-causal rewinding paths, the previous strategy does not work. Figure 7 depicts a simple
case with only three messages; in that example, —|(Sbﬁ =<¢ S%) and thus, the entry current[b]
carried by the message mg is such that current[b] < # (the up-to-date interval number 3
for P, was not known by the intermediate process P, when it sent mg). When P, receives
the message mg, the condition C; will be evaluated to false, and thus P, will not break the
rewinding path (Sbﬁ < SeThy A (S < Sbﬁ) Thus, the strategy here consists in breaking
the non-causal msg-winding m, ms by forcing P, to take a checkpoint before delivering m;
(unless the information available at P, ensures that such a checkpoint will be redundant).
This strategy is “conservative” in the following sense: a rewinding path involving m; and
mg could be completed in the future by some exchanges of messages (like mg) and some
checkpointing (like C¢) and, to its current knowledge, P, is the only process that can break
it.

A naive solution would consist in forcing a process to take a checkpoint before each
message delivery. Although simple, this solution is likely to force processes to take redundant
checkpoints. This solution can easily be improved: checkpoints are forced only upon the first
message arrival after each send event ([14]). However, both rules (being purely syntactics)
don’t take advantage of information that can be carried by messages in order to detect
redundancy, as shown by the example shown in Figure 7.b. If P, learns, before the arrival of
the message my, that Sbﬁ <c 52‘_1 (due to the message m in this example) then P, doesn’t
need to take a checkpoint before the delivery of m;. In fact, to the knowledge of P. upon
my arrival, the causal msg-winding (reduced to the message m) “doubles” the non-causal
msg-winding mq, ms; thus, as seen in Section 3.2.1, the causal cycle will be broken by P
(which will be forced to take a checkpoint before delivering mg).
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Figure 8: Non-causal msg-winding doubled by a causal one

This simple example suggests that, when a non-causal msg-winding is doubled by a causal
one, it can be no longer considered as able to create a non causal rewinding path.

Definition 3.5 : Causal Doubling.
A non causal msg-winding from S5 to 55 s causally doubled if there exists a causal msg-
winding from Sg to 55.

Note that these two msg-windings do not necessarily involve the same intermediate pro-
cesses. In the situation depicted in Figure 8, the non causal msg-winding (u) - m - m' is
causally doubled by (u').

Consider the situation where a message m arrives at process F;. This message forms non-
causal msg-windings with all messages sent by P; between its last checkpoint C{* and the
arrival of m (Figure 8). If P; decides to take a checkpoint before the delivery of m, it breaks
all such non-causal msg-windings. On the contrary, if F; does not take a checkpoint before
the delivery of m, none of these msg-windings is broken by P;. Thus, if, to the knowledge of
P;, at least one of these msg-windings is not causally doubled, the algorithm will force F; to
take a checkpoint before the delivery of m, to prevent the possible formation of a non-causal
rewinding path including this non-causal msg-winding. This knowledge requires P; to fix the
following points:

i) Find all msg-windings including m and that P; can break.

ii) Find whether all these msg-windings are causally doubled or not.

Answering point (i) requires to answer the following questions concerning non causal
msg-windings: where do they come from, where do they arrive?
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1. The answer to the first question lies on knowledge from the causal past of the delivery
event of m, and this knowledge is included in the array current carried by the message
m. In fact, for each y, either current[y] > current_ckpt;[y] or not.

(a) In the first case, P; learns the new interval number current[y] about P,, mea-

ning that there is a causal msg-winding from P, to F;, starting in the interval

S;u”em[y], and this msg-winding is the first one bringing this information to F;.

(b) In the other case (current[y] < current_ckpt;[y]), P; has previously received a

message ending a causal msg-winding issued from ngwrem[y]. Upon the arrival of

this message, P; decided or not to take a checkpoint, according to its knowledge
at that time, and thus, the arrival of m will not change anything to the previous
decision.

2. The answer to the second question involves some knowledge on the “future” of the
events send(m'). But the only information available at P; when m arrives is the identity
of the processes to which P; has sent messages in its current interval. At this end, each
process P; keeps an array of booleans sent_to; such that, for all j (1 < j < n),
sent_to;[j] is true if and only if P; has sent a message to P; since its last checkpoint.

The set of non-causal msg-windings breakable by F; is thus determined by the set of pairs
(Py, Pr) such that (currently] > current_ckpt;[y]) A sent_to;[z].

Answering point (ii) requires to check whether a non-causal msg-winding is causally
doubled. At this end, P; must have information such that “given two processes P, and
P, is there a causal msg-winding from P, to P, starting in the last interval number of
P, known by F;7”. To answer the latter question, each process P; keeps a boolean matrix
causal_winding;, such that, for all (y,z) (1 < y,z < n), causal_winding;[y, z] is true if and

only if, to the knowledge of F;, there is a causal msg-winding from P, to F,, starting in

the last checkpoint interval of P, known by P; (namely S;urrent'Ckpt’[y]) and arrived at P.

When P; sends a message, causal_winding; is piggybacked on the message. Thus, when a
message m, sent by P;, arrives at F;, this message carries a matrix causal whose value is
equal to the value of causal_winding; when m was sent. The matrix causal will also be used
to update the value of causal_winding; in order to maintain its correction. The situation
depicted Figure 8 shows that the existence of the causal msg-winding (4') doubling the
non-causal msg-winding (u) - m - m’ is known by P; (thanks to (x”")) upon the sending of
m. Thus, the entry causally, 2] carried by the message m has the value true.

The following condition C; summarizes the previous discussion; in disjunction with
the condition Cp, it must also be checked by P, upon the arrival of a message
(m, current, simple, causal). If it is satisfied, then the algorithm forces P; to take a check-
point before the delivery of m :

Cy = (Fx) : (sentto;[z] A((Fy) : ((currently] > current_ckpt;[y]) A ~causally, z])))
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When true, this condition means that, to the knowledge of P;, there exists a non-causal
msg-winding from P, to P, breakable by P; and not causally doubled.

3.3 Formal Description of the Algorithm

Each process P; is endowed with the following arrays whose semantics has been defined in
the previous Sections.

current_ckpt; : array[l..n] of integer;

only_simple; : array[l..n]of boolean;

sent_to; : array[l..n]of boolean;

causal_winding; : array[l..n,1.n] of boolean;

The algorithm is formally described by the statements performed by a process F; at
initialization (S0), when it takes a new checkpoint (S1), when it sends a message (S2), and
when a message arrives (S3). The following procedure describes actions executed by process
P; each time it takes a checkpoint:

procedure take_checkpoint is
current_ckpt;[i] := current_ckpt;[i] + 1;
Vk do sent_to;[k] := false enddo;
Vj # i do only_simple;[j] := false enddo ;
Vj # i do causal_winding;[i, j] := false enddo;
store the current local state and a copy of the array current_ckpt; on stable storage;

end
(S0) initialization
Vk do current_ckpt;[k] := 0 enddo;
only_simple;[i] := true; % actually variables only_simple;[i] and %
causal_winding;[i, ] := true; % causal winding;[i,i] will remain always true %
take_checkpoint;
end

(S1) whenP; takes a checkpoint
take_checkpoint;
end

(S2) when P; sends a message to Pj
sent_to;[j] := true ;
send(m, current _ckpt;, only_simple; , causal_winding;);

end

(S3) when a message (m, current, simple, causal) arrives to P; from P;
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if C; v Gy
where C; = (current_ckpt;[i] = current[i]) A —simple]i],
Cy = Ja : (sent_to;[z]A
Jy : ((currently] > current_ckpt;[y]) A ~causally, z])

then take_checkpoint
endif;
% updating of control variables %
Vk do
case
current[k] < current_ckpt;[k] — skip
current[k] > current_ckpt;[k] —
current_ckpt;[k] := current[k] ;
only_simple;[k] := simple[k] ;
V¢ do causal_winding;[k, £] := causallk, f] enddo;
current[k] = current_ckpt;[k] —
only_simple;[k] := only_simple; [k] A simple[k];

V¢ do causal_winding;[k, £] := causal_winding;[k, {] V causallk, f] enddo;

endcase
enddo ;

causal_winding;[j, i] := true;

V¢ do causal_winding;[¢, 1] := causal_winding;[{, 1]V causal_winding;[¢, j] enddo;

deliver(m);
end

3.4 Proof of the Algorithm

To prove the correctness of the algorithm, we show that no checkpoint is useless. To that end,
we will show that each checkpoint C}* belongs to a consistent global checkpoint included in
C; the set of all the local checkpoints. Moreover, this consistent global checkpoint is known
locally by P;: it is easily obtained from the local vector current_ckpt;.

Lemma 3.1 Let P;, P;, Py, be three processes and o, 3,7 be three checkpoint interval num-
bers, such that (Figure 9):

- ﬁ -1
1. there is a message m' from S; to SFTh.

+1 B
2. SZ <c Sj .

Then S}T! <¢ S~

Proof From assumption 2., there is at least a causal msg-winding starting in SZH and
arriving at P; in the checkpoint interval numbered ' with 8’ < 3. Let (1) be the first causal

msg-winding starting from SZ‘H and arriving at P;. Two cases have to be considered.
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Figure 9: The two cases of Lemma 3.1

Case (i): the msg-winding (i) - m' is causal. In that case, by definition, SZ'H <c Sf1
(Figure 9.a).

Case (ii): the msg-winding (u) - m’ is non-causal (it is breakable by P;). Let (1) be a
msg-winding and m be a message such that (¢')-m = (u) (Figure 9.b). The value current[k]
carried by m satisfies, by the definition of (u):

(1)  current[k] = v+ 1 > current_ckpt; k]

Moreover, upon the arrival of m, we have, because of the message m’:

(2) sent_toj[i] = true
Assumptions 1. and 2. show that P; has not taken any checkpoint between the sending of
m’ and the arrival of m. In particular, it has not been forced by the algorithm to take a
checkpoint upon the arrival of m and thus, both conditions C; or Cs are evaluated to false
when this message arrives. Consequently:

ii.1. As C is false, it cannot exist any causal msg-winding (v) starting in S and ending
with m (or before its arrival) in Sf. If such a msg-winding existed, the msg-winding

m' - (v) would have created a causal rewinding path (S]ﬁ <c Sf_l) A(SP <e Sjﬁ) and
hence, due to C;, P; would have been forced to take a checkpoint before delivering the
last message of (v).

ii.2. As Cy is false, we have (current and causal are the values carried by m):
—Cy = (Vz)(—sent_to;[z] V (Vy)((currently] < current_ckpt;[y]) V causally, z])))
With z = ¢ and y = k we obtain:
—sent_to;[i] V (current(k] < current_ckpt;[k]) V causallk, i]

From (1) and (2), this reduces to causal[k, i]. Let Py be the sender of m. To the know-

ledge of Py, there is a causal msg-winding from Pj, to P;, starting in Szu”em‘c’cm‘[k] =

SI*", and finishing in some S¢'; thus, to the knowledge of Py, S[*" <c S¥'. We claim
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Figure 10: Induction of Lemma 3.2

that o’ < a. In fact, the relation Sz“ <c Sf‘l is known by P; when it sends m, and
thus there must be a causal msg-winding starting in SZ-C‘I and arriving at P; before the
sending of m. This causal msg-winding, concatenated with m, implies that SZ»“I <c Sf,
and case (ii.1.) shows that this is not possible with o’ > «. Thus, SZ‘H < SZ»“I with
o' < «, and consequently we have SZ-H <c S

Lemma 3.2 Let P;, P;, Py be three processes and o, 3,7 be three checkpoint interval num-
bers, such that:

1. Sjﬁ <c Sf_l.
2. SZ+1 <c Sjﬁ
Then Sy <c se=.
Proof From assumption 1., there is a causal msg-winding (u') starting from S]ﬁ and arriving

in S*~'. We proof the result by induction on the length ¢ of the msg-winding (u').

e ¢ = 1. The msg-winding (¢') is reduced to a message m’ and the result follows from
lemma 3.1.

e Suppose the result true for all msg-windings of length ¢q. We show that it remains
true for a msg-winding of length ¢ 4+ 1. Such a msg-winding is the concatenation of
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Figure 11: Consistency of a global checkpoint

a msg-winding (u) of length ¢, from Sf to S;7! and a message m' from S{7! to

S2~1 (Figure 10). From the induction assumption, we have: SZH < Sg_l, and thus
assumption 1. of Lemma 3.1 holds. The assumption 2. of Lemma 3.2 is satisfied by the
message m’. Thus the required relation SZ‘H <c S¥7! holds.

Theorem 3.3 Let FP; be a process, o be a checkpoint number of this process, and CKPT
denote the vector associated with C7¥ and defined as follows:

o CKPTPi] = a

o Vj : j#i i CKPT?[jl = F; +1 where 5} is the value of current_ckpt;[j] when P;
took its checkpoint C.

Then the vector CK PT defines a consistent global checkpoint.

Proof We show that there cannot exist any message from a process Pj to a process Fj,
received in S°7 and sent after S£k+1 (i.e., no messages is orphan with respect to the ordered
pair (Cf"+1,0fj+l)).

Suppose that such a message exists (see Figure 11, where the line going through
Cf,ijH,C,ka represents a global checkpoint). Due to the definition of §;, we have
Sfj <c Sf_l. By the assumption, we have S,f"“ <c Sf. Thus, from Lemma 3.2,
S,f’““ <c Sia_l. From this it follows that current;[k] > Br + 1 when P; took its check-
point C{*. This contradicts the definition of Fy. a
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4 Conclusion

The notion of consistent global checkpoint is fundamental in many research areas in dis-
tributed systems. In this paper a formalization of this notion has been introduced and a
distributed adaptive algorithm is designed. Both of them lie on a precedence relation on
checkpoint intervals.

In the first part of the paper, a necessary and sufficient condition to determine whether an
arbitrary set of local checkpoints can belong to some consistent global checkpoint has been
stated and proved. An important consequence of this theorem shows that the occurrence
of a specific pattern in the precedence relation is equivalent to the existence of a local
checkpoint that cannot belong to any consistent global checkpoint (i.e., useless checkpoint).
Informally, this pattern occurs if, on the same process, a checkpoint interval precedes another
checkpoint interval that belongs to its past. From a theoretical viewpoint this analysis is
equivalent to the one introduced in [12] and based on the zigzag relation defined on the set
of local checkpoints. The additional interest of the formulation based on checkpoint intervals
lies in the framework it offers to obtain a distributed adaptive checkpointing algorithm.

The second part of the paper has been devoted to the description and to the proof of
the adaptive algorithm. It ensures all local checkpoints will participate in some consistent
global checkpoints. This algorithm, first, supposes local checkpoints may be taken arbitrarily
following some uncoordinated algorithm, then it forces processes to take as few as possible
additional local checkpoints in order that all previously taken local checkpoints be useful.
This algorithm adds no synchronization and no control messages to the computation and
uses only the piggybacking of control information on application messages. This control
information consists of a vector of timestamps, a boolean array and a boolean vector. Mo-
reover each time a local checkpoint is taken (either arbitrarily or forced by the algorithm) it
is, on-the-fly and without delay, associated with a vector of local checkpoint numbers that
define a consistent global checkpoint to which it belongs. Such an adaptive algorithm can
be used in many areas such as fault-tolerance, distributed debugging, properties detection,
distributed computing etc., where global checkpointing is of primary importance
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