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Abstract: We are interested here in the long time behaviour of the conditional law for
a special case of filtering problem: there is no noise on the state equation and the prior
law of the state process concentrate fast in some neighborhood of a limit cycle with strictly
negative characteristic exponents. Then assuming a deterministic observability property on
the cycle we show the concentration of the conditional law on an arbitrary neighborhood of
the current (unknown) state as the time goes to infinity. This work can be considered as
illustrating how the tools of dynamical systems theory can be use to study the long time
behavior of the filtering process.
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Asymptotiques en temps long pour des problemes de
filtrage non-linéaires sans bruit de dynamique,
nouveaux cas.

Résumé : Nous nous intéressons ici au comportement en temps long de la loi conditionnelle
pour un probléme particulier de filtrage : il n’y a pas de bruit sur ’équation d’état et la loi
a priori du processus d’état se concentre rapidement dans un certain voisinage d’un cycle
limite dont les exposants caractéristiques sont strictement négatifs. Alors en supposant une
propriété d’observabilité déterministe sur le cycle limite on montre la concentration de la
loi conditionnelle sur un voisinage arbitraire de 1’état courant (inconnu) lorsque le temps
croit vers 'infini. Ce travail peut étre considéré comme une illustration de 'utilisation de la
théorie des systemes dynamiques pour 1’étude du comportement en temps long du processus
de filtrage.

Mots-clé : Filtrage non-linéaire, asymptotique en temps long, concentration de mesure
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1 Introduction

This paper is essentially a sequel of our previous work [1] concerning the long time behaviour
of some non linear filtering problems (see for example [8] for a review on non linear filtering).
There is not much literature on this topic: some results have been proved in [5] and [6] by
Kunita when the state process is ergodic. Let us also mention that the results presented in
[5] have been extended to the non compact case in [4] by Ji. Concerning the sensitivity of
the filter to the prior distribution, some results can be found in [7].

Here we will try to show how the tools developped within the theory of dynamical systens
can be used for studying the long time behaviour of the optimal filter. We consider the
following problem:

{ dX, = b(X;)dt 1)
dY; = h(X;)dt+dB;

where X, takes values in a compact domain D C IR¢ and Y; in R™, X, is a random vector
of given law Px,, with density py, B; is a m-dimensional Wiener process independent of
Xy. b is assumed to be C'. In the sequel, ®;(z) will denote the (deterministic) flow of the
state equation; it is the state reached by the system at time ¢, starting from z at ¢ = 0.
We will assume that it is well defined for every time ¢ and every initial condition zy,. We
will also assume that the dynamical system defined by the vector field b has the following
behaviour: most of the trajectories are attracted (in a sense to be precised below) by any
neighbourhood C®) = {z € D,d(x,C) < &} of a periodic orbit C with d — 1 characteristic
values having negative real parts (see [2]). Then every attracted orbit has an asymptotic
phase on the limit cycle C and its distance from C decays exponentially fast as ¢ tends to co.
All these notions will be precised in the next section. Note that in all the sequel by “period”
we mean the least period of the considered function. With some more assumptions on h and
Do, it is then sufficient to have some observability property on C to show the concentration
of the conditional law on any small ball centered on the true position X; = ®,(Xj) of the
state equation. Recall from [1] that u; being the conditional density, for all a > 0:

C z)dx
/ pi(z) de = fq)t {lle—X:||<a}) fi(z)
{llz—X:||<a} I f(2) da

where

o) = exp [ [ 1h(@4(2)) ~ M@ (X)) |7 ds + [ (h(®,(2)) — h(@.(X0))) dB,] pof).
¢l

The main idea is that on an attracted orbit, the observations are very close to the ones given
by its asymptotic phase.
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2 Assumptions and properties of the system

First we consider a deterministic system associated with (1):

dz;
— = bz

with initial condition xzq € D. For all 1, zo € D and all ¢ > 0 we denote

I(en,2) = [ 1h(®,(21)) — h(®,(z2))]* ds.

Denote by T' > 0 the period of the periodic orbit C. In all the sequel we make the following
assumption on the observation function h:

(A1)
(i) There is some K} > 0 such that or all z; and z5 in D

[A(21) — h(22)|| < K [lzy — 2o (4)

(ii)) We have the observability condition on C:

Vn >0, 3¢ > 0 such that V1, z; € C, ||z1 — 22]| > n = Ip(z1,22) > €. (5)

Then we have the following lemma, which gives a characterisation of the observability condi-
tion:

Lemma 2.1 Assume h and b are continous (then so is the flow ® associated with b), then
the observability condition (5) is equivalent to any of the following assertions:

(x) ho ®,(x) is periodic of period T for all z € C.
(k%) Vo1, 2o € C, &1 # ®3, 3t > 0 such that h(Pi(z1)) # h(Pi(z2)) (this is the standard

deterministic observability property on C).

Proof (5) = (x):

Suppose h o ®; has period 7", 0 < T" < T. Then let z; and z; such that z; = ®7/(z4),
z1 # x2. Then Vt > 0, I;(z1,22) = 0.

() = (5):

Suppose: 37 > 0 such that Ve > 0 Jzq, 23 € C , ||z1 — z2|| > n and I7(z1,22) < . Thus

inf IT(IE1,$2) =0.
(z1,22) € C?
|21 —z2|| > 7

INRIA
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The domain of the infimum is compact and I7(., .) is continuous, so there exist z1, z3 € C,
x1 # o such that Ip(zq,22) = 0. Then by continuity in ¢, A(®;(z1)) = h(Pi(z2)), YVt > 0.
Let 0 < 7 < T such that ®,(x;) = x; (interchange the role played by z; and x if necessary).
We have Vt > 0, h(®;(z1)) = h(pii-(z1)), that is h o ;(x) has period 7 < T.

(5) = (xx) is obvious.

(xx) = (5):

Again by a continuity argument, we choose € such that

O<e< inf IT(Z‘l,Z‘g).
(.’17171‘2) S C2
|1 — 2| = 7

O

Let us now outline some classical notions related to dynamical systems (see for instance
[2] for details). From now on, we will consider that b is C*. First we define the Poincaré map:
let & € C and 7 an hyperplane tranverse to C at & (i.e. satisfying the equation £.b(&)) = 0,
where the dot denotes the scalar product in IR?). As b(&)) # 0 (we are on a periodic orbit),
an immediate consequence of the implicit function theorem gives that there exists a unique
real valued C! function 7(¢) defined on a neighbourhood of &; in m, such that ®,¢)(§) € 7
and 7(&) = T. Then the map F : { = &, () defined on the same neighbourhood of &

is also C'! and is called the Poincaré map. Consider now the matrix H(t,£) = &%f). H is

solution of
dH(t,§) _ 0b(®:(£))

H(0,¢) = I. For £ = &, the matrix W is periodic, of period T. Then by the Floquet

T

theory, H(t,&;) has a representation of the form:

H(t, &) = C(t) et

where C(t) is periodic matrix of period 7' and A is a constant matrix. The eigenvalues
Aty-. s g of H(T, &) = H(1(&), &) = e™ are the characteristic roots of the periodic orbit
lying on C and T~ 'log Ay, ..., T 'log A\q are the characteristic exponents. Note that only the
real parts of the characteristic exponents are uniquely defined (they are defined modulo 2i7
and A is not unique). One of the characteristic values, say the last one in a suitable system
of coordinates such that b(¢)) = (0,...,0,1), is 1, and the submatrix obtained from ™ by
deleting the last row and column is the Jacobian of F' at &.

From now on, we will assume that the d— 1 first characteristic exponents of C have stictly
negative real parts. Using these tools, one can show ([2] theorem IX 11.1) that there exist
§>0,L >0 and o > 0 such that for all z € C¥) = {¢ € D, d(¢,C) < 6} there is some # € C
verifying

1®e(z) — u(Z)| < Le ", (6)

Z is called the asymptotic phase of x. In order to use these results, we will assume that the
following condition is fulfilled:

RR n~ 2541
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(A2) The vector field b is C! and the d — 1 characteristic exponents of the periodic orbit
lying on C have stricly negative real parts.

The proof of the following lemma was given to the author by A. M. Davie. As long as we
know it cannot be found in the standard literature, so we reproduce Davie’s complete proof
here.

Lemma 2.2 (Davie) Assume that (A2) is fulfilled. Then there is a neighbourhood C®) of C
such that there exists a constant C > 0 verifying: for all 1, zo € C9 and all t > 0 we have

[®(21) — ®4(22)[| < C |y — a|. (7)

Proof Let m be a tranverse hyperplan to C, and F' the associated Poincaré map. Corres-
ponding to the periodic orbit is an attracting fixed point v € m of F' ({7} = C N 7). Then,
for a suitable norm, we have |DF(a)|| < k < 1 for a near y, a € 7. Let z;, x5 be close to
the periodic orbit C (but not close to 7). We find s and ¢ so that

y(z1) =aem P fz)=pem

and
o =B < Cil|lzy — 2|, [s —t| < Chl|zg — zo|-

This is possible because by an implicit function argument similar to the proof of lemma
1X.10.1 in [2] the map z; > ¢ is C! in some neighbourhood of z;. But we have to be careful
to avoid singularities near : if we consider only positive times, we get something close to 0
on one side of 7, and close to the period 7" on the other one. To deal with this problem we
may allow negative times and consider different maps. First notice that as ¢ and s (either
positive or negative) are bounded, it is sufficient to consider z; and z5 close to each other.
Then consider € > 0 small and define:

Dy = ( U @u(w)) nc®,

ul <2e

D, = (U <I>u(7r)) nc?.

jul<e

If z; and z, are close enough to each other, then they are both in at least one of the two
domains above. On Dy, we allow both positive and negative times, and on D, we allow only
positive ones. Then these two maps are C'! on their respective domain.

For n € m we let 7(n) be the time ¢ such that ®;(n) = F(n), then

|T(m) — 7(m2)| < Callm — n2|

for all 71, 72 € 7 close to 7.
Let o, = F"(«) and 3,, = F"(3). We have ||DF(n))|| < k for nnear v so | DF"(n))|| < k"
so
low = Bull < K" [la = Bl < Cr k™[22 — 24

INRIA
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and

17(an) — 7(Ba)] < C1 Co k™ ||lz1 — 2.
We have

®; (z1) =, where t,=t+7(oq)+ -+ 7(n-1),

®, (z2) =0, where s,=s+7(01)+ -+ 7(Bu-1).

Then we obtain
|Sn - tn| S CS ||‘/L'1 — '1’.2”7

SO
|4, (21) — Dy, (22)]| < Cy |21 — 22|,
also
|4, (22) — Dy, (22)]| < Cy |21 — 22|,
SO

@4, (z1) — @4, (z2)|| < (Ca+ C5) [lzn — 2.
Since t,,11 — t,, is bounded, we then obtain
[®:(z1) — Pu(z2)]| < Cs ||lz1 — 22|, for t,, <t < tuya,

for every n, i.e.
[@4(21) — Pi(@2)|| < C |71 — 2],

where C' does not depend on t, z1, x5. O

Now we come back to the system (1). We make some assumptions concerning the flow
outside C*) and the prior law P,.

(A3)

(i) There exists a function A : R, — IR, such that lim,_,, ., A(t) = +oo, and for some
§ > 0 small enough so that both (7) and (6) are satisfied there is some K > 0 such
that for all ¢ > 0:

Py (@1 (C€)) < Ke 2, (8)

(ii) There exists a function a : Ry — IR} such that for all z1, 25 € D, for all t > 0:
[®4(21) — @4(z2)]| < a(t) |21 — 22| (9)

iii) There exists a function ¢, : IR, — IR verifying:
+ + ymng

to(t
¥—>Oast—>—|—oo, (10)
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10 Freédéric Ceérou

a(t\o/(;)) n A(ti(t)) —s0ast— 400 (11)
and
281(1_; —+0ast— 400 (12)

where A(t) = ||al[z2(0.4)-

Remark 2.3 The conditions above should be viewed as conditions on F, rather than on the
flow. In particular they are trivialy fulfilled in the case where Py(®;,'(C%))) = 1, for some
t; > 0, for which we have Vt > t1, A(t) = +o0o. Consider now another case: there is one fixed
point £, but all the other points in a neighbourhood of £ are attracted by C. To simplify,
assume that we are in IR?, ¢ = 0 and that 0 and supp(po) are in the interior of the curve C.
For all @ > 0, let B(0,a) = {z € DD, ||z|| < a}. We assume that there is ap > 0 such that
the flow is linear in B(0, ag), i.e. Vz € B(0,aq), ®; *(z) = e~* z (We remove the constants for
simplicity). Assume also that

h= Sub inf{s >0, ®.(z) € C((s)} < +o0.
2€B(0,a0)¢NC()e

Thus a(t) = e To satisfy both (10) and (11) we can choose:

1
to(t) = 5 logt, with 14 > 0.

+ 1

Then to satisfy (8) and (12) p, must decay very fast around the fixed point 0: consider that
we have py(z) < K exp (— exp(||z||7>72)) for some vy > v1. We get for t > t;:

Py (@,1(CP)) < Py (2,2, (B(0,a0)))

= PR (B(0,e"""ag))

e~ tttiq, o,
< KQTr/O T exp [— exp [7’ H dr.

Let a; = ay>™*2, then for ¢ large enough:

Py (@;1(C(5)’C)> < Kpe #g? exp [— exp [e(2+”2)(t*t1)a1”

< Ksexp [— exp [e(2+”2_%("2_"1))ta1]] ,
for some K > 0, K5 > 0. So we can choose:
A(t) = exp [e(2+"2_%(”2_”1))ta1] ,

and then
Alto(t)) = exp [on ]
for some v3 > 0. Finaly we have:

Alt t v v
()74_ — elm T pema T g ast s oo,
Alto(t))

INRIA
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Lemma 2.4 Assume that (A2) and (A3) are fulfilled. Then
d(X;,C) =5 0 ast — +oo.

Proof Let i(n) be an incerasing sequence such that e 2¢() < ~1_ Then by (8) and the
Borel-Cantelli lemma:

()

B (ﬂ U (I)i_(}t) (C(é)’c)) =0,

n>0m>n

1.e.

Py (U N @ (c@)) = 1.
n>0m>n

Thus Py a.s. there exists some (random) 7 such that X, € C) and by (6) d(®;(X,),C) — 0
as t — +o0. O

Finaly we have to estimate the stochastic integral appearing in (2).

Lemma 2.5 Assume that (A1) and (A3) are fulfilled. Then the following estimate holds:

[} (@)~ h@,(x0) dB,

]SKAm

E lsup

zED

for some K > 0.

Proof For all ¢t > 0 and z;, 25 in D, using (9) and (4):
t
/0 1h(@y(21) — ®(2)]|* ds < K5 (A(t))” [len — 2]”.

Then the same argument as in [1] proposition 2.1 applies (recall also that the domain D is

bounded). O

Then by (12) we have immediatly the
Lemma 2.6 Assume that (A1) and (A3) are fulfilled. Then the following convergence holds:

1
su
A(to(1)) seb
From now on we will denote:

B! ={z e D, ||z — X{|| < a},

Lemma 2.7 Assume that (A1), (A2) and (A3) are fulfilled. Then the following convergence
holds:

/Ot (h(®,(2)) — h(®,(X0))) dB,| T+ 0 as t — +oo. (13)

1

13
= sup / (h(®,(z)) — h(®,(Xo))) dB,| -2 0 ast — +oo (14)
ved7 ! (B;') 0
forall0 < a< % and where
n=inf{t >0, B, cc?}. (15)

RR n~ 2541
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Proof As X and B are independent, we can consider that P = Fy® Py on some probability
space Qy x Q. We denote by Ej (resp. E) the expectation over g (resp. Qp). Note that 7 is
Xo—measurable and is also independent of B. For almost all wy, and for all z;, z; € ¢, L(Bm)
we have:

/Ot 12(®a(21)) — h(®a(@2)|P ds < (K1 A(m)? + Kz () (6 = 70)") [lon — 22?,

for some K7 > 0 and K, > 0, using (4), (9) for the integral over [0,71] and (4), (7) for the
integral over [71,t]. Then again the same argument as in [1] proposition 2.1 applies to give
Py—p-s.:

Eg sup

ve® ' (B)

[} (4@.(0) ~ h(@.(X0)) dB,

1
2

< K (KyA(n)’ + Kz a(n)’ (t = n))

for all ¢ > 7y, for some K3 > 0, which clearly implies the lemma. O

Lemma 2.8 Assume that (A1), (A2) and (A3) are fulfilled. Then the following convergence
holds:

1 t
t

(h(®,4(z)) — h(®,(X0))) dB,| =5 0 as t — +o0. (16)

sup
ved L (qu (Bg)ncw))

tg(t) \ " t—tp(t)

0

Proof Let ©f be the domain of the supremum. Then for all 0 < a < g, t such that to(t) > 7
(71 defined in (15)), and 1, z, € OF:

/(: 12(2,(21)) — h(@s(22)) [P ds < (K1 A(to(1))* + Kz alto(t))* (¢ — to(1))) o — 22,

using (4), (9) for the integral over [0,t,(t)] and (4), (7) for the integral over [ty(t),t]. Then
again the same argument as in [1] proposition 2.1 applies to give Py—p.s.:

Ey [535 [ (@)~ h(@. (X)) aB, ]
< K (K A(to(0)? + Ko alto(t)* (¢ — (1)) (17)
< K3 Kf Alto(t)) + (Kx (¢ — ta(1))* alto(t))
for some K3 > 0, which clearly implies the lemma, using (10) and (11). O

INRIA
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3 Main results
Recall that f; is given by (2).

Proposition 3.1 Assume (A1), (A2) and (A3) are fulfilled. Then the following convergence

holds:
d
/;’t_ol(t)(c(‘”‘c) fz) do

Ail fi(z) dz

(B2)

t a

250 ast — +oo, (18)

for any a > 0.

Proof Using the characterisation of the convergence in probability in temrs of a.s. conver-
gence of sub—sequences, this will follow from the convergence P-a.s. along a sequence s,
such that lim,,,, . s, = +0o0 and for which the convergences (13) and (14) take place a.s.

We consider a small and s,, large such that Bt%o(s") C CY%), where C is given by lemma 2.2.
This is possible from lemma 2.4. Then we have:

[rl fs, (z) dz

to(sn) (C(‘s),ﬂ)

| (@) — h(@.(X0))) dB.

] [I)—l (ct9-) po(z) dx

to(sn)

for n large enough, using (A3) (i), and the definition of (s,). On the other hand, 7 being
given by (15) with & instead of a, notice that, on the set {m > t}:

< exp lsup
z€D

< Kexp l—A(to(sn)) + sup
z€D

/0 (h(®4(2)) — h(®.(X0))) dB,

< Kexp [—%A(to(sn))]

B . _co'(BE)co ! (B).

a(r)C
Then using (4), (7), (9):

2

t T a t
1 (®,(z)) — h(X,)|]* ds < K,'f/o a(s)zmds + K2 / a2 ds.

Y
a(r1)C 0

Ve B .

So

[1)‘1 _ fe(z)dz

(Ba™)

Sn

> /BO fo, (z) dz

a

a(r)C

RR n~ 2541
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= sup | [T (@ (@)~ h(@(X) dB | [ pole)da
.'L’EBO a 0 B a
Ca(ry) C(x(‘rl)
> K, exp {—K5 a’ sn] (19)

for n large enough, using the definition of (s, ), and where all the K; are strictly positive and
independent of s,, (but possibly random, note also that K5 does not depend on a). Then we

obtain:
s, (z) dz
ooy 1 :
- < Ko exp | =5 A(to(sn)) + K5 a” s
/ fs, (z) dz 2
®5, (B")
which tends to 0 by (12) and lim;_, ., A(t) = +o0. O

Proposition 3.2 Assume (A1), (A2) and (A3) are fulfilled. Then the following convergence
holds:

(x) dz
A‘l (C(é)ﬁq)—l (BZC)) f( )

to(2) t—tg(t)

d
[b:l(Bm filz) do

50 ast — 400 (20)

for any a > 0.

Proof Let
0, = o4 (€ ne, (Br)),

where the superscript ¢ denotes the complementary. For all z € C%) let us denote by Z the
asymptotic phase of z on C. Then we have for all z € O, ||®;,u)(z) — Xyl > &, from
lemma 2.2. So for s E]%(t + (1)), t],

14() — X,|| < 2L e 20+ D7 4 @, (z) — X,
by (6) (X, exists a.s. by lemma 2.4). Notice the following inclusions:

Vu € [O’t - to(t))], Q;_lto(t)_u (B(t;c) =&, ((I);—lto(t) (B(tlvc>> C BZO(t)-I-u,c,

C

SO

a
<I)s - Xs > Rk
[@.(a) X > &
and thus using (10)
— - a
P,(z) — Xi|| > —
[9.00) — Xl 2

INRIA
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for s large enough. We get, by a similar argument:

/ot 12(®+()) — h(®+(Xo))|I* ds

i
> [ A, (2)) — h®(Xo))| ds
7 (t+to(t))
> [ @) - hRPds K [ e
— sl — s S — e S
T 4 L4t ‘ 5 (t+to(t))
> Kt

for t large enough, using also (A1), and for some Ky, K; > 0. Then:

[ (h(@.(2)) — h(X.)) dB,

|

Let s,, such that lim, .~ s, = +00 and for which the convergences (14) and (16) take place
a.s. Then for n large enough we obtain:

/ fi(z) dz < exp l_KQt + sup
SH z€OL

/S [, (z) dz < K exp [— K3 s4)

a

for some K3 > 0. Assume ag < % to have BZO c C¥ for lage t, and let ay < a. Recall (19):
2
L;;(BZ") fon () dz > A;}(BZ{;) fsn(z)dz > Ky exp [—Kg, ag sn}

for n large enough, where K5 does not depend on ay. Thus we obtain:

L, fu@)de

< K exp [K5 at s, — Ks s,

. (z) dz

Sy oo @

which tends to 0 provided we choose ag small enough. We conclude using the characterisation
of the convergence in probability in terms of a.s. convergence of sub-sequences. O

Finaly we can state the main result:

Theorem 3.3 Assume that (A1), (A2) and (A3) are fulfilled. Then for all a > 0 the follo-

wing convergence holds:

/ wi(z) dz L1 ast — +oo,
{llz—X:||<a}

where p; is the conditional density of X; given o(Ys, s < t).

RR n~ 2541
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Proof It is equivalent to show the following convergence:

f@t—l(BZ’C) fi(@) dz

P
—0ast— :
f@;l(Bg) fi(@) dx * e

Then we get:

f —1 —1 t,c f T)dzx
Jopye) folz) da < Jos, (o) fil@)da Sais, (coner2, (, (81)) 1)
Jorry fil@)dz = Jorapy fi(w) da Jar1 sy folw) do ’
which tends to 0 in probability, using propositions 3.1 and 3.2. O

4 Conclusion

We have shown on a particular case how the tools of dynamical systems theory may be used
to give some results concerning the long time behaviour of non linear filtering problems.
We hope that these results will be generalized to other types of attractors with asymptotic
phases, using for example the results presented in [3].
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