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Abstract

We deal with the problem of implementation of exact controllers of distributed
parameter systems without damping. Specifically, we study a model of a vibrating
simple string. We propose a practical closed loop implementation of HUM controls
and we also analyze the structural instability of the proposed implementation under
parameter perturbations on system’s data.

Résumé

On considere ici le probléeme de Papplication réel de coutroleurs exacts de systémes
anx parametres distribués sans amortissement. Spécifiquement, on étudie un modéle de
la vibration d’une corde simple. Qn propose une schéma a boucle fermé des contrdles
donnés par la méthode HUM et on analyse 'instabilité structurale du systéme en boucle
fermé, face a des perturbations dans les données du systéme,

Keywords: czact controllability, HUM method, overspilling, structural instability,
wave equation, distributed parameter.
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1 Introduction

We consider the exact controllability problem of a distributed parameter system which
evolves according to a linear partial differential equation.We specifically study the one di-
mensional wave equation. The principal results of this work are described as follows:

e We introduce a practical implementation of a finite dimension exact control with the
properties:

1.

4.

The synthesis is carried out by applying the Hilbert Uniqueness Method (HUM)
proposed by J.-L. Lions in [16].

. The implementation scheme comprises a finite number of oscillators which play a

double role

(a) the oscillators identify some of the harmonic components of the system in an
exact form (total absence of aliasing)

(b) the oscillators synthesize the control signal that must be applied to the system

to eliminate the same chosen harmonic components.

After a time 2T (where T is the normal period of vibration of the string). the
closed loop scheme eliminates the harmonic components identified by the system

observer-controller.

The closed loop scheme does not modify the remaining harmonic components.

e The properties of structural instability of the system are analyzed.

1.

S

By simulation (using MATLAB system), we show that when the natural frequency
w of the closed loop system is perturbed by an additional quantity ¢ x w1t appears
a modulated spurious oscillation with the following features:

(a) the frequency of the spurious oscillation is of type ¢ x w
(b) this oscillation increases exponentially with a factor of the fornt (1 + cc?)’.
This instability is proved by analytical computations - made with the MATHE-

MATICS programming language - of the cigenvalues of the transition matrix of
the closed loop system.
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2 The Controlled System

2.1

Evolution equations

We study a system which evolves according to a lincar partial differential equation. The

state y of the system depends

on.r € 1 =(0,1), and time t. We control the system using a

control function v that is applied at the point @ = | of the boundary.

We consider the wave equation with boundary conditions of Dirichlet type at 2 = 0.

where Q@ = Q2 x (0,7) = (0,1)

512, .
-2 =0

da? n @,
y(e.0) = y%x) Vee,
y(r,0) =y} x) Yz e,

y(0.1) =0 Vte(0,7),

y(1,t) =o(t) Ve (0,7),

x (0,7), 7 > 0.

We will also study the following perturbed system (where the perturbation is a function

of the parameter ¢ > 0)

Using the change of variables:

'@—0+o§§=0inQ,

y(2,0)=y°x)  Vzeq,

§(2,0)=yl(x) Ve, (2)
y(0,¢) = 0 Vie(0,7),

[ y(1,¢) = v(t) Vte (0,7).

sz ) =yla,t) —v(l)x, (3)
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we arrive to the following system with distributed control and zero boundary conditions

Using harmonic

We define

i—(1+¢)

0%z

a2

=—xdt) in@Q,

z2(2,0) = y°(x) —v(0)r VaeQ,

2(,0) = yl(x) —¢(0)a  VaeN, (1)
(0,0) =0 Vie(0,71),
[ 2(1.4) =0 Vte (0,7).

decomposition techniques we obtain the solution of (4) as the serie

Ha,t) = i a,(t)sin{nTx). - (5)

n=t

wr =nm /(L + ). wy = kr. (6)

The coefficients «,(t) verify the following ordinary differential equation

a-n + (w; )2”/7 = —Iy (& s
(l.,l(O) = '.Uf;) - ‘.(O)IN s (7)

an(0) =y — #0)x, .

Here, .. y2 and y! are the Fourier coefficients of the functions «, y°(x) and y'(z), i.e.

where

and

.
ey = & glsin(nrr). ylle) =

n=1

I

™2

y)sin(nra), (8)

n=1

1
yo =1 /_1/“(.1') sin(nme)de,
0
(9)
1
yy =1 /y'(_.z') sSin(nwae)de
0
) 2(_1 )n+1
X, sin(nma). £, = (10)

nw
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2.2 Free evolution

It 1s easy to check that

.71 () .
¢ (' ) sin(w! 1), (11)

a, (1) = a,(0) cos{w t) +

w
is the solution of the homogeneous equation associated to (7):

i, + (w)?a, =0,

an(0) = y¥. (12)

a,(0) = y,ll .

We introduce the notation

( [ an(l)
Adt) =1 )
{ \ e (13)
[ cos(wit)  sin(wSi)
E.(t) = .
{ \ —sin(wit)  cos(wtl)
From (11) we have that
An.(t) = E,(t) - A, (0). (14)

The normal period of oscillation of the string is T = 2. In consequence, at the end of the
normal period we have

An(T) = En(T) ’ An(O) ) (13)
where
cos(2nwe)  sin(2nme)
E(T)= . (16)
—sin(2nme)  cos(2nwe)
In case ¢ = 0, we have:
10
E(T)=1= (17)
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2.3 Forced evolution

We now show the solution of the system (7). which represents the action of the control on
the system ‘ .

a, + (w;)2an = —Ini}a

an(o) = .‘/2 - 'U(O)J'n ) (18)

in(0) =y} - ¢(0)x, .

To find that solution, we consider the Fourier decomposition of the control v, i.e.

Vi elo,1]

v(t) = ) v; cos(wit) + vf sin(wkl) . (19)
k=1

We denote each harmonic component of v by v, where
vp(t) = v} cos(wrt) + vfsin(wl). (20)

We consider now only an isolated generic component vy and. by replacing (20) in (13), we
obtain the following equation

a, + (t.‘::L)2 a, =r, urﬁ (v,}. cos(twit) + z'f, sin(u'kl)) ) _ (21)

[t is easy to check - considering null initial conditions - that the solution of (21) is given by

5t
€T, W . 2 . .
an(t) = k /sm(w;(t —s)) (z,: cos(wys) + v} s1n(u'L.._s')) ds. (22)
0

Hence, a@,(-) has the form:
¢
i (l) = 1y wf /('()S(w';,(t —8)) (“L cos(wyps) + vf sin( l(‘;J*')) ds. (23)

0

Taking ¢t = T, from (22) and (23) we obtain
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N ok (o) 1 I
a {l) = — .)T(l - cos(2mnc)) )1(1+()+/\'+71(1+() 3
o~ . ’ ' - .

+isin(')7’n() : l + ~!
200 0 T \n(l¥a)+k n(l+e)—k))"

(24)
a(T)  wpwi o} . 5 1 |
w! W, \27 sin(2mn) n(l+¢)+k + n(l+¢)—k
) .
k] cos(O 1 L
+'27r(l cos(2mnc)) (n(l +e€)+k + n(l+e¢)— k)) ’
We define
1 1 2n(l +¢)
s(hon) = = , 25
Stk 7z(l+()+lx+7z(l+()—k (n(1+¢)+k)(n{l +0)—k) (25)
1 | -2k
Jr(k.n) n(l+e)+k n(l+—-k MA+c)+k)(n(l+¢e)—k) (26)
Then, (24) can be written in a compact form as
A(T) = Sur + Vi, (27)
heing
; _— Fs(k.n) (1 — cos(2mne)) fr(k,n) sin(2rne) o)
nk — ; B ) <
2mwy fs(k,n) sin(27ne) —fr(k,n) (1 — cos(2mne))

= ( A ) . | (29)
’U,% '

We conclude that if the input signal (20) is applied in (0,7"), to get the forced evolution,
we must add a term of the form S,x-Vj | to the term (15) corresponding to the free evolution.

Considering that the control applied to the system vanishes at { = T, and taking into
account (2), (4) and (7), to obtain the value of «,(7+) we must also add to (15) the term

2o (I — ) V. (30)
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Finally, using the superposition principle, and considering all the components of v, we get
the complete expression:

An(T) = En(T) - Aa(0) + fj (Sux + 2 (I — Ep)) - Vi (31)

k=1

2.4 The Exact control
For the case T" = 2, the control ¢(¢) givcn. by HUM method has the form (see [6], [16])

40
v(t) = Z( 1)+ <27y7’; cos(t,t) + —ELsm(w t)> (32)
This implies
r (_1)k+] '
Vi=——J-A0), (33)

where J 1s the matrix

J:(_(l) (')) ()

For ¢ = 0, using (6), (13), (33)‘ and (34) in (31). we obtain

l [
AL(T) = E,(T)- -5 }: (=1)* S - J - Ar(0), (35)
but also, for ¢ = 0 _
S'nk =2 (—I )n+] g 6711\' (36)
and
E(T)=1 (37)
In consequence, as I +.J? = 0, we have
A (1) =0. (38)

So. we have checked that the signal (32) synthesizes an exact controller.

This is the ideal case, corresponding to total exact observation and complete control. In
the following section we will analyze the action of a more realistic control.
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3 The Observer-Controller System

3.1 Fourier Analysis in Real Time

For the case T = 2, the control ¢(f) given by the HUM method is

.. o
v(t) = 2—:1(—-1)”“ (237'; cos{w,t) + %’—‘sin(zv,,i)) . (39)

Generally, this control is impossible to implement with a practical procedure, because no
physical or computing device can bring all coefficients (y! . ¥%). In fact, only a finite number
of components will be reconstructed by any implementable observer device.

In our problem, we assume we know y(£,4), VI € (0,0c). Theoretically, if the point £ is
strategic (condition that in this problem is equivalent to £ irrational, see [7]), at the end of
a time t > 1' we will be able to reconstruct all the initial conditions, i.e. we could know

An(0), Vn=1,2,....

In practice, as the available computing power is always finite, the computation must be re-
stricted to a finite number of harmonic components. Here, we will design an implementable
procedure to compute a partial estimate of the state comprising NC harmonic components,
which in turns will provide a truncated approximation of (39).

Foundations of the method

For the case of free evolution, the observation in (0, 7T) has the form

oG

Z sin(krf), 0) - Ex(t) - A(0). (40)

k=1

>, we get the vector b(t), being

o —

By multiplying {40) by E,(—t) - (

in(0

((zn(())cos(knl) + " ) Sin(kﬂ)) cos(nwt)
= Z " sin(kwf).
k=t ( (.111(0) . ) ¥
a,(0)cos(krt) + sin(kmt) | sin(nrt)

9
u’ﬂ
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Integrating b(t) in (0,T), we obtain (for the case of null perturbation, 1.e. ¢ =0)

( T' l <) dt \
. (0) ) O/y(f, ) cos(w t) dt
wy, y(& ) sin(ws t) dt

| \/ /

These formulas imply that the components «,(0) and @,(0) can be computed by convolution
of the output y(£.t) with the kernels sin(w;?) and cos(w?t).

This last result hints us a practical procedure to compute a finite number of coeflicients
A, , because the operation of convolution is implicitly performed by any dynamic device
whose impulsive response is the kernel sin(wSt) or cos(wtt).

Specifically, our procedure consists in injecting the observation signal y(£.t) into an oscillat-
ing second order system whose characteristic frequency is wy, i.e. we consider the differential
equation

Gr + whap = y(€. t). (12)

At the time T, the state of the system is (up to a constant factor) the original coefficient
A, (0) multiplied by the matrix J.
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3.2 The Oscillators as Observers

The implementable practical procedure consists in allowing the system to evolve freely in
(0, T') and during that time. processing the observation signal at each oscillator that compose
the filtering device.

The filtering device comprises NC oscillators without dam ping, whose common input is
the output of the real system (the observation signal y(&, 1)). In consequence, denoting the
state of each oscillator by aj. we have that ay is governed by an equation of the following

type:
. 2 s . € (.1'71(0) . € -
g+ wpoy = y(€,1) = Z sin(nw€) [ a,(0) cos(w;,t) + sin(wgt) ] . (43)
n=1 wr(L
It is ecasy to check that the solution of (43) is given by
’ an(0)

ar(t) = ulk /qm(zq (t—s) Zsm nrf) ( (0) cos(wis) + sin(wfls)) ds. (44)

n=1 n

From (41). we obtain for ax(-) the following expression

ar(t) = /coe(uA t—s) z sin(nwf) ( 2(0) cos(wts) + (12)((0) sm(wns)) ds (45)

Taking ¢t = T in (41) and (45) we obtain

( i L an(0) . . 1 _ 1
a(T) = Ty A sin(nrf) (_Wfl sin(2mne) (n O+O+F n(l+e= k)
0 ) 1 1
— S ) —_
+a,(0)(1 — cos(2mne)) nl+e -k n(l4+a+k))’
: (46)
ar(T) 1 1
Wy )Tllk Zsm (nré) ( 0)sin(2rnc) (71(1 +e)+k + n(1 +c)—k)
i (0) . 1 ] \
+ w (1 = cos(2mne)) (n(l Fap + n(1F = k))
In matrix terms, we have
O(T) = Y Fon - Anl0), (47)
n=1

where
sin(nré) —fr(k,n) (1 — cos(2rne))  fr(k,n) sin(27ne)
Fy, = o ) (18)
=T W0k fs(k,n) sin(27ne) fs(k,n) (1 — cos(2mne))
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@k v}
®(t) = G = , | (49)
— Vi
Wy k

From here, it is easy to check - for the case € = 0, i.e. null perturbation - that at time T
the output of the A" component of the filtering device is the signal J-Ax(0), Yk =1,...,NC.
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3.3 The Oscillators as Controllers

The filter set — as an auxiliary (I)’Ilalllifal system - not only brings at time 7' the partial esti-
mation J-A4,(0),Vn=1,..... (. but also it generates in [T, 27T a truncated control signal.

Specifically, in [T, 21, we allow the oscillators evolve freely - disconnecting the input y(€.1)
to the filtering device — and that evolution generates the real control signal #(/) (a truncated
version of (39)), being:

—y! 3
Z( )t ( e = cos(wnt) + —élsin(u,v,,l)) : (50)

n=l1

This control signal is injected to the system - during the interval [1,277] -- to steer it o the
null state.

This dual operation is shown in Figure 1. The detailed procedure is the following:

1. In [T, 2T] we let each one of the filter oscillators evolve {reely (without input signal);
then, their output has the following evolution
ap(T)

ar(t) = ap(T) cos(wyt) +
Wy

sin(wyt) . (51)

2. We multiply the output of each oscillator of the filter by the constant
-1
T (52)

xy, sin(hw€)

Tk =

3. We sum the resulting signals as it is shown on Figure L. In consequence, for the real
synthesized control we have the following expression, Vi € [T, 27

NC

o(t) = Z')kak (53)

Finally, using (47), (49). (5! (53) we obtain — in terms of the initial conditions of the
system (coefficients A,(0). n = 1 ...... ) - that the control has the form

NC

= 3w B0 z Fin - An(0), (51)

where
E(1) = ( cos(uyt), sin(wyt) ) . (55)
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Observation

y(&. 1)

System

Observer - Countroller System

Observers -

Tt .- Oscillator 1

Y2 . Oscillator 2
Control
Signal

Oscillator NC

-~
=
=
®

Figure 1: The closed loop system



11 ITUM method for the one dimensional wave equation

3.4 Equation of evolution for the closed loop system

To get the closed loop evolution. we use the expression (31) and (54), suitably transformed
because now the control is applied during the interval [T, 2T]. As the real control is given

by (33), then. VA > NC itis vy =0and Vk=1,...,NC,
Vi = Yk Z Fio - Am(o) . (56)
m=l1

For the complete expression of the filter, and considering the natural evolution of the system
(31), we have

NC 00
A,I(:.). [+) = 174‘11(2 1.) . An(u) + Z Yk (S-nk + x, (1 - Lyn(,[‘))) Z ["km : Am(O) . (57)
k=1 m=1

To analyze the evolution of the system at the discrete times 2v 7T, Vv € IN, we define the
operator Q) : ¢? — 2 such that '

A(.)(O —) = /1(.)(2,114‘) . (58)

The term 0, (of the infinite matrix @) has the following expression

NC
(211”1 = <Z Yk (-7"771([ - [’4‘,,(_,[‘)) + 'S'nk) IJ‘km) + En(‘:):[‘) M 511771 . (59)

k=1

It is easy to sce that for € = 0, ) has the following form
O nexne Onexz *
Q OZXI\‘C ! O2x2
I Oazxz - 1 Oaxa |
: . Oz

(60)

where I,45 is the identity matrix and (O2x2 is the null matrix.

Therefore, the closed loop system annihilates the first NC harmonics and leaves the re-
maining components unchanged. This behaviour holds for the case € = 0, corresponding to
an exact calibration of the observer-controller device. The real case is analyzed in section 5.
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4 Examples

Ve
The utilized model corresponds to a truncation of the original system in the first NA har-
monics. The observer and the control act on the first NC harmonics. The observation point

ST = ]/\/5

In the figures it is only shown the evolution of the output of the system in the control
interval [T, 27] (the identification interval [0, 7] has been eliminated from the figures). We
have considered NA=1, NC=1 on Figure 2 and NA=3, NC=3 on Figure 3. In these ex-
amples, we have computed the values of y(.,t) corresponding to a partition of the spatial
domain [0. 1] in NX=145 subintervals and the time interval [0, 2] in NT=46 subintervals.
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5 Structural instability

In order to eliminate any residual no null state of the system, we can apply the same control
procedure at the intervals:

[27.47), (AT, 6T).....2eT,2(xv +1)T], YveEN

In that case, considering the state of the system at the discrete instants 20T+, we have that
the discrete time evolution is given by the transition operator @, i.e.

420 T+) = Q" - A(0).

[t is easy to check that for any perturbation € # 0 the procedure is unstable, because Ve # 0
some eigenvalues of () have modulus A = | + p, with p positive.

The instability factor p is a slowly increasing function of €. The following tables show

the behaviour of p in terms of ¢ (the eigenvalues have been computed on the truncation of =
() to the first NA components). '

5.1 Tables of unstable eigenvalues

P e=10"% | e=10"° | ¢e=10"" €=10"° e =10"¢ e =107
NA=2 | 1.137e~% | 1.2733¢=9 | 1.2752¢1 | 1.2753e17 | 1.2753¢=2! | 1.2753¢-25
NA=31{1.1373¢7% | 1.2733¢7% | 1.2752¢713 | 1.2753e7'7 | 1.2753e~2 | 1.2753e~%5
NA=d | 1.1372¢75 | 1.2733¢9 | 1.2752¢71 | 1.2753¢717 | 1275321 | 127532
NA=5 | 1.1372e=5 | 1.2733¢=° | 1.2752e~13 | 12753717 | 1.2753¢~21 | 12753725

Table 1: Factor of instability p versus e. NC=1




Structural instability

p e=10"" | e=10"2 | e= 107" «=10"" | ¢e=10"% | e=10""
NA=3 | 1.2751e7> | 6.2921e79 | 6.3635¢71 | 6.3689¢717 | 6.3694e72! | 6.3695¢%°
i\’z\:- 127497 | 6292472 | 6.3635¢713 | 6.368%¢717 | 6.3694e72! | 6.3695e2°
NA=) | 4.2T45¢7° | 6.2921 72 | 6.3635¢ 7" | 6.3689¢717 | 6.3694e7% | 6.3695¢2°
) Table 2: Factor of instability p versus e. NC=2
poole=10"" =102 (=107 | e=10"" | e=10"
NA=1] 0.26596 | 0.000574 | L.1132=7 | 1.1313¢7! | 1.1325¢715
Table 3: Factor of mstability p versus e. NC=3
P c=10"" | ¢=10"2| ¢=10"" « =101 ¢ =10"3 e =107
NA=3 ] 0.198303 | 0.00162 | 1.2072¢ =" | 1.2391¢™ ! ’1.29235(."1'5 4.2939¢~1Y

Table 1: Factor of instability p versus ¢. NC'=4
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5.2 Analytical results

[t is possible to do analvtical calculations  we have doune them with the NMATHEMATICA
programming language  which proves that the unstable eigenvalues of (2 are functions of ¢
verilving the following law

INO)] = (1 + O(c")).

Additional description of this hehaviour will be contained in [11].

6 Conclusions

[u this work we have found the following results for a practical iimplementation of HUM
method of exact controllability:

e For the one-dimensional wave equation it is possible to implement in a practical way the
exact controllability method. It annihilates a finite number of harmonic components
of the closed loop system, while leaving unaltered the remaining part of the systen.

e The proposed implementation is not robust with respect to perturbations on the plant
data. For any small variations of systems’s parameters, there appears spurious unstable
oscillations in the closed loop operation.

The trade-ofl exact controllability vs. closed loop instabidity has been previously analyzed
in some papers (see c.g. [2]. [3]. [6]. [9]); in particular, this paper continues our work initially
described in [6]. [t seems an unavoidable phenomenon in the absence of damping and in
that sense, it opens two roads to overcome it. The first one is to analyze how much damping
is necessary to add to the system to stabilize it; the second one is to analyze how much
computing power is necessary to use, to get the equivalent result to an artificial damping.
These issues are the subject of some research in course [11].
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